[PDF]  https://doi.org/10.3952/physics.v59i3.4082

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 156–168 (2019)
 


STABLE CARBON AND NITROGEN ISOTOPE RATIO IN PM1 AND SIZE SEGREGATED AEROSOL PARTICLES OVER THE BALTIC SEA
 
Inga Garbarienėa, Vidmantas Remeikisb, Agnė Mašalaitėb, Andrius Garbarasb, Tomasz Petelskic, Przemysław Makuchc, and Uli Dusekd
 aDepartment of Environmental Research, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
bDepartment of Nuclear Research, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
cPhysical Oceanography Department, Institute of Oceanology PAS, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
dCentre for Isotope Research (CIO), University of Groningen, Groningen, The Netherlands
Email: inga.garbariene@ftmc.lt

Received 22 May 2019; revised 25 July 2019; accepted 30 September 2019

We analysed δ13C of total carbon (TC) and δ15N of total nitrogen (TN) in submicron (PM1) and size segregated aerosol particles (PM0.056–2.5) collected during a cruise in the Baltic Sea from 9 to 17 November 2012.
PM1 were characterized by the highest δ13C (–26.4‰) and lowest δ15N (–0.2 and 0.8‰) values when air masses arrived from the southwest direction (Poland). The obtained δ13C values indicated that combined emissions of coal and diesel/gasoline combustion were the most likely sources of TC. The depleted δ15N values indicated that TN originated mainly from liquid fuel combustion (road traffic, shipping) during this period. The lowest δ13C and highest δ15N values were determined in PM1 samples during the western airflow when the air masses had no recent contact with land. The highest δ15N values were probably associated with chemical aging of nitrogenous species during long-range transport, the lowest δ13C values could be related to emissions from diesel/gasoline combustion, potentially from ship traffic.
The δ13C analysis of size-segregated aerosol particles PM0.056–2.5 revealed that the lowest δ13C values were observed in the size range from 0.056 to 0.18 μm and gradual 13C enrichment occurred in the size range from 0.18 to 2.5 μm due to different sources or formation mechanisms of the aerosols.
Keywords: PM1 and PM0.056–2.5, stable carbon and nitrogen isotope ratios, source apportionment, southeastern Baltic Sea region
PACS: 92.60.Mt, 92.60.Sz, 92.60.hf


STABILIŲJŲ ANGLIES IR AZOTO IZOTOPŲ SANTYKIO TYRIMAI ĮVAIRAUS DYDŽIO AEROZOLIO DALELĖSE (KD1, KD0,056–2,5)

Inga Garbarienėa, Vidmantas Remeikisb, Agnė Mašalaitėb, Andrius Garbarasb, Tomasz Petelskic, Przemysław Makuchc, Uli Dusekd

aFizinių ir technologijos mokslų centro Aplinkotyros skyrius, Vilnius, Lietuva
bFizinių ir technologijos mokslų centro Branduolinių tyrimų skyrius, Vilnius, Lietuva
cOkeanologijos instituto Fizinės okeanografijos skyrius, Sopotas, Lenkija
dGroningeno universiteto Izotopų tyrimų centras, Groningenas, Nyderlandai
 
Pateikiami stabiliųjų anglies (δ13C) ir azoto (δ15N) izotopų santykio verčių matavimai įvairaus dydžio (KD1, KD0,056–2,5) aerozolio dalelėse. Dalelės rinktos kruizo Baltijos jūroje metu 2012 m. lapkričio 9–17 dienomis.
Nustatyta, kad pietvakarinėse oro masėse KD1 dalelėms būdingos didelės δ13C vertės (–26,4 ‰), kurių tikėtinas anglies turinčių aerozolio dalelių šaltinis yra akmens anglies ir dyzelino / benzino deginimas, o mažos δ15N (–0,2, 0,8 ‰) vertės parodo skysto kuro deginimo šaltinius (laivų ir autotransporto išmetalai). Bandiniuose, kuriuos renkant vyravo vakarinės oro masės, buvo priešingai – itin mažos δ13C (–27,5 ‰) ir didelės δ15N vertės (iki 10 ‰). Tokios δ15N vertės labiausiai siejamos su azotinių medžiagų fotocheminiais degradacijos procesais tolimosios pernašos metu, o mažos δ13C vertės rodo dyzelino / benzino deginimo šaltinį, kuris šiuo atveju labiausiai siejamas su laivų emisijomis.
Skirtingo dydžio aerozolio dalelių δ13C analizė parodė, kad mažiausios δ13C vertės buvo registruotos 0,056–0,18 μm dydžio dalelėse, o 0,18–2,5 μm dalelių dydžio intervale δ13C vertės nuosekliai didėjo. Toks kitimas atspindi aerozolio dalelių formavimosi mechanizmus ir šaltinius.

References / Nuorodos

[1] F. Wang, Y. Chen, X. Meng, J. Fu, and B. Wang, The contribution of anthropogenic sources to the aerosols over East China Sea, Atmos. Environ. 127, 22–33 (2016),
https://doi.org/10.1016/j.atmosenv.2015.12.002
[2] M. Kang, F. Yang, H. Ren, W. Zhao, Y. Zhao, L. Li, Y. Yan, Y. Zhang, S. Lai, Y. Zhang, et al., Influence of continental organic aerosols to the marine atmosphere over the East China Sea: Insights from lipids, PAHs and phthalates, Sci. Total Environ. 607–608, 339–350 (2017),
https://doi.org/10.1016/j.scitotenv.2017.06.214
[3] C.D. O'Dowd and G.D. Leeuw, Marine aerosol production: A review of the current knowledge, Philos. Trans. Royal Soc. A 365, 1753–1774 (2007),
https://doi.org/10.1098/rsta.2007.2043
[4] C.D. O'Dowd, M.C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y.J. Yoon, and J.-P. Putaud, Biogenically driven organic contribution to marine aerosol, Nature 431, 676–680 (2004),
https://doi.org/10.1038/nature02959
[5] J.-P. Putaud, F. Raes, R. Van Dingenen, E. Brüggemann, M.C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Hüglin, P. Laj, et al., A European aerosol phenomenology–2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ. 38, 2579–2595 (2004),
https://doi.org/10.1016/j.atmosenv.2004.01.041
[6] A.U. Lewandowska, M. Bełdowska, A. Witkowska, L. Falkowska, and K. Wiśniewska, Mercury bonds with carbon (OC and EC) in small aerosols (PM1) in the urbanized coastal zone of the Gulf of Gdansk (southern Baltic), Ecotoxicol. Environ. Saf. 157, 350–357 (2018),
https://doi.org/10.1016/j.ecoenv.2018.03.097
[7] B. Kunwar and K. Kawamura, One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts, Atmos. Chem. Phys. 14, 1819–1836 (2014),
https://doi.org/10.5194/acp-14-1819-2014
[8] D. Shang, M. Hu, Q. Guo, Q. Zou, J. Zheng, and S. Guo, Effects of continental anthropogenic sources on organic aerosols in the coastal atmosphere of East China, Environ. Pollut. 229, 350–361 (2017),
https://doi.org/10.1016/j.envpol.2017.05.015
[9] P. Fu, K. Kawamura, and K. Miura, Molecular characterization of marine organic aerosols collected during a round-the-world cruise, J. Geophys. Res. 116, D13302 (2011),
https://doi.org/10.1029/2011JD015604
[10] Y. Zhao, Y. Zhang, P. Fu, S.S.H. Ho, K.F. Ho, F. Liu, S. Zou, S. Wang, and S. Lai, Non-polar organic compounds in marine aerosols over the northern South China Sea: Influence of continental outflow, Chemosphere 153, 332–339 (2016),
https://doi.org/10.1016/j.chemosphere.2016.03.069
[11] R. Chesselet, M. Fontugne, P. Buat-Ménard, U. Ezat, and C.E. Lambert, The origin of particulate organic carbon in the marine atmosphere as indicated by its stable carbon isotopic composition, Geophys. Res. Lett. 8, 345–348 (1981),
https://doi.org/10.1029/GL008i004p00345
[12] D. Widory, Combustibles, fuels and their combustion products: A view through carbon isotopes, Combust. Theor. Model. 10, 831–841 (2006),
https://doi.org/10.1080/13647830600720264
[13] M. Górka and M.-O. Jędrysek, δ13C of organic atmospheric dust deposited in Wrocław (SW Poland): Critical remarks on the passive method, Geol. Q. 52(2), 115–126 (2008),
https://gq.pgi.gov.pl/article/view/7479
[14] E.N. Kirillova, R.J. Sheesley, A. Andersson, and Ö. Gustafsson, Natural abundance 13C and 14C analysis of water-soluble organic carbon in atmospheric aerosols, Anal. Chem. 82, 7973–7978 (2010),
https://doi.org/10.1021/ac1014436
[15] I. Gensch, A. Kiendler-Scharr, and J. Rudolph, Isotope ratio studies of atmospheric organic compounds: Principles, methods, applications and potential, Int. J. Mass Spectrom. 365–366, 206–221 (2014),
https://doi.org/10.1016/j.ijms.2014.02.004
[16] A. Masalaite, R. Holzinger, D. Ceburnis, V. Remeikis, V. Ulevičius, T. Röckmann, and U. Dusek, Sources and atmospheric processing of size segregated aerosol particles revealed by stable carbon isotope ratios and chemical speciation, Environ. Pollut. 240, 286–296 (2018),
https://doi.org/10.1016/j.envpol.2018.04.073
[17] A. Masalaite, R. Holzinger, V. Remeikis, T. Röckmann, and U. Dusek, Characteristics, sources and evolution of fine aerosol (PM1) at urban, coastal and forest background sites in Lithuania, Atmos. Environ. 148, 62–76 (2017),
https://doi.org/10.1016/j.atmosenv.2016.10.038
[18] A. Masalaite, V. Remeikis, A. Garbaras, V. Dudoitis, V. Ulevicius, and D. Ceburnis, Elucidating carbonaceous aerosol sources by the stable carbon δ13CTC ratio in size-segregated particles, Atmos. Res. 158–159, 1–12 (2015),
https://doi.org/10.1016/j.atmosres.2015.01.014
[19] D. Ceburnis, A. Garbaras, S. Szidat, M. Rinaldi, S. Fahrni, N. Perron, L. Wacker, S. Leinert, V. Remeikis, M.C. Facchini, et al., Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis, Atmos. Chem. Phys. 11, 8593–8606 (2011),
https://doi.org/10.5194/acp-11-8593-2011
[20] D. Ceburnis, A. Masalaite, J. Ovadnevaite, A. Garbaras, V. Remeikis, W. Maenhaut, M. Claeys, J. Sciare, D. Baisnée, and C.D. O'Dowd, Stable isotopes measurements reveal dual carbon pools contributing to organic matter enrichment in marine aerosol, Sci. Rep. 6, 36675 (2016),
https://doi.org/10.1038/srep36675
[21] D. Widory, Nitrogen isotopes: Tracers of origin and processes affecting PM10 in the atmosphere of Paris, Atmos. Environ. 41, 2382–2390 (2007),
https://doi.org/10.1016/j.atmosenv.2006.11.009
[22] S.D. Kelly, C. Stein, and T.D. Jickells, Carbon and nitrogen isotopic analysis of atmospheric organic matter, Atmos. Environ. 39, 6007–6011 (2005),
https://doi.org/10.1016/j.atmosenv.2005.05.030
[23] K. Kawamura, M. Kobayashi, N. Tsubonuma, M. Mochida, T. Watanabe, and M. Lee, Organic and inorganic compositions of marine aerosols from East Asia: Seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition, Geochem. Soc. Spec. Pub. 9, 243–265 (2004),
https://doi.org/10.1016/S1873-9881(04)80019-1
[24] L.A. Martinelli, P.B. Camargo, L.B.L.S. Lara, R.L. Victoria, and P. Artaxo, Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil, Atmos. Environ. 36, 2427–2432 (2002),
https://doi.org/10.1016/S1352-2310(01)00454-X
[25] M. Górka, E. Zwolińska, M. Malkiewicz, D. Lewicka-Szczebak, and M.O. Jędrysek, Carbon and nitrogen isotope analyses coupled with palynological data of PM10 in Wrocław city (SW Poland) – assessment of anthropogenic impact, Isot. Environ. Health Stud. 48, 327–344 (2012),
https://doi.org/10.1080/10256016.2012.639449
[26] V.C. Turekian, S. Macko, D. Ballentine, R.J. Swap, and M. Garstang, Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: Laboratory studies, Chem. Geol. 152, 181–192 (1998),
https://doi.org/10.1016/S0009-2541(98)00105-3
[27] S.G. Aggarwal, K. Kawamura, G.S. Umarji, E. Tachibana, R.S. Patil, and P.K. Gupta, Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: Sources of organic aerosols and atmospheric processing, Atmos. Chem. Phys. 13, 4667–4680 (2013),
https://doi.org/10.5194/acp-13-4667-2013
[28] S.G. Yeatman, L.J. Spokes, P.F. Dennis, and T.D. Jickells, Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites, Atmos. Environ. 35, 1307–1320 (2001),
https://doi.org/10.1016/S1352-2310(00)00408-8
[29] S.G. Yeatman, L.J. Spokes, P.F. Dennis, and T.D. Jickells, Can the study of nitrogen isotopic composition in size-segregated aerosol nitrate and ammonium be used to investigate atmospheric processing mechanisms? Atmos. Environ. 35, 1337–1345 (2001),
https://doi.org/10.1016/S1352-2310(00)00457-X
[30] S.L. Mkoma, K. Kawamura, E. Tachibana, and P. Fu, Stable carbon and nitrogen isotopic compositions of tropical atmospheric aerosols: sources and contribution from burning of C3 and C4 plants to organic aerosols, Tellus B 66, 20176 (2014),
https://doi.org/10.3402/tellusb.v66.20176
[31] K.M. Russell, J.N. Galloway, S.A. Macko, J.L. Moody, and J.R. Scudlark, Sources of nitrogen in wet deposition to the Chesapeake Bay region, Atmos. Environ. 32, 2453–2465 (1998),
https://doi.org/10.1016/S1352-2310(98)00044-2
[32] B. Kunwar, K. Kawamura, and C. Zhu, Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants, Atmos. Environ. 131, 243–253 (2016),
https://doi.org/10.1016/j.atmosenv.2016.01.035
[33] P. Vodička, K. Kawamura, J. Schwarz, B. Kunwar, and V. Ždímal, Seasonal study of stable carbon and nitrogen isotopic composition in fine aerosols at a Central European rural background station, Atmos. Chem. Phys. 19, 3463–3479 (2019),
https://doi.org/10.5194/acp-19-3463-2019
[34] A. Garbaras, I. Rimšelytė, K. Kvietkus, and V. Remeikis, δ13C values in size-segregated atmospheric carbonaceous aerosols at a rural site in Lithuania, Lith. J. Phys. 49, 229–236 (2009),
https://doi.org/10.3952/lithjphys.49202
[35] M. Narukawa, K. Kawamura, N. Takeuchi, and T. Nakajima, Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires, Geophys. Res. Lett. 26, 3101–3104 (1999),
https://doi.org/10.1029/1999GL010810
[36] A.F. Stein, R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D. Cohen, and F. Ngan, NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015),
https://doi.org/10.1175/BAMS-D-14-00110.1
[37] Y.J. Yoon, D. Ceburnis, F. Cavalli, O. Jourdan, J.P. Putaud, M.C. Facchini, S. Decesari, S. Fuzzi, K. Sellegri, S.G. Jennings, and C.D. O'Dowd, Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols, J. Geophys. Res. 112, D04206 (2007),
https://doi.org/10.1029/2005JD007044
[38] J. Ovadnevaite, D. Ceburnis, S. Leinert, M. Dall'Osto, M. Canagaratna, S. O'Doherty, H. Berresheim, and C. O'Dowd, Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization, J. Geophys. Res. 119, 11,850–11,863 (2014),
https://doi.org/10.1002/2013JD021330
[39] A. Milukaitė, K. Kvietkus, and I. Rimšelytė, Organic and elemental carbon in coastal aerosol of the Baltic Sea, Lith. J. Phys. 47(2), 203–210 (2007),
https://doi.org/10.3952/lithjphys.47205
[40] I. Rimšelytė, J. Ovadnevaitė, D. Čeburnis, K. Kvietkus, and E. Pesliakaitė, Chemical composition and size distribution of fine aerosol particles on the east coast of the Baltic Sea, Lith. J. Phys. 47, 523–529 (2007),
https://doi.org/10.3952/lithjphys.47425
[41] M. Karl, J.E. Jonson, A. Uppstu, A. Aulinger, M. Prank, M. Sofiev, J.P. Jalkanen, L. Johansson, M. Quante, and V. Matthias, Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models, Atmos. Chem. Phys. 19, 7019–7053 (2019),
https://doi.org/10.5194/acp-19-7019-2019
[42] M. Górka, M.O. Jędrysek, J. Maj, A. Worobiec, A. Buczyńska, E. Stefaniak, A. Krata, R. Van Grieken, A. Zwoździak, I. Sówka, J. Zwoździak, and D. Lewicka-Szczebak, Comparative assessment of air quality in two health resorts using carbon isotopes and palynological analyses, Atmos. Environ. 43, 682–688 (2009),
https://doi.org/10.1016/j.atmosenv.2008.09.056
[43] M. Górka, M. Rybicki, B.R.T. Simoneit, and L. Marynowski, Determination of multiple organic matter sources in aerosol PM10 from Wrocław, Poland using molecular and stable carbon isotope compositions, Atmos. Environ. 89, 739–748 (2014),
https://doi.org/10.1016/j.atmosenv.2014.02.064
[44] A. Mašalaitė, A. Garbaras, and V. Remeikis, Stable isotopes in environmental investigations, Lith. J. Phys. 52, 261–268 (2012),
https://doi.org/10.3952/physics.v52i3.2478
[45] L. Jaeglé, L. Steinberger, R. Martin, and K. Chance, Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions, Faraday Discuss. 130, 407–423 (2005),
https://doi.org/10.1039/b502128f
[46] Y. Kang, M. Liu, Y. Song, X. Huang, H. Yao, X. Cai, H. Zhang, L. Kang, X. Liu, X. Yan, et al., High-resolution ammonia emissions inventories in China from 1980 to 2012, Atmos. Chem. Phys. 16, 2043–2058 (2016),
https://doi.org/10.5194/acp-16-2043-2016
[47] R. Suarez-Bertoa, A.A. Zardini, and C. Astorga, Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle, Atmos. Environ. 97, 43–53 (2014),
https://doi.org/10.1016/j.atmosenv.2014.07.050
[48] J.N. Cape, Y.S. Tang, N. van Dijk, L. Love, M.A. Sutton, and S.C.F. Palmer, Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition, Environ. Pollut. 132, 469–478 (2004),
https://doi.org/10.1016/j.envpol.2004.05.009
[49] C.D. Bray, W. Battye, V.P. Aneja, D.Q. Tong, P. Lee, and Y. Tang, Ammonia emissions from biomass burning in the continental United States, Atmos. Environ. 187, 50–61 (2018),
https://doi.org/10.1016/j.atmosenv.2018.05.052
[50] Q. Li, J. Jiang, S. Cai, W. Zhou, S. Wang, L. Duan, and J. Hao, Gaseous ammonia emissions from coal and biomass combustion in household stoves with different combustion efficiencies, Environ. Sci. Technol. Lett. 3, 98–103 (2016),
https://doi.org/10.1021/acs.estlett.6b00013
[51] T.H.E. Heaton, 15N/14N ratios of NOx from vehicle engines and coal-fired power stations, Tellus B, 42, 304–307 (1990),
https://doi.org/10.3402/tellusb.v42i3.15223
[52] E.M. Elliott, C. Kendall, S.D. Wankel, D.A. Burns, E.W. Boyer, K. Harlin, D.J. Bain, and T.J. Butler, Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States, Environ. Sci. Technol. 41, 7661–7667 (2007),
https://doi.org/10.1021/es070898t
[53] Y. Chang, Y. Zhang, C. Tian, S. Zhang, X. Ma, F. Cao, X. Liu, W. Zhang, T. Kuhn, and M.F. Lehmann, Nitrogen isotope fractionation during gas-to-particle conversion of NOx to NO3 in the atmosphere – implications for isotope-based NOx source apportionment, Atmos. Chem. Phys. 18, 11647–11661 (2018),
https://doi.org/10.5194/acp-18-11647-2018
[54] M. Ciężka, M. Modelska, M. Górka, A. Trojanowska-Olichwer, and D. Widory, Chemical and isotopic interpretation of major ion compositions from precipitation: A one-year temporal monitoring study in Wrocław, SW Poland, J. Atmos. Chem. 73, 61–80 (2016),
https://doi.org/10.1007/s10874-015-9316-2