Received 22 May 2019; revised 25 July 2019; accepted 30 September
2019
References
/
Nuorodos
[1] F. Wang, Y. Chen, X. Meng, J. Fu, and B. Wang, The
contribution of anthropogenic sources to the aerosols over East
China Sea, Atmos. Environ.
127, 22–33 (2016),
https://doi.org/10.1016/j.atmosenv.2015.12.002
[2] M. Kang, F. Yang, H. Ren, W. Zhao, Y. Zhao, L. Li, Y. Yan,
Y. Zhang, S. Lai, Y. Zhang, et al., Influence of continental
organic aerosols to the marine atmosphere over the East China
Sea: Insights from lipids, PAHs and phthalates, Sci. Total
Environ.
607–608, 339–350 (2017),
https://doi.org/10.1016/j.scitotenv.2017.06.214
[3] C.D. O'Dowd and G.D. Leeuw, Marine aerosol production: A
review of the current knowledge, Philos. Trans. Royal Soc. A
365,
1753–1774 (2007),
https://doi.org/10.1098/rsta.2007.2043
[4] C.D. O'Dowd, M.C. Facchini, F. Cavalli, D. Ceburnis, M.
Mircea, S. Decesari, S. Fuzzi, Y.J. Yoon, and J.-P. Putaud,
Biogenically driven organic contribution to marine aerosol,
Nature
431, 676–680 (2004),
https://doi.org/10.1038/nature02959
[5] J.-P. Putaud, F. Raes, R. Van Dingenen, E. Brüggemann, M.C.
Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Hüglin, P. Laj,
et al., A European aerosol phenomenology–2: Chemical
characteristics of particulate matter at kerbside, urban, rural
and background sites in Europe, Atmos. Environ.
38,
2579–2595 (2004),
https://doi.org/10.1016/j.atmosenv.2004.01.041
[6] A.U. Lewandowska, M. Bełdowska, A. Witkowska, L. Falkowska,
and K. Wiśniewska, Mercury bonds with carbon (OC and EC) in
small aerosols (PM1) in the urbanized coastal zone of the Gulf
of Gdansk (southern Baltic), Ecotoxicol. Environ. Saf.
157,
350–357 (2018),
https://doi.org/10.1016/j.ecoenv.2018.03.097
[7] B. Kunwar and K. Kawamura, One-year observations of
carbonaceous and nitrogenous components and major ions in the
aerosols from subtropical Okinawa Island, an outflow region of
Asian dusts, Atmos. Chem. Phys.
14, 1819–1836 (2014),
https://doi.org/10.5194/acp-14-1819-2014
[8] D. Shang, M. Hu, Q. Guo, Q. Zou, J. Zheng, and S. Guo,
Effects of continental anthropogenic sources on organic aerosols
in the coastal atmosphere of East China, Environ. Pollut.
229,
350–361 (2017),
https://doi.org/10.1016/j.envpol.2017.05.015
[9] P. Fu, K. Kawamura, and K. Miura, Molecular characterization
of marine organic aerosols collected during a round-the-world
cruise, J. Geophys. Res.
116, D13302 (2011),
https://doi.org/10.1029/2011JD015604
[10] Y. Zhao, Y. Zhang, P. Fu, S.S.H. Ho, K.F. Ho, F. Liu, S.
Zou, S. Wang, and S. Lai, Non-polar organic compounds in marine
aerosols over the northern South China Sea: Influence of
continental outflow, Chemosphere
153, 332–339 (2016),
https://doi.org/10.1016/j.chemosphere.2016.03.069
[11] R. Chesselet, M. Fontugne, P. Buat-Ménard, U. Ezat, and
C.E. Lambert, The origin of particulate organic carbon in the
marine atmosphere as indicated by its stable carbon isotopic
composition, Geophys. Res. Lett.
8, 345–348 (1981),
https://doi.org/10.1029/GL008i004p00345
[12] D. Widory, Combustibles, fuels and their combustion
products: A view through carbon isotopes, Combust. Theor. Model.
10, 831–841 (2006),
https://doi.org/10.1080/13647830600720264
[13] M. Górka and M.-O. Jędrysek, δ
13C of organic
atmospheric dust deposited in Wrocław (SW Poland): Critical
remarks on the passive method, Geol. Q.
52(2), 115–126
(2008),
https://gq.pgi.gov.pl/article/view/7479
[14] E.N. Kirillova, R.J. Sheesley, A. Andersson, and Ö.
Gustafsson, Natural abundance
13C and
14C
analysis of water-soluble organic carbon in atmospheric
aerosols, Anal. Chem.
82, 7973–7978 (2010),
https://doi.org/10.1021/ac1014436
[15] I. Gensch, A. Kiendler-Scharr, and J. Rudolph, Isotope
ratio studies of atmospheric organic compounds: Principles,
methods, applications and potential, Int. J. Mass Spectrom.
365–366,
206–221 (2014),
https://doi.org/10.1016/j.ijms.2014.02.004
[16] A. Masalaite, R. Holzinger, D. Ceburnis, V. Remeikis, V.
Ulevičius, T. Röckmann, and U. Dusek, Sources and atmospheric
processing of size segregated aerosol particles revealed by
stable carbon isotope ratios and chemical speciation, Environ.
Pollut.
240, 286–296 (2018),
https://doi.org/10.1016/j.envpol.2018.04.073
[17] A. Masalaite, R. Holzinger, V. Remeikis, T. Röckmann, and
U. Dusek, Characteristics, sources and evolution of fine aerosol
(PM
1) at urban, coastal and forest background sites
in Lithuania, Atmos. Environ.
148, 62–76 (2017),
https://doi.org/10.1016/j.atmosenv.2016.10.038
[18] A. Masalaite, V. Remeikis, A. Garbaras, V. Dudoitis, V.
Ulevicius, and D. Ceburnis, Elucidating carbonaceous aerosol
sources by the stable carbon δ
13C
TC ratio
in size-segregated particles, Atmos. Res.
158–159, 1–12
(2015),
https://doi.org/10.1016/j.atmosres.2015.01.014
[19] D. Ceburnis, A. Garbaras, S. Szidat, M. Rinaldi, S. Fahrni,
N. Perron, L. Wacker, S. Leinert, V. Remeikis, M.C. Facchini, et
al., Quantification of the carbonaceous matter origin in
submicron marine aerosol by
13C and
14C
isotope analysis, Atmos. Chem. Phys.
11, 8593–8606
(2011),
https://doi.org/10.5194/acp-11-8593-2011
[20] D. Ceburnis, A. Masalaite, J. Ovadnevaite, A. Garbaras, V.
Remeikis, W. Maenhaut, M. Claeys, J. Sciare, D. Baisnée, and
C.D. O'Dowd, Stable isotopes measurements reveal dual carbon
pools contributing to organic matter enrichment in marine
aerosol, Sci. Rep.
6, 36675 (2016),
https://doi.org/10.1038/srep36675
[21] D. Widory, Nitrogen isotopes: Tracers of origin and
processes affecting PM
10 in the atmosphere of Paris,
Atmos. Environ.
41, 2382–2390 (2007),
https://doi.org/10.1016/j.atmosenv.2006.11.009
[22] S.D. Kelly, C. Stein, and T.D. Jickells, Carbon and
nitrogen isotopic analysis of atmospheric organic matter, Atmos.
Environ.
39, 6007–6011 (2005),
https://doi.org/10.1016/j.atmosenv.2005.05.030
[23] K. Kawamura, M. Kobayashi, N. Tsubonuma, M. Mochida, T.
Watanabe, and M. Lee, Organic and inorganic compositions of
marine aerosols from East Asia: Seasonal variations of
water-soluble dicarboxylic acids, major ions, total carbon and
nitrogen, and stable C and N isotopic composition, Geochem. Soc.
Spec. Pub.
9, 243–265 (2004),
https://doi.org/10.1016/S1873-9881(04)80019-1
[24] L.A. Martinelli, P.B. Camargo, L.B.L.S. Lara, R.L.
Victoria, and P. Artaxo, Stable carbon and nitrogen isotopic
composition of bulk aerosol particles in a C4 plant landscape of
southeast Brazil, Atmos. Environ.
36, 2427–2432 (2002),
https://doi.org/10.1016/S1352-2310(01)00454-X
[25] M. Górka, E. Zwolińska, M. Malkiewicz, D. Lewicka-Szczebak,
and M.O. Jędrysek, Carbon and nitrogen isotope analyses coupled
with palynological data of PM10 in Wrocław city (SW Poland) –
assessment of anthropogenic impact, Isot. Environ. Health Stud.
48, 327–344 (2012),
https://doi.org/10.1080/10256016.2012.639449
[26] V.C. Turekian, S. Macko, D. Ballentine, R.J. Swap, and M.
Garstang, Causes of bulk carbon and nitrogen isotopic
fractionations in the products of vegetation burns: Laboratory
studies, Chem. Geol.
152, 181–192 (1998),
https://doi.org/10.1016/S0009-2541(98)00105-3
[27] S.G. Aggarwal, K. Kawamura, G.S. Umarji, E. Tachibana, R.S.
Patil, and P.K. Gupta, Organic and inorganic markers and stable
C-, N-isotopic compositions of tropical coastal aerosols from
megacity Mumbai: Sources of organic aerosols and atmospheric
processing, Atmos. Chem. Phys.
13, 4667–4680 (2013),
https://doi.org/10.5194/acp-13-4667-2013
[28] S.G. Yeatman, L.J. Spokes, P.F. Dennis, and T.D. Jickells,
Comparisons of aerosol nitrogen isotopic composition at two
polluted coastal sites, Atmos. Environ.
35, 1307–1320
(2001),
https://doi.org/10.1016/S1352-2310(00)00408-8
[29] S.G. Yeatman, L.J. Spokes, P.F. Dennis, and T.D. Jickells,
Can the study of nitrogen isotopic composition in
size-segregated aerosol nitrate and ammonium be used to
investigate atmospheric processing mechanisms? Atmos. Environ.
35,
1337–1345 (2001),
https://doi.org/10.1016/S1352-2310(00)00457-X
[30] S.L. Mkoma, K. Kawamura, E. Tachibana, and P. Fu, Stable
carbon and nitrogen isotopic compositions of tropical
atmospheric aerosols: sources and contribution from burning of
C3 and C4 plants to organic aerosols, Tellus B
66, 20176
(2014),
https://doi.org/10.3402/tellusb.v66.20176
[31] K.M. Russell, J.N. Galloway, S.A. Macko, J.L. Moody, and
J.R. Scudlark, Sources of nitrogen in wet deposition to the
Chesapeake Bay region, Atmos. Environ.
32, 2453–2465
(1998),
https://doi.org/10.1016/S1352-2310(98)00044-2
[32] B. Kunwar, K. Kawamura, and C. Zhu, Stable carbon and
nitrogen isotopic compositions of ambient aerosols collected
from Okinawa Island in the western North Pacific Rim, an outflow
region of Asian dusts and pollutants, Atmos. Environ.
131,
243–253 (2016),
https://doi.org/10.1016/j.atmosenv.2016.01.035
[33] P. Vodička, K. Kawamura, J. Schwarz, B. Kunwar, and V.
Ždímal, Seasonal study of stable carbon and nitrogen isotopic
composition in fine aerosols at a Central European rural
background station, Atmos. Chem. Phys.
19, 3463–3479
(2019),
https://doi.org/10.5194/acp-19-3463-2019
[34] A. Garbaras, I. Rimšelytė, K. Kvietkus, and V. Remeikis,
δ13C values in size-segregated atmospheric carbonaceous aerosols
at a rural site in Lithuania, Lith. J. Phys.
49, 229–236
(2009),
https://doi.org/10.3952/lithjphys.49202
[35] M. Narukawa, K. Kawamura, N. Takeuchi, and T. Nakajima,
Distribution of dicarboxylic acids and carbon isotopic
compositions in aerosols from 1997 Indonesian forest fires,
Geophys. Res. Lett.
26, 3101–3104 (1999),
https://doi.org/10.1029/1999GL010810
[36] A.F. Stein, R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D.
Cohen, and F. Ngan, NOAA's HYSPLIT atmospheric transport and
dispersion modeling system, Bull. Am. Meteorol. Soc.
96,
2059–2077 (2015),
https://doi.org/10.1175/BAMS-D-14-00110.1
[37] Y.J. Yoon, D. Ceburnis, F. Cavalli, O. Jourdan, J.P.
Putaud, M.C. Facchini, S. Decesari, S. Fuzzi, K. Sellegri, S.G.
Jennings, and C.D. O'Dowd, Seasonal characteristics of the
physicochemical properties of North Atlantic marine atmospheric
aerosols, J. Geophys. Res.
112, D04206 (2007),
https://doi.org/10.1029/2005JD007044
[38] J. Ovadnevaite, D. Ceburnis, S. Leinert, M. Dall'Osto, M.
Canagaratna, S. O'Doherty, H. Berresheim, and C. O'Dowd,
Submicron NE Atlantic marine aerosol chemical composition and
abundance: Seasonal trends and air mass categorization, J.
Geophys. Res.
119, 11,850–11,863 (2014),
https://doi.org/10.1002/2013JD021330
[39] A. Milukaitė, K. Kvietkus, and I. Rimšelytė, Organic and
elemental carbon in coastal aerosol of the Baltic Sea, Lith. J.
Phys.
47(2), 203–210 (2007),
https://doi.org/10.3952/lithjphys.47205
[40] I. Rimšelytė, J. Ovadnevaitė, D. Čeburnis, K. Kvietkus, and
E. Pesliakaitė, Chemical composition and size distribution of
fine aerosol particles on the east coast of the Baltic Sea,
Lith. J. Phys.
47, 523–529 (2007),
https://doi.org/10.3952/lithjphys.47425
[41] M. Karl, J.E. Jonson, A. Uppstu, A. Aulinger, M. Prank, M.
Sofiev, J.P. Jalkanen, L. Johansson, M. Quante, and V. Matthias,
Effects of ship emissions on air quality in the Baltic Sea
region simulated with three different chemistry transport
models, Atmos. Chem. Phys.
19, 7019–7053 (2019),
https://doi.org/10.5194/acp-19-7019-2019
[42] M. Górka, M.O. Jędrysek, J. Maj, A. Worobiec, A. Buczyńska,
E. Stefaniak, A. Krata, R. Van Grieken, A. Zwoździak, I. Sówka,
J. Zwoździak, and D. Lewicka-Szczebak, Comparative assessment of
air quality in two health resorts using carbon isotopes and
palynological analyses, Atmos. Environ.
43, 682–688
(2009),
https://doi.org/10.1016/j.atmosenv.2008.09.056
[43] M. Górka, M. Rybicki, B.R.T. Simoneit, and L. Marynowski,
Determination of multiple organic matter sources in aerosol PM10
from Wrocław, Poland using molecular and stable carbon isotope
compositions, Atmos. Environ.
89, 739–748 (2014),
https://doi.org/10.1016/j.atmosenv.2014.02.064
[44] A. Mašalaitė, A. Garbaras, and V. Remeikis, Stable isotopes
in environmental investigations, Lith. J. Phys.
52,
261–268 (2012),
https://doi.org/10.3952/physics.v52i3.2478
[45] L. Jaeglé, L. Steinberger, R. Martin, and K. Chance, Global
partitioning of NOx sources using satellite observations:
Relative roles of fossil fuel combustion, biomass burning and
soil emissions, Faraday Discuss.
130, 407–423 (2005),
https://doi.org/10.1039/b502128f
[46] Y. Kang, M. Liu, Y. Song, X. Huang, H. Yao, X. Cai, H.
Zhang, L. Kang, X. Liu, X. Yan, et al., High-resolution ammonia
emissions inventories in China from 1980 to 2012, Atmos. Chem.
Phys.
16, 2043–2058 (2016),
https://doi.org/10.5194/acp-16-2043-2016
[47] R. Suarez-Bertoa, A.A. Zardini, and C. Astorga, Ammonia
exhaust emissions from spark ignition vehicles over the New
European Driving Cycle, Atmos. Environ.
97, 43–53
(2014),
https://doi.org/10.1016/j.atmosenv.2014.07.050
[48] J.N. Cape, Y.S. Tang, N. van Dijk, L. Love, M.A. Sutton,
and S.C.F. Palmer, Concentrations of ammonia and nitrogen
dioxide at roadside verges, and their contribution to nitrogen
deposition, Environ. Pollut.
132, 469–478 (2004),
https://doi.org/10.1016/j.envpol.2004.05.009
[49] C.D. Bray, W. Battye, V.P. Aneja, D.Q. Tong, P. Lee, and Y.
Tang, Ammonia emissions from biomass burning in the continental
United States, Atmos. Environ.
187, 50–61 (2018),
https://doi.org/10.1016/j.atmosenv.2018.05.052
[50] Q. Li, J. Jiang, S. Cai, W. Zhou, S. Wang, L. Duan, and J.
Hao, Gaseous ammonia emissions from coal and biomass combustion
in household stoves with different combustion efficiencies,
Environ. Sci. Technol. Lett.
3, 98–103 (2016),
https://doi.org/10.1021/acs.estlett.6b00013
[51] T.H.E. Heaton,
15N/
14N ratios of NO
x
from vehicle engines and coal-fired power stations, Tellus B,
42,
304–307 (1990),
https://doi.org/10.3402/tellusb.v42i3.15223
[52] E.M. Elliott, C. Kendall, S.D. Wankel, D.A. Burns, E.W.
Boyer, K. Harlin, D.J. Bain, and T.J. Butler, Nitrogen isotopes
as indicators of NO
x source contributions to
atmospheric nitrate deposition across the Midwestern and
Northeastern United States, Environ. Sci. Technol.
41,
7661–7667 (2007),
https://doi.org/10.1021/es070898t
[53] Y. Chang, Y. Zhang, C. Tian, S. Zhang, X. Ma, F. Cao, X.
Liu, W. Zhang, T. Kuhn, and M.F. Lehmann, Nitrogen isotope
fractionation during gas-to-particle conversion of NO
x
to NO
3− in the atmosphere – implications
for isotope-based NO
x source apportionment,
Atmos. Chem. Phys.
18, 11647–11661 (2018),
https://doi.org/10.5194/acp-18-11647-2018
[54] M. Ciężka, M. Modelska, M. Górka, A. Trojanowska-Olichwer,
and D. Widory, Chemical and isotopic interpretation of major ion
compositions from precipitation: A one-year temporal monitoring
study in Wrocław, SW Poland, J. Atmos. Chem.
73, 61–80
(2016),
https://doi.org/10.1007/s10874-015-9316-2