Received 26 May 2019; revised 10 September 2019; accepted 30
September 2019
Abiotinio streso veikiami medžiai išskiria
lakius organinius junginius (LOJ), kurie yra antrinių aerozolio
dalelių (SOA) prekursoriai. Tyrimo tikslas buvo atlikti
submikroninių aerozolio dalelių (PM1) masės
koncentracijos tyrimus ir šaltinių kilmės atskyrimą medžių
abiotinio streso sąlygomis formuojantis SOA. Aerozolio cheminė
sudėtis Aukštaitijos integruotoje monitoringo stotyje (IMS LT01)
rytinėje Lietuvos dalyje mišraus miško aplinkoje buvo išmatuota
aerozolio cheminės sudėties monitoriumi (ACSM). Nustatyta, kad
PM1 organikos frakcija sudaryta iš antrinių (76 %) ir
pirminių (24 %) aerozolio dalelių. Medžio kamieno skersmens
pokyčių analizė parodė tris medžio kamieno skersmens augimo ir
susitraukimo epizodus. Esant abiotinio streso sąlygoms, vyksta
medžių kamienų skersmens susitraukimo epizodai, todėl išauga m/z
42, 43, 45, 48 ir 50 signalų intensyvumai nuo 5,7 iki 8,8 kartų,
o SOA paros koncentracija padidėja nuo 2,7 iki 4,7 kartų.
Įprastai augant medžio kamieno skersmeniui m/z
signalų intensyvumai ir SOA koncentracija nekinta. Galima
teigti, kad augalų patiriamo abiotinio streso atsakas gali būti
identifikuojamas per nustatytų m/z signalų
intensyvumų pokyčius ir lemti padidėjusią SOA koncentraciją.
References
/
Nuorodos
[1] F. Brilli, T. Tsonev, T. Mahmood, V. Velikova, F. Loreto,
and M. Centritto, Ultradian variation of isoprene emission,
photosynthesis, mesophyll conductance, and optimum temperature
sensitivity for isoprene emission in water-stressed Eucalyptus
citriodora saplings, J. Exp. Bot.
64, 519–528 (2013),
https://doi.org/10.1093/jxb/ers353
[2] Ü. Niinemets, U. Kuhn, P.C. Harley, M. Staudt, A. Arneth, A.
Cescatti, P. Ciccioli, L. Copolovici, C. Geron, A. Guenther, et
al., Estimations of isoprenoid emission capacity from enclosure
studies: Measurements, data processing, quality and standardized
measurement protocols, Biogeosciences
8, 2209–2246
(2011),
https://doi.org//10.5194/bg-8-2209-2011
[3] M. Glasius and A.H. Goldstein, Recent discoveries and future
challenges in atmospheric organic chemistry, Environ. Sci.
Technol.
50, 2754–2764 (2016),
https://doi.org/10.1021/acs.est.5b05105
[4] A. Gazol, J.J. Camarero, W.R.L. Anderegg, and S.M.
Vizcente-Serrano, Impacts of droughts on the growth resilience
of Northern Hemisphere forests, Glob. Ecol. Biogeogr.
26,
166–176 (2017),
https://doi.org/10.1111/geb.12526
[5] R. Bergström, M. Hallquist, D. Simpson, J. Wildt, and T.F.
Mentel, Biotic stress: A significant contributor to organic
aerosol in Europe? Atmos. Chem. Phys.
14, 13643–13660
(2014),
https://doi.org/10.5194/acp-14-13643-2014
[6] E. Kleist, T.F. Mentel, S. Andres, A. Bohne, A. Folkers, A.
Kiendler-Scharr, Y. Rudich, M. Springer, R. Tillmann, and J.
Wildt, Irreversible impacts of heat on the emissions of
monoterpenes, sesquiterpenes, phenolic BVOC and green leaf
volatiles from several tree species, Biogeosciences
9,
5111–5123 (2012),
https://doi.org/10.5194/bg-9-5111-2012
[7] R. Fischer, P. Waldner, J. Carnicer, M. Coll, M. Dobbertin,
M. Ferretti, K. Hansen, G. Kindermann, P. Lasch-Born, M. Lorenz,
et al.,
The Condition of Forests in Europe, 2012
Executive Report (ICP Forests, Hamburg, 2012),
[PDF]
[8] V. Stakėnas, P. Žemaitis, and R. Ozolinčius, Crown condition
of Norway spruce in different eco-climatic regions of Lithuania:
Implications for future climate, Balt. For.
18, 187–195
(2012),
https://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&catid=14&id=300
[9] A. Augustaitis, I. Augustaitienė, M. Baugarten, S.
Bičenkienė, R. Girgždienė, G. Kulbokas, E. Linkevičius, V.
Marozas, M. Mikalajūnas, G. Mordas, et al., Tree-ring formation
as an indicator of forest capacity to adapt to the main threats
of environmental changes in Lithuania, Sci. Total Environ.
615,
1247–1261 (2018),
https://doi.org/10.1016/j.scitotenv.2017.09.169
[10] J. Peñuelas and M. Staudt, BVOCs and global change, Trends
Plant Sci.
15, 133–144 (2010),
https://doi.org/10.1016/j.tplants.2009.12.005
[11] F. Loreto and J.P. Schnitzler, Abiotic stresses and induced
BVOCs, Trends Plant Sci.
15, 154–166 (2010),
https://doi.org/10.1016/j.tplants.2009.12.006
[12] E.L. Singsaas and T.D. Sharkey, The effects of high
temperature on isoprene synthesis in oak leaves, Plant. Cell
Environ.
23, 751–757 (2000),
https://doi.org/10.1046/j.1365-3040.2000.00582.x
[13] T.D. Sharkey, E.L. Singsaas, P.J. Vanderveer, and C. Geron,
Field measurements of isoprene emission from trees in response
to temperature and light, Tree Physiol.
16, 649–654
(1996),
https://doi.org/10.1093/treephys/16.7.649
[14] A. Kiendler-Scharr, Q. Zhang, T. Hohaus, E. Kleist, A.
Mensah, T.F. Mentel, C. Spindler, R. Uerlings, R. Tillmann, and
J. Wildt, Aerosol mass spectrometric features of biogenic SOA:
Observations from a plant chamber and in rural atmospheric
environments, Environ. Sci. Technol.
43, 8166–8172
(2009),
https://doi.org/10.1021/es901420b
[15] C.L. Faiola, M. Wen, and T.M. Vanreken, Chemical
characterization of biogenic secondary organic aerosol generated
from plant emissions under baseline and stressed conditions:
Inter- and intra-species variability for six coniferous species,
Atmos. Chem. Phys.
15, 3629–3646 (2015),
https://doi.org/10.5194/acp-15-3629-2015
[16] W.W. Hu, P. Campuzano-Jost, B.B. Palm, D.A. Day, A.M.
Ortega, P.L. Hayes, J.E. Krechmer, Q. Chen, M. Kuwata, Y.J. Liu,
et al., Characterization of a real-time tracer for isoprene
epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from
aerosol mass spectrometer measurements, Atmos. Chem. Phys.
15,
11807–11833 (2015),
https://doi.org/10.5194/acp-15-11807-2015
[17] S.H. Budisulistiorini, K. Baumann, E.S. Edgerton, S.T.
Bairai, S. Mueller, S.L. Shaw, E.M. Knipping, A. Gold, and J.D.
Surratt, Seasonal characterization of submicron aerosol chemical
composition and organic aerosol sources in the southeastern
United States: Atlanta, Georgia, and Look Rock, Tennessee,
Atmos. Chem. Phys.
16, 5171–5189 (2016),
https://doi.org/10.5194/acp-16-5171-2016
[18] A. Augustaitis, Impact of meteorological parameters on
responses of pine crown condition to acid deposition at
Aukštaitija National Park, Balt. For.
17, 205–214
(2011),
https://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&catid=34&id=251
[19] A. Augustaitis, D. Šopauskienė, and I. Baužienė, Direct and
indirect effects of regional air pollution on tree crown
defoliation, Balt. For.
16, 23–34 (2010),
https://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&catid=12&id=41
[20] A. Augustaitis, I. Augustaitienė, A. Kliučius, G. Pivoras,
D. Šopauskienė, and R. Girgždienė, The seasonal variability of
air pollution effects on pine conditions under changing
climates, Eur. J. For. Res.
129, 431–441 (2010),
https://doi.org/10.1007/s10342-009-0319-x
[21] A.M. Middlebrook, R. Bahreini, J.L. Jimenez, and M.R.
Canagaratna, Evaluation of composition-dependent collection
efficiencies for the aerodyne aerosol mass spectrometer using
field data, Aerosol Sci. Technol.
46, 258–271 (2012),
https://doi.org/10.1080/02786826.2011.620041
[22] A. Augustaitis, K. Arbačiauskas, I. Baužienė, I.
Eitminavičiūtė, R. Girgždienė, A. Kliučius, R. Mažeikytė, G.
Mozgeris, V. Rašomavičius, and D. Šopauskienė,
Sąlygiškai
natūralių ekosistemų kompleksiškas monitoringas (Lututė,
Vilnius, 2006) [in Lithuanian]
[23] J. Pauraitė, A. Pivoras, K. Plauškaitė, S. Byčenkienė, G.
Mordas, A. Augustaitis, V. Marozas, G. Mozgeris, M. Baumgarten,
R. Matyssek, et al., Characterization of aerosol mass spectra
responses to temperature over a forest site in Lithuania, J.
Aerosol Sci.
133, 56–65 (2019),
https://doi.org/10.1016/j.jaerosci.2019.03.010
[24] V. Herrmann, S.M. McMahon, M. Detto, J.A. Lutz, S.J.
Davies, C.H. Chang-Yang, and K.J. Anderson-Teixeira, Tree
circumference dynamics in four forests characterized using
automated dendrometer bands, PLoS ONE
11, 1–20 (2016),
https://doi.org/10.1371/journal.pone.0169020
[25] N. Kaushal, K. Bhandari, K.H.M. Siddique, and H. Nayyar,
Food crops face rising temperatures: An overview of responses,
adaptive mechanisms, and approaches to improve heat tolerance,
Cogent Food Agric.
2, 1–42 (2016),
https://doi.org/10.1080/23311932.2015.1134380
[26] X. Gou, F. Zhang, Y. Deng, G.J. Ettl, M. Yang, L. Gao, and
K. Fang, Patterns and dynamics of tree-line response to climate
change in the eastern Qilian Mountains, northwestern China,
Dendrochronologia
30, 121–126 (2012),
https://doi.org/10.1016/j.dendro.2011.05.002
[27] Z. Wang, B. Yang, A. Deslauriers, and A. Bräuning,
Intra-annual stem radial increment response of Qilian juniper to
temperature and precipitation along an altitudinal gradient in
northwestern China, Trees
29, 25–34 (2015),
https://doi.org/10.1007/s00468-014-1037-7
[28] S.X. Dong, S.J. Davies, P.S. Ashton, S. Bunyavejchewin,
M.N.N. Supardi, A.R. Kassim, S. Tan, and P.R. Moorcroft,
Variability in solar radiation and temperature explains observed
patterns and trends in tree growth rates across four tropical
forests, Proc. R. Soc. B
279, 3923–3931 (2012),
https://doi.org/10.1098/rspb.2012.1124