[PDF]  https://doi.org/10.3952/physics.v59i3.4083

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 169–178 (2019)
 


ABIOTIC STRESS IMPACT ON AEROSOL MASS SPECTRA OVER A FOREST SITE IN LITHUANIA
 
Julija Pauraitėa, Steigvilė Byčenkienėa, Kristina Plauškaitėa, Algirdas Augustaitisb, Vitas Marozasb, Gintautas Mozgerisb, Ainis Pivorasb, Gintaras Pivorasb, and Vidmantas Ulevičiusa
 aCenter for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
bVytautas Magnus University, Studentų 13, 53362 Kaunas, Lithuania
Email: julija.pauraite@ftmc.lt

Received 26 May 2019; revised 10 September 2019; accepted 30 September 2019

Volatile organic compounds (VOCs) emitted by trees in response to abiotic stress evoke high levels of secondary organic aerosol (SOA) compounds. Few techniques exist to provide chemically-resolved submicron (PM1) particle mass concentrations and source apportionment of stress-induced emissions from trees and SOA formation. The chemical composition of atmospheric aerosol particles was characterized using an aerosol chemical speciation monitor (ACSM) at a mixed-mature forest site – the Aukštaitija Integrated Monitoring Station in the eastern part of Lithuania. The organic fraction of PM1 consisted of SOA (76%) and of anthropogenic combustion related primary organic aerosol (POA) (24%). The analysis of tree trunk circumference revealed three shrinkage and three normal increase episodes. During the episodes of tree trunk circumference shrinkage, several m/z signal (m/z 42, 43, 45, 48, 50) intensities were found to be magnified together with the daily SOA concentration. The stress response analysis confirm that tree trunk circumference shrinkage may be observed through the enhancement of selected m/z signals and result in increased SOA levels.
Keywords: aerosol, SOA, ACSM, tree trunk circumference
PACS: 92.60.Mt, 33.15.Ta


ABIOTINIO STRESO ĮTAKA AEROZOLIO DALELIŲ MASĖS SPEKTRUI MIŠKO APLINKOJE LIETUVOJE

Julija Pauraitėa, Steigvilė Byčenkienėa, Kristina Plauškaitėa, Algirdas Augustaitisb, Vitas Marozasb, Gintautas Mozgerisb, Ainis Pivorasb, Gintaras Pivorasb, Vidmantas Ulevičiusa

aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVytauto Didžiojo universitetas, Kaunas, Lietuva
 
Abiotinio streso veikiami medžiai išskiria lakius organinius junginius (LOJ), kurie yra antrinių aerozolio dalelių (SOA) prekursoriai. Tyrimo tikslas buvo atlikti submikroninių aerozolio dalelių (PM1) masės koncentracijos tyrimus ir šaltinių kilmės atskyrimą medžių abiotinio streso sąlygomis formuojantis SOA. Aerozolio cheminė sudėtis Aukštaitijos integruotoje monitoringo stotyje (IMS LT01) rytinėje Lietuvos dalyje mišraus miško aplinkoje buvo išmatuota aerozolio cheminės sudėties monitoriumi (ACSM). Nustatyta, kad PM1 organikos frakcija sudaryta iš antrinių (76 %) ir pirminių (24 %) aerozolio dalelių. Medžio kamieno skersmens pokyčių analizė parodė tris medžio kamieno skersmens augimo ir susitraukimo epizodus. Esant abiotinio streso sąlygoms, vyksta medžių kamienų skersmens susitraukimo epizodai, todėl išauga m/z 42, 43, 45, 48 ir 50 signalų intensyvumai nuo 5,7 iki 8,8 kartų, o SOA paros koncentracija padidėja nuo 2,7 iki 4,7 kartų. Įprastai augant medžio kamieno skersmeniui m/z signalų intensyvumai ir SOA koncentracija nekinta. Galima teigti, kad augalų patiriamo abiotinio streso atsakas gali būti identifikuojamas per nustatytų m/z signalų intensyvumų pokyčius ir lemti padidėjusią SOA koncentraciją.

References / Nuorodos

[1] F. Brilli, T. Tsonev, T. Mahmood, V. Velikova, F. Loreto, and M. Centritto, Ultradian variation of isoprene emission, photosynthesis, mesophyll conductance, and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings, J. Exp. Bot. 64, 519–528 (2013),
https://doi.org/10.1093/jxb/ers353
[2] Ü. Niinemets, U. Kuhn, P.C. Harley, M. Staudt, A. Arneth, A. Cescatti, P. Ciccioli, L. Copolovici, C. Geron, A. Guenther, et al., Estimations of isoprenoid emission capacity from enclosure studies: Measurements, data processing, quality and standardized measurement protocols, Biogeosciences 8, 2209–2246 (2011),
https://doi.org//10.5194/bg-8-2209-2011
[3] M. Glasius and A.H. Goldstein, Recent discoveries and future challenges in atmospheric organic chemistry, Environ. Sci. Technol. 50, 2754–2764 (2016),
https://doi.org/10.1021/acs.est.5b05105
[4] A. Gazol, J.J. Camarero, W.R.L. Anderegg, and S.M. Vizcente-Serrano, Impacts of droughts on the growth resilience of Northern Hemisphere forests, Glob. Ecol. Biogeogr. 26, 166–176 (2017),
https://doi.org/10.1111/geb.12526
[5] R. Bergström, M. Hallquist, D. Simpson, J. Wildt, and T.F. Mentel, Biotic stress: A significant contributor to organic aerosol in Europe? Atmos. Chem. Phys. 14, 13643–13660 (2014),
https://doi.org/10.5194/acp-14-13643-2014
[6] E. Kleist, T.F. Mentel, S. Andres, A. Bohne, A. Folkers, A. Kiendler-Scharr, Y. Rudich, M. Springer, R. Tillmann, and J. Wildt, Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species, Biogeosciences 9, 5111–5123 (2012),
https://doi.org/10.5194/bg-9-5111-2012
[7] R. Fischer, P. Waldner, J. Carnicer, M. Coll, M. Dobbertin, M. Ferretti, K. Hansen, G. Kindermann, P. Lasch-Born, M. Lorenz, et al., The Condition of Forests in Europe, 2012 Executive Report (ICP Forests, Hamburg, 2012),
[PDF]
[8] V. Stakėnas, P. Žemaitis, and R. Ozolinčius, Crown condition of Norway spruce in different eco-climatic regions of Lithuania: Implications for future climate, Balt. For. 18, 187–195 (2012),
https://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&catid=14&id=300
[9] A. Augustaitis, I. Augustaitienė, M. Baugarten, S. Bičenkienė, R. Girgždienė, G. Kulbokas, E. Linkevičius, V. Marozas, M. Mikalajūnas, G. Mordas, et al., Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania, Sci. Total Environ. 615, 1247–1261 (2018),
https://doi.org/10.1016/j.scitotenv.2017.09.169
[10] J. Peñuelas and M. Staudt, BVOCs and global change, Trends Plant Sci. 15, 133–144 (2010),
https://doi.org/10.1016/j.tplants.2009.12.005
[11] F. Loreto and J.P. Schnitzler, Abiotic stresses and induced BVOCs, Trends Plant Sci. 15, 154–166 (2010),
https://doi.org/10.1016/j.tplants.2009.12.006
[12] E.L. Singsaas and T.D. Sharkey, The effects of high temperature on isoprene synthesis in oak leaves, Plant. Cell Environ. 23, 751–757 (2000),
https://doi.org/10.1046/j.1365-3040.2000.00582.x
[13] T.D. Sharkey, E.L. Singsaas, P.J. Vanderveer, and C. Geron, Field measurements of isoprene emission from trees in response to temperature and light, Tree Physiol. 16, 649–654 (1996),
https://doi.org/10.1093/treephys/16.7.649
[14] A. Kiendler-Scharr, Q. Zhang, T. Hohaus, E. Kleist, A. Mensah, T.F. Mentel, C. Spindler, R. Uerlings, R. Tillmann, and J. Wildt, Aerosol mass spectrometric features of biogenic SOA: Observations from a plant chamber and in rural atmospheric environments, Environ. Sci. Technol. 43, 8166–8172 (2009),
https://doi.org/10.1021/es901420b
[15] C.L. Faiola, M. Wen, and T.M. Vanreken, Chemical characterization of biogenic secondary organic aerosol generated from plant emissions under baseline and stressed conditions: Inter- and intra-species variability for six coniferous species, Atmos. Chem. Phys. 15, 3629–3646 (2015),
https://doi.org/10.5194/acp-15-3629-2015
[16] W.W. Hu, P. Campuzano-Jost, B.B. Palm, D.A. Day, A.M. Ortega, P.L. Hayes, J.E. Krechmer, Q. Chen, M. Kuwata, Y.J. Liu, et al., Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements, Atmos. Chem. Phys. 15, 11807–11833 (2015),
https://doi.org/10.5194/acp-15-11807-2015
[17] S.H. Budisulistiorini, K. Baumann, E.S. Edgerton, S.T. Bairai, S. Mueller, S.L. Shaw, E.M. Knipping, A. Gold, and J.D. Surratt, Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia, and Look Rock, Tennessee, Atmos. Chem. Phys. 16, 5171–5189 (2016),
https://doi.org/10.5194/acp-16-5171-2016
[18] A. Augustaitis, Impact of meteorological parameters on responses of pine crown condition to acid deposition at Aukštaitija National Park, Balt. For. 17, 205–214 (2011),
https://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&catid=34&id=251
[19] A. Augustaitis, D. Šopauskienė, and I. Baužienė, Direct and indirect effects of regional air pollution on tree crown defoliation, Balt. For. 16, 23–34 (2010),
https://www.balticforestry.mi.lt/bf/index.php?option=com_content&view=article&catid=12&id=41
[20] A. Augustaitis, I. Augustaitienė, A. Kliučius, G. Pivoras, D. Šopauskienė, and R. Girgždienė, The seasonal variability of air pollution effects on pine conditions under changing climates, Eur. J. For. Res. 129, 431–441 (2010),
https://doi.org/10.1007/s10342-009-0319-x
[21] A.M. Middlebrook, R. Bahreini, J.L. Jimenez, and M.R. Canagaratna, Evaluation of composition-dependent collection efficiencies for the aerodyne aerosol mass spectrometer using field data, Aerosol Sci. Technol. 46, 258–271 (2012),
https://doi.org/10.1080/02786826.2011.620041
[22] A. Augustaitis, K. Arbačiauskas, I. Baužienė, I. Eitminavičiūtė, R. Girgždienė, A. Kliučius, R. Mažeikytė, G. Mozgeris, V. Rašomavičius, and D. Šopauskienė, Sąlygiškai natūralių ekosistemų kompleksiškas monitoringas (Lututė, Vilnius, 2006) [in Lithuanian]
[23] J. Pauraitė, A. Pivoras, K. Plauškaitė, S. Byčenkienė, G. Mordas, A. Augustaitis, V. Marozas, G. Mozgeris, M. Baumgarten, R. Matyssek, et al., Characterization of aerosol mass spectra responses to temperature over a forest site in Lithuania, J. Aerosol Sci. 133, 56–65 (2019),
https://doi.org/10.1016/j.jaerosci.2019.03.010
[24] V. Herrmann, S.M. McMahon, M. Detto, J.A. Lutz, S.J. Davies, C.H. Chang-Yang, and K.J. Anderson-Teixeira, Tree circumference dynamics in four forests characterized using automated dendrometer bands, PLoS ONE 11, 1–20 (2016),
https://doi.org/10.1371/journal.pone.0169020
[25] N. Kaushal, K. Bhandari, K.H.M. Siddique, and H. Nayyar, Food crops face rising temperatures: An overview of responses, adaptive mechanisms, and approaches to improve heat tolerance, Cogent Food Agric. 2, 1–42 (2016),
https://doi.org/10.1080/23311932.2015.1134380
[26] X. Gou, F. Zhang, Y. Deng, G.J. Ettl, M. Yang, L. Gao, and K. Fang, Patterns and dynamics of tree-line response to climate change in the eastern Qilian Mountains, northwestern China, Dendrochronologia 30, 121–126 (2012),
https://doi.org/10.1016/j.dendro.2011.05.002
[27] Z. Wang, B. Yang, A. Deslauriers, and A. Bräuning, Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China, Trees 29, 25–34 (2015),
https://doi.org/10.1007/s00468-014-1037-7
[28] S.X. Dong, S.J. Davies, P.S. Ashton, S. Bunyavejchewin, M.N.N. Supardi, A.R. Kassim, S. Tan, and P.R. Moorcroft, Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests, Proc. R. Soc. B 279, 3923–3931 (2012),
https://doi.org/10.1098/rspb.2012.1124