[PDF]  https://doi.org/10.3952/physics.v59i4.4133

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 179–184 (2019)
 


NANOCONE STRUCTURES WITH LIMITED INTERSPACE GROWN BY MOVPE
  Jozef Nováka, Peter Eliáša, Stanislav Hasenöhrla, Agáta Laurenčíkováa, Petra Urbancováb, and Dušan Pudišb
 aInstitute of Electrical Engineering SAS, Dubravská 9, 841 04 Bratislava, Slovakia
bDepartment of Physics, University of Žilina, Univerzitná 1, 010 08 Žilina, Slovakia
Email: jozef.novak@savba.sk

Received 10 June 2019; revised 16 September 2019; accepted 16 September 2019

Reduction and limitation of free spaces between the gallium phosphide nanocones was studied. A set of nanocone samples was grown by metal organic vapour phase epitaxy (MOVPE) in the temperature range between 610 and 690°C. Our results showed that by an appropriate combination of a high density of gold seeds and an optimized growth temperature it was possible to obtain a nanostructured surface with very limited free spaces between the nanocones. A combination of lateral and vertical growth rates regulated by the selection of growth temperature played a very important role in the nanocone hexagonal base enlargement, which helped to minimize spaces between the cones. The limitation of free space between the nanocones increased a probability of edge creation that is very helpful for the successful growth of 2D materials.
Keywords: nanocone, epitaxy, gold seed, shell layer


KŪGIŠKI TANKŪS NANODARINIAI, IŠAUGINTI METALORGANINĖS GARŲ FAZĖS EPITAKSIJOS BŪDU

  Jozef Nováka, Peter Eliáša, Stanislav Hasenöhrla, Agáta Laurenčíkováa, Petra Urbancováb, Dušan Pudišb

aSlovakijos mokslų akademijos Elektros inžinerijos institutas, Bratislava, Slovakija
bŽilinos universiteto Fizikos fakultetas, Žilina, Slovakija
 
References / Nuorodos

[1] M.Y. Li, Y. Shi, Ch.Ch. Cheng, L.S. Lu, Y.Ch. Lin, H.L. Tang, M.L. Tsai, Ch.W. Chu, K.H. Wei, J.H. He, W.H. Chang, K. Suenaga, and L.J. Li, Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface, Science 349, 524–528 (2015),
https://doi.org/10.1126/science.aab4097
[2] H.U. Kim, M. Kim, Y. Jin, Y. Hyeon, K.S. Kim, B.S. An, Ch.W. Yang, V. Kanad, J.Y. Moon, G.Y. Yeom, D. Whang, J.H. Lee, and T. Kim, Low-temperature wafer-scale growth of MoS2-graphene heterostructures, Appl. Surf. Sci. 470, 129–134 (2019),
https://doi.org/10.1016/j.apsusc.2018.11.126
[3] F. Hossein-Babaei and M. Akbari-Saatlu, Growth of ZnO nanorods on the surface and edges of a multilayer graphene sheet, Scr. Mater. 139, 77–82 (2017),
https://doi.org/10.1016/j.scriptamat.2017.06.025
[4] X. Lia, Sh. Guoa, W. Li, X. Renc, J. Sud, Q. Song, and A.J. Sobridob, Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution, Nano Energy 57, 388–397 (2019),
https://doi.org/10.1016/j.nanoen.2018.12.044
[5] J. Novák, A. Laurenčíková, P. Eliáš, S. Hasenöhrl, M. Sojková, E. Dobrocka, J. Kováč Jr., J. Kováč, J. Ďurišová, and D. Pudiš, Nanorods and nanocones for advanced sensor applications, Appl. Surf. Sci. 461, 61–65 (2018),
https://doi.org/10.1016/j.apsusc.2018.04.176
[6] A. Laurenčíková, P. Eliáš, S. Hasenöhrl, J. Kováč Jr., and J. Novák, GaP nanocones covered by silver nanoparticles for surface enhanced Raman spectroscopy, Appl. Surf. Sci. 461, 149–153 (2018),
https://doi.org/10.1016/j.apsusc.2018.05.175
[7] S. Hasenöhrl, P. Eliáš, J. Šoltýs, R. Stoklas, A. Laurenčíková, and J. Novák, Zinc-doped gallium phosphide nanowires for photovoltaic structures, Appl. Surf. Sci. 269, 72–76 (2013),
https://doi.org/10.1016/j.apsusc.2012.09.109