[PDF]  https://doi.org/10.3952/physics.v59i4.4134

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 185–192 (2019)
 


IMPROVEMENT OF GaN CRYSTALLINE QUALITY BY SiNx LAYER GROWN BY MOVPE
 
Alice Hospodkováa, Markéta Slavická Zíkováa, Tomáš Hubáčeka, Jiří Pangráca, Karla Kuldováa, František Hájeka, Filip Domineca, Aliaksei Vetushkaa, and Stanislav Hasenöhrlb
 aInstitute of Physics CAS, v. v. i., Cukrovarnická 10, 162 00 Prague 6, Czech Republic
bInstitute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 01 Bratislava, Slovak Republic
Email: zikova@fzu.cz

Received 8 July 2019; revised 26 November 2019; accepted 27 November 2019

In this work the mechanism which helps to reduce the dislocation density by deposition of a SiNx interlayer is discussed. It is shown that the dislocation reduction by SiNx interlayer deposition is influenced by dislocation density in the underlying GaN layers. The SiNx interlayer is very effective when the original dislocation density is high, while in the case of lower dislocation density the deposition of SiNx is not effective for crystal quality improvement. Although it is widely accepted that SiNx serves as a barrier for dislocation propagation, similarly to the enhanced lateral overgrowth method, it is shown that after masking the SiNx deposition cannot be the dominant dislocation reduction mechanism. The most probable mechanism is the annihilation of bended neighbouring dislocations during the coalescence of 3D islands. The SiNx layer cannot serve as a barrier for dislocations, since it is probably dissolved during the following GaN growth and dissolved Si atoms are incorporated into the above-grown GaN layer which stimulates the 3D island formation. Then the use of the SiNx interlayer for dislocation reduction is recommended only for the improvement of layers with a high dislocation density. On the other hand, the PL signal was strongly enhanced for both low and high dislocation density structures with the SiNx interlayer, suggesting that the interlayer might help to suppress the nonradiative recombination in subsequent GaN that is not related to the dislocation density, which remained the same. But its origin has to be studied further.
Keywords: dislocations, MOVPE, GaN, SiNx, photoluminescence


GaN KRISTALŲ KOKYBĖS GERINIMAS UŽAUGINANT SiNx SLUOKSNĮ METALORGANINĖS GARŲ FAZĖS EPITAKSIJOS BŪDU

Alice Hospodkováa, Markéta Slavická Zíkováa, Tomáš Hubáčeka, Jiří Pangráca, Karla Kuldováa, František Hájeka, Filip Domineca, Aliaksei Vetushkaa, Stanislav Hasenöhrlb

aČekijos mokslų akademijos Fizikos institutas, Praha, Čekija
bSlovakijos mokslų akademijos Elektros inžinerijos institutas, Bratislava, Slovakija

References / Nuorodos

[1] S.J. Zhou, S. Yuan, Y.C. Liu, L. Jay Guo, S. Liu, and H. Ding, Highly efficient and reliable high power LEDs with patterned sapphire substrate and strip-shaped distributed current blocking layer, Appl. Surf. Sci. 355, 1013–1019 (2015),
https://doi.org/10.1016/j.apsusc.2015.07.194
[2] S. Figge, T. Bottcher, S. Einfeldt, and D. Hommel, In situ and ex situ evaluation of the film coalescence for GaN growth on GaN nucleation layers, J. Cryst. Growth 221, 262–266 (2000),
https://doi.org/10.1016/S0022-0248(00)00696-5
[3] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO), J. Cryst. Growth 221, 316–326 (2000),
https://doi.org/10.1016/S0022-0248(00)00707-7
[4] F. Habel, P. Brückner, and F. Scholz, Marker layers for the development of a multistep GaN FACELO process, J. Cryst. Growth 272, 515–519 (2004),
https://doi.org/10.1016/j.jcrysgro.2004.08.082
[5] C.I.H. Ashby, C.C. Mitchell, J. Han, N.A. Missert, P.P. Provencio, D.M. Follstaedt, G.M. Peake, and L. Griego, Low-dislocation-density GaN from a single growth on a textured substrate, Appl. Phys. Lett. 77, 3233–3235 (2000),
https://doi.org/10.1063/1.1325394
[6] S. Tanaka, S. Iwai, and Y. Aoyagi, Self‐assembling GaN quantum dots on AlxGa1-xN surfaces using a surfactant, Appl. Phys. Lett. 69, 4096–4098 (1996),
https://doi.org/10.1063/1.117830
[7] S. Tanaka, M. Takeuchi, and Y. Aoyagi, Antisurfactant in III-nitride epitaxy – quantum dot formation and dislocation termination, Jpn. J. Appl. Phys. 39, L831–L834 (2000),
https://doi.org/10.1143/JJAP.39.L831
[8] A. Sagar, R.M. Feenstra, C.K. Inoki, T.S. Kuan, Y. Fu, Y.T. Moon, F. Yun, and H. Morkoc, Dislocation density reduction in GaN using porous SiN interlayers, Phys. Status Solidi A 202, 722–726 (2005),
https://doi.org/10.1002/pssa.200461486
[9] H. Lahrèche, P. Vennéguès, B. Beaumont, and P. Gibart, Growth of high-quality GaN by low-pressure metal-organic vapour phase epitaxy (LP-MOVPE) from 3D islands and lateral overgrowth, J. Cryst. Growth 205, 245–252 (1999),
https://doi.org/10.1016/S0022-0248(99)00299-7
[10] E. Frayssinet, B. Beaumont, J.P. Faurie, P. Gibart, Zs. Makkai, B. Pécz, P. Lefebvre, and P. Valvin, Micro epitaxial lateral overgrowth of GaN/sapphire by metal organic vapour phase epitaxy, MRS Internet J. Nitride Semicond. Res. 7, 8 (2002),
https://doi.org/10.1557/S109257830000034X
[11] X.L. Fang, Y.Q. Wang, H. Meidia, and S. Mahajan, Reduction of threading dislocations in GaN layers using in situ deposited silicon nitride masks on AlN and GaN nucleation layers, Appl. Phys. Lett. 84, 484–486 (2004),
https://doi.org/10.1063/1.1642274
[12] K. Pakuła, R. Bożek, J.M. Baranowski, J. Jasinski, and Z. Liliental-Weber, Reduction of dislocation density in heteroepitaxial GaN: role of SiH4 treatment, J. Cryst. Growth 267, 1–7 (2004),
https://doi.org/10.1016/j.jcrysgro.2004.03.020
[13] A. Dadgar, M. Poschenriede, A. Reiher, J. Bläsing, J. Christen, A. Krtschil, T. Finger, T. Hempel, A. Diez, and A. Krost, Reduction of stress at the initial stages of GaN growth on Si(111), Appl. Phys. Lett. 82, 28–30 (2003),
https://doi.org/10.1063/1.1534940
[14] M. Haeberlen, D. Zhu, C. McAleese, M.J. Kappers, and C.J. Humphreys, Dislocation reduction in MOVPE grown GaN layers on (111)Si using SiNx and AlGaN layers, J. Phys. Conf. Ser. 209, 012017 (2010),
https://doi.org/10.1088/1742-6596/209/1/012017
[15] T. Hubáček, A. Hospodková, J. Oswald, K. Kuldová, and J. Pangrác, Improvement of luminescence properties of GaN buffer layer for fast nitride scintillator structures, J. Cryst. Growth 464, 221–225 (2017),
https://doi.org/10.1016/j.jcrysgro.2016.12.088
[16] M.E. Vickers, M.J. Kappers, R. Datta, C. McAleese, T.M. Smeeton, F.D.G. Rayment, and C.J. Humphreys, In-plane imperfections in GaN studied by X-ray diffraction, J. Phys. D 38, A99–A102 (2005),
https://doi.org/10.1088/0022-3727/38/10A/019
[17] H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, X-ray diffraction analysis of the defect structure in epitaxial GaN, Appl. Phys. Lett. 77, 2145–2147 (2000),
https://doi.org/10.1063/1.1314877
[18] J.Y. Shi, L.P. Yu, Y.Z. Wang, G.Y. Zhang, and H. Zhang, Influence of different types of threading dislocations on the carrier mobility and photoluminescence in epitaxial GaN, Appl. Phys. Lett. 80, 2293–2295 (2002),
https://doi.org/10.1063/1.1465531
[19] S. Tanaka, S. Iwai, and Y. Aoyagi, Self‐assembling GaN quantum dots on AlxGa1-xN surfaces using a surfactant, Appl. Phys. Lett. 69, 4096–4098 (1996),
https://doi.org/10.1063/1.117830