[PDF]  https://doi.org/10.3952/physics.v59i4.4135

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 193–200 (2019)
 


REDUCTION OF SURFACE ROUGHNESS BY MODIFICATION OF STEP-BUNCHED ALUMINUM NITRIDE LAYERS TOWARDS STEP-FLOW MORPHOLOGY
 
Nadine Tillnera,b, Christian Brandla, Marc P. Hoffmanna, Richard Mosera, Andreas Waagb, and Hans-Jürgen Lugauera
 aOSRAM Opto Semiconductors GmbH, Leibnizstraße 4, 93055 Regensburg, Germany
bInstitute of Semiconductor Technology, Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
Email: nadine.tillner@osram-os.com

Received 8 July 2019; accepted 30 September 2019

Conventional aluminum nitride (AlN) template fabrication techniques, like hydride vapour phase epitaxy or AlN growth on patterned sapphire substrates, usually lead to step-bunched template surfaces. The resulting macrosteps cause emission broadening or even multiple-peak characteristics of ultraviolet light-emitting diodes (UV LEDs) fabricated on such AlN templates. In order to reduce these macrosteps and to provide a smoother surface, even without the need of a thick AlN deposition, a two-layer growth procedure is reported here. A three-dimensional (3D) – two-dimensional (2D) sequential growth initiates a significant modification of the previous AlN surface morphology and simultaneously limits the evolving tensile strain. A primarily step-bunched surface with a surface roughness root mean square of 1.8 nm is successfully reduced by the two-layer growth procedure down to 0.8 nm, without any film cracking. This distinct roughness reduction of more than 50% is achieved within an AlN thickness of only 1.3 μm. With a smoother surface, the electroluminescence characteristic of a UV LED structure is substantially improved. Instead of a double-peak emission, typical for LEDs grown on step-bunched templates, a single-peak emission and lower spectral width were achieved, indicating the high potential of the suggested two-layer technique for improving performance.
Keywords: MOVPE, AlN, step-bunching


PAVIRŠIAUS ŠIURKŠTUMO MAŽINIMAS KEIČIANT ALIUMINIO NITRIDO SLUOKSNIŲ LAIPTELIŲ SANKAUPAS TOLYGIU LAIPTELIŲ IŠSIDĖSTYMU

  Nadine Tillnera,b, Christian Brandla, Marc P. Hoffmanna, Richard Mosera, Andreas Waagb, Hans-Jürgen Lugauera

aOSRAM Opto Semiconductors GmbH, Rėgensburgas, Vokietija
bBraunšveigo technikos universiteto Puslaidininkių technologijos institutas, Braunšveigas, Vokietija
 
References / Nuorodos

[1] M. Kneissl, T.Y. Seong, J. Han, and H. Amano, The emergence and prospects of deep-ultraviolet light-emitting diode technologies, Nat. Photonics 13(4), 233–244 (2019),
https://doi.org/10.1038/s41566-019-0359-9
[2] H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes, Jpn. J. Appl. Phys. 53(10), 100209 (2014),
https://doi.org/10.7567/JJAP.53.100209
[3] K. Ban, J.I. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, Internal quantum efficiency of wholecomposition-range AlGaN multiquantum wells, Appl. Phys. Express 4(5), 052101 (2011),
https://doi.org/10.1143/APEX.4.052101
[4] Z. Ren, Q. Sun, S.Y. Kwon, J. Han, K. Davitt, Y.K. Song, A.V. Nurmikko, W. Liu, J. Smart, and L. Schowalter, AlGaN deep ultraviolet LEDs on bulk AlN substrates, Phys. Status Solidi C 4(7), 2482–2485 (2007),
https://doi.org/10.1002/pssc.200674758
[5] Z. Bryan, I. Bryan, J. Xie, S. Mita, Z. Sitar, and R. Collazo, High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates, Appl. Phys. Lett. 106(14), 142107 (2015),
https://doi.org/10.1063/1.4917540
[6] N. Okada, N. Kato, S. Sato, T. Sumii, T. Nagai, N. Fujimoto, M. Imura, K. Balakrishnan, M. Iwaya, S. Kamiyama, et al., Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification, J. Cryst. Growth 298, 349–353 (2007),
https://doi.org/10.1016/j.jcrysgro.2006.10.123
[7] X. Zhang, F.J. Xu, J.M. Wang, C.G. He, L.S. Zhang, J. Huang, J.P. Cheng, Z.X. Qin, X.L. Yang, N. Tang, X.Q. Wang, and B. Shen, Epitaxial growth of AlN films on sapphire via a multilayer structure adopting a low- and high-temperature alternation technique, CrystEngComm 17(39), 7496–7499 (2015),
https://doi.org/10.1039/C5CE01159K
[8] H. Miyake, G. Nishio, S. Suzuki, K. Hiramatsu, H. Fukuyama, J. Kaur, and N. Kuwano, Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire, Appl. Phys. Express 9(2), 025501 (2016),
https://doi.org/10.7567/APEX.9.025501
[9] S. Walde, S. Hagedorn, and M. Weyers, Impact of intermediate high temperature annealing on the properties of AlN/sapphire templates grown by metalorganic vapor phase epitaxy, Jp. J. Appl. Phys. 58(SC), SC1002 (2019),
https://doi.org/10.7567/1347-4065/ab0cfc
[10] A. Claudel, V. Fellmann, I. Gélard, N. Coudurier, D. Sauvage, M. Balaji, E. Blanquet, R. Boichot, G. Beutier, S. Coindeau, et al., Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy, Thin Solid Films 573, 140–147 (2014),
https://doi.org/10.1016/j.tsf.2014.11.022
[11] T. Nomura, K. Okumura, H. Miyake, K. Hiramatsu, O. Eryu, and Y. Yamada, AlN homoepitaxial growth on sublimation-AlN substrate by low-pressure HVPE, J. Cryst. Growth 350(1), 69–71 (2012),
https://doi.org/10.1016/j.jcrysgro.2011.12.025
[12] P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, Y. Zeng, Y. Tian, et al., 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates, Appl. Phys. Lett. 102(24), 241113 (2013),
https://doi.org/10.1063/1.4812237
[13] S. Hagedorn, A. Knauer, A. Mogilatenko, E. Richter, and M. Weyers, AlN growth on nano‐patterned sapphire: A route for cost efficient pseudo substrates for deep UV LEDs, Phys. Status Solidi A 213(12), 3178–3185 (2016),
https://doi.org/10.1002/pssa.201600218
[14] D. Lee, J.W. Lee, J. Jang, I.S. Shin, L. Jin, J.H. Park, J. Kim, J. Lee, H.S. Noh, Y.I. Kim, Y. Park, G.D. Lee, Y. Park, J.K. Kim, and E. Yoon, Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates, Appl. Phys. Lett. 110(19), 191103 (2017),
https://doi.org/10.1063/1.4983283
[15] Z. Chen, J. Hoo, Y. Chen, V. Wang, and S. Guo, Study of AlN based materials grown on nano-patterned sapphire substrates for deep ultraviolet LED applications, Jpn. J. Appl. Phys. 58(SC), SC1007 (2019),
https://doi.org/10.7567/1347-4065/ab09de
[16] W.-K. Burton, N. Cabrera, and F.C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. Royal Soc. A 243(866), 299–358 (1951),
https://doi.org/10.1098/rsta.1951.0006
[17] I. Bryan, Z. Bryan, S. Mita, A. Rice, J. Tweedie, R. Collazo, and Z. Sitar, Surface kinetics in AlN growth: A universal model for the control of surface morphology in III-nitrides, J. Cryst. Growth 438, 81–89 (2016),
https://doi.org/10.1016/j.jcrysgro.2015.12.022
[18] I. Bryan, Z. Bryan, S. Mita, A. Rice, L. Hussey, C. Shelton, J. Tweedie, J.P. Maria, R. Collazo, and Z. Sitar, The role of surface kinetics on composition and quality of AlGaN, J. Cryst. Growth 451, 65–71 (2016),
https://doi.org/10.1016/j.jcrysgro.2016.06.055
[19] K. Kojima, Y. Nagasawa, A. Hirano, M. Ippommatsu, Y. Honda, H. Amano, I. Akasaki, and S.F. Chichibu, Carrier localization structure combined with current micropaths in AlGaN quantum wells grown on an AlN template with macrosteps, Appl. Phys. Lett. 114(1), 011102 (2019),
https://doi.org/10.1063/1.5063735
[20] H. Xu, J. Jiang, M. Sheikhi, Z. Chen, J. Hoo, S. Guo, W. Guo, H. Sun, and J. Ye, Single peak deep ultraviolet emission and high internal quantum efficiency in AlGaN quantum wells grown on large miscut sapphire substrates, Superlattice Microstruct. 129, 20–27 (2019),
https://doi.org/10.1016/j.spmi.2019.03.010
[21] I. Bryan, A. Rice, L. Hussey, Z. Bryan, M. Bobea, S. Mita, J. Xie, R. Kirste, R. Collazo, and Z. Sitar, Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition, Appl. Phys. Lett. 102(6), 061602 (2013),
https://doi.org/10.1063/1.4792694
[22] B.N. Pantha, R. Dahal, M.L. Nakarmi, N. Nepal, J. Li, J.Y. Lin, H. Jiang, Q. Paduano, and D. Weyburne, Correlation between optoelectronic and structural properties and epilayer thickness of AlN, Appl. Phys. Lett. 90(24), 241101 (2007),
https://doi.org/10.1063/1.2747662
[23] S. Zhou, X. Liu, H. Yan, Y. Gao, H. Xu, J. Zhao, Z. Quan, C. Gui, and S. Liu, The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes, Sci. Rep. 8(1), 11053 (2018),
https://doi.org/10.1038/s41598-018-29440-4