[PDF]  https://doi.org/10.3952/physics.v59i4.4136

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 201–210 (2019)
 


MOCVD DEPOSITION OF ZINC AND BISMUTH CHALCOGENIDES FILMS ON THE SURFACE OF SILICA OPTICAL FIBRES
 
Peter Kuznetsova, Galina Yakushchevaa, Evgeny Savelyeva, Vasiliy Yapaskurta,b, Vasiliy Shcherbakova,b, Alexey Temiryaseva, Leonid Zakharova, Victor Jitova, and Dmitriy Sudasa,c
 aKotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of Sciences,
1 Vvedenskogo sq., Fryazino, 14119 Moscow Region, Russia
bDepartment of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, 119991 Moscow, Russia
cPeter the Great St. Petersburg Polytechnic University, 195251 Saint Peterburg, Russiauania
Email: pik218@ire216.msk.su

Received 8 July 2019; accepted 14 October 2019

Metal organic chemical vapour deposition (MOCVD) technology is adapted for the deposition of thin zinc and bismuth chalcogenides films on the surface of silica optical fibres with short tapered sections. Growth runs were carried out in a special tubular quartz reactor at atmospheric pressure of hydrogen at 425°C temperature using ZnEt2, BiMe3, Et2Te and i-Pro2Se as organometallic precursors. During the deposition of chalcogenides, the transmittance spectra of the fibre were recorded in regular short time intervals. In the transmittance spectra of the fibre with a tapered section coated by ZnSe and ZnTe, lossy mode resonances (LMR) were observed at a diameter of the tapered waist below 30 μm. After the deposition of very thin Bi2Te3 and Bi2Se3 island films on the tapered waist with a diameter about 10 μm optical fibres were built into erbium fibre ring lasers. A pulsed generation mode was achieved in some of lasers due to resonator Q-factor modulation. These results can be applied for the design of LMR fibre sensors and passively Q-switch pulsed fibre lasers.
Keywords: MOCVD, zinc and bismuth chalcogenides, tapered silica fibre, lossy mode resonance, Q-switch


SiO2 ŠVIESOLAIDŽIŲ DENGIMAS CINKO IR BISMUTO CHALKOGENIDŲ PLĖVELĖMIS, AUGINTOMIS METALORGANINIO CHEMINIO GARŲ NUSODINIMO BŪDU

Peter Kuznetsova, Galina Yakushchevaa, Evgeny Savelyeva, Vasiliy Yapaskurta,b, Vasiliy Shcherbakova,b, Alexey Temiryaseva, Leonid Zakharova, Victor Jitova, Dmitriy Sudasa,c

aRusijos mokslų akademijos Kotelnikovo radijo inžinerijos ir elektronikos institutas, Friazinas, Rusija
bMaskvos valstybinio universiteto Geologijos fakultetas, Maskva, Rusija
cPetro Didžiojo Sankt Peterburgo politechnikos universitetas, Sankt Peterburgas, Rusija
 
References / Nuorodos

[1] I.D. Villar, F.J. Arregui, C.R. Zamarreño, J.M. Corres, C. Bariain, J. Goicoechea, C. Elosua, M. Hernaez, P.J. Rivero, A.B. Soccoro, et al., Optical sensors based on lossy-mode resonances, Sens. Actuators B 240, 174–185 (2017),
https://doi.org/10.1016/j.snb.2016.08.126
[2] N. Paliwal and J. John, Lossy mode resonance (LMR) based fiber optic sensors: A review, IEEE Sens. J. 15(10), 5361–5371 (2015),
https://doi.org/10.1109/JSEN.2015.2448123
[3] Q. Wang and W.-M. Zhao, A comprehensive review of lossy mode resonance-based fiber optic sensors, Opt. Lasers Eng. 100, 47–60 (2018),
https://doi.org/10.1016/j.optlaseng.2017.07.009
[4] D.T.F. Marple, Refractive index of ZnSe, ZnTe, and CdTe, J. Appl. Phys. 35(3), 539–542 (1964),
https://doi.org/10.1063/1.1713411
[5] N.Kh. Abrikosov, V.F. Bankina, L.V. Poretskaya, L.E. Shelimova, and E.V. Skudnova, Semiconducting IIVI, IV–VI, and V–VI Compounds (Springer Science+Business Media, New York, 1969) p. 26,
https://doi.org/10.1007/978-1-4899-6373-4_1
[6] P.I. Kuznetsov, V.A. Jitov, E.I. Golant, E.A. Savelyev, D.P. Sudas, G.G. Yakushcheva, and K.M. Golant, Transmission spectrum alteration of a silica fiber taper while covering lateral surface with heterostructure of ZnTe/Bi2Te3 thin film, Phys. Scr. 94, 025802 (2019),
https://doi.org/10.1088/1402-4896/aaf550
[7] C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker, Opt. Express 20(25), 27888–27895 (2012),
https://doi.org/10.1364/OE.20.027888
[8] J. Lee, J. Koo, Y.M. Jhon, and J.H. Lee, A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator, Opt. Express 22(5), 6165–6173 (2014),
https://doi.org/10.1364/OE.22.006165
[9] J.G. Checkelsky, Y.S. Hor, R.J. Cava, and N.P. Ong, Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Te3, Phys. Rev. Lett. 106, 196801 (2011),
https://doi.org/10.1103/PhysRevLett.106.196801
[10] E.H. Kaddouri, T. Maurice, X. Gratens, S. Charar, S. Benet, A. Mefleh, J.C. Tedenac, and B. Liautard, Optical properties of bismuth telluride thin films, Bi2Te3/Si(100) and Bi2Te3/SiO2/Si(100), Phys. Status Solidi A 176, 1071–1076 (1999),
https://doi.org/10.1002/(SICI)1521-396X(199912)176:2<1071::AID-PSSA1071>3.0.CO;2-E
[11] Y.-H. Lin, C.-Y. Yang, S.-F. Lin, W.-H. Tseng, Q. Bao, C.I. Wu, and G.-R. Lin, Soliton compression of the erbium-doped fiber laser weakly started mode-locking by nanoscale p-type Bi2Te3 topological insulator particles, Laser Phys. Lett. 11, 055107 (2014),
https://doi.org/10.1088/1612-2011/11/5/055107
[12] J. Boguslawski, G. Sobon, R. Zybala, and J. Sotor, Dissipative soliton generation in Er-doped fiber laser mode-locked by Sb2Te3 topological insulator, Opt. Lett. 40(12), 2786–2789 (2015),
https://doi.org/10.1364/OL.40.002786
[13] J. Koo, J. Lee, C. Chi, and J.H. Lee, Passively Q-switched 1.56 μm all-fiberized laser based on evanescent field interaction with bulk-structured bismuth telluride topological insulator, J. Opt. Soc. Am. B 31(9), 2157–2162 (2014),
https://doi.org/10.1364/JOSAB.31.002157
[14] J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K.M. Abramski, and J. Sotor, Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber, Opt. Express 23(22), 29014 (2015),
https://doi.org/10.1364/OE.23.029014
[15] P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C. Guo, and J. Hu, A practical topological insulator saturable absorber for mode-locked fiber laser, Sci. Rep. 5, 8690 (2015),
https://doi.org/10.1038/srep08690
[16] S. Ko, J. Lee, J. Koo, B.S. Joo, M. Gu, and J.H. Lee, Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction, J. Lightwave Technol. 34(16), 3766–3784 (2016),
https://doi.org/10.1109/JLT.2016.2583061
[17] S.H. Ko, J.S. Lee, J.H. Koo, B.S. Joo, M.S. Gu, and J.H. Lee, Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction, J. Lightwave Technol. 34(16), 3776 (2016),
https://doi.org/10.1109/JLT.2016.2583061
[18] P.I. Kuznetsov, V.A. Luzanov, G.G. Yakusheva, A.G. Temiryazev, B.S. Shchamkhalova, V.A. Zhitov, and L.Yu. Zakharov, Deposition of heteroepitaxial layers of topological insulator Bi2Se3 in the trimethylbismuth-isopropylselenide-hydrogen system on the (0001) Al2O3 and (100) GaAs substrates, J. Commun. Technol. El. 61(2), 183–189 (2016),
https://doi.org/10.1134/S1064226916010083
[19] P.I. Kuznetsov, V.O. Yapaskurt, B.S. Shchamkhalova, V.D. Shcherbakov, G.G. Yakushcheva, V.A. Luzanov, and V.A. Jitov, Growth of Bi2Te3 films and other phases of Bi-Te system by MOVPE, J. Cryst. Growth 455, 122–128 (2016),
https://doi.org/10.1016/j.jcrysgro.2016.09.055
[20] Z.Y. Wang, H.D. Li, X. Guo, W.K. Ho, and M.H. Xie, Growth characteristics of topological insulator Bi2Se3 films on different substrates, J. Cryst. Growth 334, 96–102 (2011),
https://doi.org/10.1016/j.jcrysgro.2011.08.029
[21] K.M.F. Shahil, M.Z. Hossain, V. Goyal, and A.A. Balandin, Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb2Te3 materials, J. Appl. Phys. 111, 054305 (2012),
https://doi.org/10.1063/1.3690913