[PDF]  https://doi.org/10.3952/physics.v59i4.4137

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 211–223 (2019)
 


SPECTROSCOPY OF DEFECTS IN NEUTRON IRRADIATED AMMONO-THERMAL GaN BY COMBINING PHOTOIONIZATION, PHOTOLUMINESCENCE AND POSITRON ANNIHILATION TECHNIQUES
 
Jevgenij Pavlova, Tomas Čeponisa, Laimonas Deveikisa, Tanja Heikkinenb,c, Jyrki Raisanenc, Vytautas Rumbauskasa, Gintautas Tamulaitisa, Filip Tuomistob,c,d, and Eugenijus Gaubasa
 aInstitute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
bDepartment of Applied Physics, Aalto University, 00076 Aalto Espoo, Finland
cDepartment of Physics, University of Helsinki, 00014 Helsinki, Finland
dHelsinki Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
Email: jevgenij.pavlov@tmi.vu.lt

Received 11 September 2019; accepted 30 September 2019

In this work, pulsed photoionization as well as photoluminescence and positron annihilation spectroscopy were combined to detect different species of defects. The GaN crystals, grown by the ammono-thermal method, doped with Mn as well as Mg impurities and irradiated with different fluences of reactor neutrons, were examined to clarify the role of the technological and radiation defects. The evolution of the prevailing photoactive centres was examined by pulsed photoionization spectroscopy. Positron annihilation spectroscopy was applied to reveal vacancy-type defects.
Keywords: pulsed photoionization spectroscopy, photoluminescence, positron annihilation spectroscopy, GaN, defects


NEUTRONAIS APŠVITINTO AMONOTERMINĖS TECHNOLOGIJOS GaN SPEKTROSKOPIJA FOTOJONIZACIJOS, FOTOLIUMINESCENCIJOS IR POZITRONŲ ANIHILIACIJOS METODAIS

Jevgenij Pavlova, Tomas Čeponisa, Laimonas Deveikisa, Tanja Heikkinenb,c, Jyrki Raisanenc, Vytautas Rumbauskasa, Gintautas Tamulaitisa, Filip Tuomistob,c,d, Eugenijus Gaubasa

aVilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva
bAalto universiteto Taikomosios fizikos fakultetas, Espas, Suomija
cHelsinkio universiteto Fizikos fakultetas, Helsinkis, Suomija
dHelsinkio universiteto Fizikos institutas, Helsinkis, Suomija
 
Impulsinės fotojonizacijos, fotoliuminescencijos ir pozitronų anihiliacijos spektroskopinių tyrimų rezultatai buvo derinami siekiant identifikuoti savituosius ir radiacinius defektus reaktoriaus neutronais apšvitintose amonoterminės technologijos GaN (AT GaN) medžiagose, priemaišintose Mn ir Mg. Įvertintos defektų evoliucijos charakteristikos keičiant neutronų apšvitos įtėkį plačiame 1012 – 5 × 1016 n/cm2 intervale. Atskleista, kad nespindulinę rekombinaciją nulemia galio vakansijos, kurių koncentracija yra didesnė Mn priemaišintame AT GaN. Vakansijų kompleksai su deguonies ir kitomis priemaišomis nulemia fotoliuminescencijos spektrų evoliuciją ir visų aptiktų liuminescencijos smailių intensyvumo mažėjimą didėjant apšvitos įtėkiui. Fotojonizacijos ir fotoliuminescencijos spektrų sąsajos paaiškintos Kopylovo-Pikhtino ir van Roosbroeck’o-Shockley modelių artinyje. Vakansiniai defektai identifikuoti matuojant pozitronų gyvavimo trukmę.

References / Nuorodos

[1] P. Pittet, P. Jalade, G. Gindraux, P. Guiral, R. Wanga, J.M. Galvan, and G.N. Lua, DoRGaN: Development of quality assurance and quality control systems for high dose rate brachytherapy based on GaN dosimetry probes, IRBM 39, 279–290 (2018),
https://doi.org/10.1016/j.irbm.2018.04.005
[2] S.J. Pearton, B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R. Abernathy, J. Lin, and S.N.G. Chu, GaN-based diodes and transistors for chemical, gas, biological and pressure sensing, J. Phys. Condens. Matter 16, R961–R994 (2004),
https://doi.org/10.1088/0953-8984/16/29/R02
[3] https://home.cern/science/accelerators/high-luminosity-lhc
[4] https://home.cern/science/accelerators/future-circular-collider
[5] O. Kortner, S. Kortner, H. Kroha, S. Podkladkin, and R. Richter, Design of the FCC-hh muon detector and trigger system, Nucl. Instrum. Methods Phys. Res. A 936, 447–448 (2019),
https://doi.org/10.1016/j.nima.2018.10.013
[6] P.J. Sellin and J. Vaitkus, New materials for radiation hard semiconductor detectors, Nucl. Instrum. Methods Phys. Res. A 557, 479–489 (2006),
https://doi.org/10.1016/j.nima.2005.10.128
[7] T. Yanagida and Y. Fujimo, Evaluation of scintillation properties of GaN, e-J. Surf. Sci. Nanotech. 12, 396–399 (2014),
https://doi.org/10.1380/ejssnt.2014.396
[8] P. Pittet, G.N. Lu, J.M. Galvan, J.Y. Loisy, A. Ismail, J.Y. Giraud, and J. Balosso, Implantable real-time dosimetric probe using GaN as scintillation material, Sens. Actuators A Phys. 151, 29–34 (2009),
https://doi.org/10.1016/j.sna.2009.02.018
[9] P. Pittet, N.L. Guo, M.G. Jean, M.B. Jean, I. Anas, Y.G. Jean, and J. Balosso, PL characterization of GaN scintillator for radioluminescence-based dosimetry, Opt. Mater. 31, 1421–1424 (2019),
https://doi.org/10.1016/j.optmat.2008.09.012
[10] E. Gaubas, T. Ceponis, A. Jasiunas, V. Kovalevskij, D. Meskauskaite, J. Pavlov, V. Remeikis, A. Tekorius, and J. Vaitkus, Correlative analysis of the in situ changes of carrier decay and proton induced photoluminescence characteristics in chemical vapor deposition grown GaN, Appl. Phys. Lett. 104, 62104 (2014),
https://doi.org/10.1063/1.4865499
[11] H. Spieler, Semiconductor Detector Systems (Oxford University Press, New York, 2005),
https://doi.org/10.1093/acprof:oso/9780198527848.001.0001
[12] M. Huhtinen, Simulation of non-ionising energy loss and defect formation in silicon, Nucl. Instrum. Methods Phys. Res. A 491, 194–215 (2002),
https://doi.org/10.1016/S0168-9002(02)01227-5
[13] E. Gaubas, T. Ceponis, and J. Vaitkus, Impact of generation current on evaluation of the depletion width in heavily irradiated Si detectors, J. Appl. Phys. 110, 033719 (2011),
https://doi.org/10.1063/1.3619802
[14] E. Gaubas, T. Ceponis, A. Jasiunas, A. Uleckas, J. Vaitkus, E. Cortina, and O. Militaru, Correlated evolution of barrier capacitance charging, generation and drift currents and of carrier lifetime in Si structures during 25 MeV neutrons irradiation, Appl. Phys. Lett. 101, 232104-1–3 (2012),
https://doi.org/10.1063/1.4769370
[15] H.M. Foronda, A.E. Romanov, E.C. Young, C.A. Robertson, G.E. Beltz, and J.S. Speck, Curvature and bow of bulk GaN substrates, J. Appl. Phys. 120, 035104 (2002),
https://doi.org/10.1063/1.4959073
[16] S.W. Lee, D.C. Oh, H. Goto, J.S. Ha, H.J. Lee, T. Hanada, M.W. Cho, S.K. Hong, H.Y. Lee, S.R. Cho, et al., Analysis of the relation between leakage current and dislocations in GaN-based light-emitting devices, Phys. Status Solidi 4, 37–40 (2007),
https://doi.org/10.1002/pssc.200673552
[17] Z. Yu, M.A.L. Jhonson, N.A. El-Masry, J.W. Cook Jr, and J.F. Schetzina, Study of the epitaxial–lateral-overgrowth
(ELO) process for GaN on sapphire, J. Cryst. Growth 195, 333–339 (1998),
https://doi.org/10.1016/S0022-0248(98)00638-1
[18] M. Bockowski, M. Iwinska, M. Amilusik, M. Fijalkowski, B. Lucznik, and T. Sochacki, Challenges and future perspectives in HVPEGaN growth on ammonothermal GaN seeds, Semicond. Sci. Technol. 31, 93002 (2016),
https://doi.org/10.1088/0268-1242/31/9/093002
[19] M.P. D’Evelyn, H.C. Hong, D.S. Park, H. Lu, E. Kaminsky, R.R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, and R.J. Molnal, Bulk GaN crystal growth by the high-pressure ammonothermal method, J. Cryst. Growth 300, 11–16 (2007),
https://doi.org/10.1016/j.jcrysgro.2006.10.232
[20] J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures, Science 327, 60–64 (2010),
https://doi.org/10.1126/science.1183226
[21] P. Kozodoy, M. Hansen, S.P. DenBaars, and U.K. Mishra, Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices, Appl. Phys. Lett. 74, 3681–3683 (1999),
https://doi.org/10.1063/1.123220
[22] S. Suihkonen, S. Pimputkar, S. Sintonen, and F. Tuomisto, Defects in single crystalline ammonothermal gallium nitride, Adv. Electron. Mater. 3, 1600496 (2017),
https://doi.org/10.1002/aelm.201600496
[23] F. Tuomisto and I. Makkonen, Defect identification in semiconductors with positron annihilation: Experiment and theory, Rev. Mod. Phys. 85, 1583–1631 (2013),
https://doi.org/10.1103/RevModPhys.85.1583
[24] F. Tuomisto, J.M. Maki, and M. Zajac, Vacancy defects in bulk ammonothermal GaN crystal, J. Cryst. Growth 312, 2620–2623 (2010),
https://doi.org/10.1016/j.jcrysgro.2010.04.023
[25] F. Tuomisto, T. Kuittinen, M. Zajac, R. Doradzinski, and D. Wasik, Vacancy–hydrogen complexes in ammonothermal GaN, J. Cryst. Growth 403, 114–118 (2014),
https://doi.org/10.1016/j.jcrysgro.2014.06.005
[26] R. Dwilinski, R. Doradzinski, J. Garczynski, L.P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, Bulk ammonothermal GaN, J. Cryst. Growth 311, 3015–3018 (2009),
https://doi.org/10.1016/j.jcrysgro.2009.01.052
[27] https://www.unipress.waw.pl/growth/index.php/ammono-gan-wafers-sales
[28] R. Kucharski, M. Zajac, A. Puchalski, T. Sochacki, M. Bockowski, J.L. Weyher, M. Iwinska, J. Serafinczuk, R. Kudrawiec, and Z. Siemiątkowski, Ammonothermal growth of GaN crystals on HVPE-GaN seeds prepared with the use of ammonothermal substrates, J. Cryst. Growth 427, 1–6 (2015),
https://doi.org/10.1016/j.jcrysgro.2015.06.019
[29] M. Imanishi, Y. Todoroki, K. Murakami, D. Matsuo, H. Imabayashi, H. Takazawa, M. Maruyama, M. Imade, M. Yoshimura, and Y. Mori, Dramatic reduction of dislocations on a GaN point seed crystal by coalescence of bunched steps during Na-flux growth, J. Cryst. Growth 427, 87–93 (2015),
https://doi.org/10.1016/j.jcrysgro.2015.07.001
[30] M. Moll, Radiation tolerant semiconductor sensors for tracking detectors, Nucl. Instrum. Methods Phys. Res. A 565, 202–211 (2006),
https://doi.org/10.1016/j.nima.2006.05.001
[31] L. Snoj, G. Zerovnik, and A. Trkov, Computational analysis of irradiation facilities at the JSI TRIGA reactor, Appl. Radiat. Isot. 70, 483–488 (2012),
https://doi.org/10.1016/j.apradiso.2017.09.022
[32] E. Gaubas, T. Ceponis, L. Deveikis, D. Meskauskaite, S. Miasojedovas, J. Mickevicius, J. Pavlov, K. Pukas, J. Vaitkus, M. Velicka, M. Zajac, and R. Kucharski, Study of neutron-irradiated structures of ammonothermal GaN, J. Phys. D 50, 135102 (2017),
https://doi.org/10.1088/1361-6463/aa5c6c
[33] E. Gaubas, T. Čeponis, D. Meškauskaite, J. Mickevičius, J. Pavlov, V. Rumbauskas, R. Grigonis, M. Zajac, and R. Kucharski, Pulsed photoionization spectroscopy of traps in as-grown and neutron-irradiated ammonothermally synthesized GaN, Sci. Rep. 9, 1473 (2019),
https://doi.org/10.1038/s41598-018-38138-6
[34] E. Gaubas, E. Simoen, and J. Vanhellemont, Review-carrier lifetime spectroscopy for defect characterization in semiconductor materials and devices, ECS J. Solid State Sci. Technol. 5, P3108–P3137 (2016),
https://doi.org/10.1149/2.0201604jss
[35] A.A. Kopylov and A.N. Pikhtin, Influence of temperature on spectra of optical absorption by deep levels in semiconductors, Sov. Phys. Solid State 16, 1200–1203 (1975)
[36] A. Alkauskas, M.D. McCluskey, and C.G. Van de Walle, Tutorial: Defects in semiconductors – Combining experiment and theory, J. Appl. Phys. 119, 181101 (2016),
https://doi.org/10.1063/1.4948245
[37] F. Tuomisto, V. Ranki, D.C. Look, and G.C. Farlow, Introduction and recovery of Ga and N sublattice defects in electron-irradiated GaN, Phys. Rev. B 76, 165207 (2007),
https://doi.org/10.1103/PhysRevB.76.165207
[38] F. Tuomisto, Vacancy profiles and clustering in light-ion-implanted GaN and ZnO, Appl. Surf. Sci. 255, 54 (2008),
https://doi.org/10.1016/j.apsusc.2008.05.172
[39] N.T. Son, C.G. Hemmingsson, T. Paskova, K.R. Evans, A. Usui, N. Morishita, T. Ohshima, J. Isoya, B. Monemar, and E. Janzén, Identification of the gallium vacancy-oxygen pair defect in GaN, Phys. Rev. B 80, 153202 (2009),
https://doi.org/10.1103/PhysRevB.80.153202
[40] N.T. Son, C.G. Hemmingsson, N. Morishita, T. Ohshima, T. Paskova, K.R. Evans, A. Usui, J. Isoya, B. Monemar, and E. Janzén, Radiation-induced defects in GaN, Phys. Scr. T141, 14015 (2010),
https://doi.org/10.1088/0031-8949/2010/T141/014015
[41] H.J. Von Bardeleben, J.L. Cantin, U. Gerstmann, A. Scholle, S. Greulich-Weber, E. Rauls, M. Landmann, W.G. Schmidt, A. Gentils, J. Botsoa, and M.F. Barthe, Identification of the nitrogen split interstitial (N–N)N in GaN, Phys. Rev. Lett. 109, 206402 (2012),
https://doi.org/10.1103/PhysRevLett.109.206402
[42] H.J. von Bardeleben, J.L. Cantin, H. Vrielinck, F. Callens, L. Binet, E. Rauls, and U. Gerstmann, Nitrogen split interstitial center (N−N)N in GaN: High frequency EPR and ENDOR study, Phys. Rev. B 90, 85203 (2014),
https://doi.org/10.1103/PhysRevB.90.085203
[43] R.Y. Korotkov, J.M. Gregie, and B.W. Wessels, Optical properties of the deep Mn acceptor in GaN:Mn, Appl. Phys. Lett. 80, 1731–1733 (2002),
https://doi.org/10.1063/1.1456544
[44] A. Wolos, M. Palczewska, M. Zajac, J. Gosk, M. Kaminska, A. Twardowski, M. Bockowski, I. Grzegory, and S. Porowski, Optical and magnetic properties of Mn in bulk GaN, Phys. Rev. B 69, 115210 (2004),
https://doi.org/10.1103/PhysRevB.69.115210
[45] Z. Zhang, A.R. Arehart, E.C.H. Kyle, J. Chen, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, J.S. Speck, and S.A. Ringel, Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy, Appl. Phys. Lett. 106, 022104 (2015),
https://doi.org/10.1063/1.4905783
[46] S.J. Chung, O.H. Cha, H.K. Cho, M.S. Jeong, C-H. Hong, E.-K. Suh, and H.J. Lee, Photocurrent spectroscopy investigations of Mg-related defects levels in p-type GaN, Mater. Res. Soc. Symp. Proc. 595, F99W11.83 (1999),
https://doi.org/10.1557/PROC-595-F99W11.83
[47] G.C. Yi and B.W. Wessels, Deep level defects in Mg-doped GaN, Mater. Res. Soc. Symp. Proc. 423, 525–530 (1996),
https://doi.org/10.1557/PROC-423-525
[48] C.H. Qiu and J.I. Pankove, Deep levels and persistent photoconductivity in GaN thin films, Appl. Phys. Lett. 70, 1983–1985 (1997),
https://doi.org/10.1063/1.118799
[49] Z. Zhang, C.A. Hurni, A.R. Arehart, J. Yang, R.C. Myers, J.S. Speck, and S.A. Ringel, Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy, Appl. Phys. Lett. 100, 52114 (2012),
https://doi.org/10.1063/1.3682528
[50] J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, New Jersey, USA, 1971),
https://store.doverpublications.com/0486602753.html
[51] R. Bhattacharya, B. Pal, and B. Bansal, On conversion of luminescence into absorption and the van Roosbroeck–Shockley relation, Appl. Phys. Lett. 100, 222103 (2012),
https://doi.org/10.1063/1.4721495
[52] E. Gaubas, T. Ceponis, L. Deveikis, D. Dobrovolskas, V. Rumbauskas, and M. Viliunas, Room-temperature infrared photoluminescence in GaN doped with various impurities, Opt. Mater. 94, 266-271 (2019),
https://doi.org/10.1016/j.optmat.2019.05.054
[53] S. Sintonen, S. Kivisaari, S. Pimputkar, S. Suihkonen, T. Schulz, J.S. Speck, and S. Nakamura, Incorporation and effects of impurities in different growth zones within basic ammonothermal GaN, J. Cryth. Growth 456, 43–50 (2016),
https://doi.org/10.1016/j.jcrysgro.2016.08.040
[54] M. Julkarnain, N. Kamata, T. Fukuda, and Y. Arakawa, Yellow luminescence band in undoped GaN revealed by two-wavelength exited photoluminescence, Opt. Mater. 60, 481–486 (2016),
https://doi.org/10.1016/j.optmat.2016.09.003