Impulsinės fotojonizacijos,
fotoliuminescencijos ir pozitronų anihiliacijos spektroskopinių
tyrimų rezultatai buvo derinami siekiant identifikuoti
savituosius ir radiacinius defektus reaktoriaus neutronais
apšvitintose amonoterminės technologijos GaN (AT GaN)
medžiagose, priemaišintose Mn ir Mg. Įvertintos defektų
evoliucijos charakteristikos keičiant neutronų apšvitos įtėkį
plačiame 1012 – 5 × 1016 n/cm2
intervale. Atskleista, kad nespindulinę rekombinaciją nulemia
galio vakansijos, kurių koncentracija yra didesnė Mn
priemaišintame AT GaN. Vakansijų kompleksai su deguonies ir
kitomis priemaišomis nulemia fotoliuminescencijos spektrų
evoliuciją ir visų aptiktų liuminescencijos smailių intensyvumo
mažėjimą didėjant apšvitos įtėkiui. Fotojonizacijos ir
fotoliuminescencijos spektrų sąsajos paaiškintos
Kopylovo-Pikhtino ir van Roosbroeck’o-Shockley modelių artinyje.
Vakansiniai defektai identifikuoti matuojant pozitronų gyvavimo
trukmę.
References
/
Nuorodos
[1] P. Pittet, P. Jalade, G. Gindraux, P. Guiral, R. Wanga, J.M.
Galvan, and G.N. Lua, DoRGaN: Development of quality assurance
and quality control systems for high dose rate brachytherapy
based on GaN dosimetry probes, IRBM
39, 279–290 (2018),
https://doi.org/10.1016/j.irbm.2018.04.005
[2] S.J. Pearton, B.S. Kang, S. Kim, F. Ren, B.P. Gila, C.R.
Abernathy, J. Lin, and S.N.G. Chu, GaN-based diodes and
transistors for chemical, gas, biological and pressure sensing,
J. Phys. Condens. Matter
16, R961–R994 (2004),
https://doi.org/10.1088/0953-8984/16/29/R02
[3]
https://home.cern/science/accelerators/high-luminosity-lhc
[4]
https://home.cern/science/accelerators/future-circular-collider
[5] O. Kortner, S. Kortner, H. Kroha, S. Podkladkin, and R.
Richter, Design of the FCC-hh muon detector and trigger system,
Nucl. Instrum. Methods Phys. Res. A
936, 447–448 (2019),
https://doi.org/10.1016/j.nima.2018.10.013
[6] P.J. Sellin and J. Vaitkus, New materials for radiation hard
semiconductor detectors, Nucl. Instrum. Methods Phys. Res. A
557,
479–489 (2006),
https://doi.org/10.1016/j.nima.2005.10.128
[7] T. Yanagida and Y. Fujimo, Evaluation of scintillation
properties of GaN, e-J. Surf. Sci. Nanotech.
12, 396–399
(2014),
https://doi.org/10.1380/ejssnt.2014.396
[8] P. Pittet, G.N. Lu, J.M. Galvan, J.Y. Loisy, A. Ismail, J.Y.
Giraud, and J. Balosso, Implantable real-time dosimetric probe
using GaN as scintillation material, Sens. Actuators A Phys.
151, 29–34 (2009),
https://doi.org/10.1016/j.sna.2009.02.018
[9] P. Pittet, N.L. Guo, M.G. Jean, M.B. Jean, I. Anas, Y.G.
Jean, and J. Balosso, PL characterization of GaN scintillator
for radioluminescence-based dosimetry, Opt. Mater.
31,
1421–1424 (2019),
https://doi.org/10.1016/j.optmat.2008.09.012
[10] E. Gaubas, T. Ceponis, A. Jasiunas, V. Kovalevskij, D.
Meskauskaite, J. Pavlov, V. Remeikis, A. Tekorius, and J.
Vaitkus, Correlative analysis of the in situ changes of carrier
decay and proton induced photoluminescence characteristics in
chemical vapor deposition grown GaN, Appl. Phys. Lett.
104,
62104 (2014),
https://doi.org/10.1063/1.4865499
[11] H. Spieler,
Semiconductor Detector Systems (Oxford
University Press, New York, 2005),
https://doi.org/10.1093/acprof:oso/9780198527848.001.0001
[12] M. Huhtinen, Simulation of non-ionising energy loss and
defect formation in silicon, Nucl. Instrum. Methods Phys. Res. A
491, 194–215 (2002),
https://doi.org/10.1016/S0168-9002(02)01227-5
[13] E. Gaubas, T. Ceponis, and J. Vaitkus, Impact of generation
current on evaluation of the depletion width in heavily
irradiated Si detectors, J. Appl. Phys.
110, 033719
(2011),
https://doi.org/10.1063/1.3619802
[14] E. Gaubas, T. Ceponis, A. Jasiunas, A. Uleckas, J. Vaitkus,
E. Cortina, and O. Militaru, Correlated evolution of barrier
capacitance charging, generation and drift currents and of
carrier lifetime in Si structures during 25 MeV neutrons
irradiation, Appl. Phys. Lett.
101, 232104-1–3 (2012),
https://doi.org/10.1063/1.4769370
[15] H.M. Foronda, A.E. Romanov, E.C. Young, C.A. Robertson,
G.E. Beltz, and J.S. Speck, Curvature and bow of bulk GaN
substrates, J. Appl. Phys.
120, 035104 (2002),
https://doi.org/10.1063/1.4959073
[16] S.W. Lee, D.C. Oh, H. Goto, J.S. Ha, H.J. Lee, T. Hanada,
M.W. Cho, S.K. Hong, H.Y. Lee, S.R. Cho, et al., Analysis of the
relation between leakage current and dislocations in GaN-based
light-emitting devices, Phys. Status Solidi
4, 37–40
(2007),
https://doi.org/10.1002/pssc.200673552
[17] Z. Yu, M.A.L. Jhonson, N.A. El-Masry, J.W. Cook Jr, and
J.F. Schetzina, Study of the epitaxial–lateral-overgrowth
(ELO) process for GaN on sapphire, J. Cryst. Growth
195,
333–339 (1998),
https://doi.org/10.1016/S0022-0248(98)00638-1
[18] M. Bockowski, M. Iwinska, M. Amilusik, M. Fijalkowski, B.
Lucznik, and T. Sochacki, Challenges and future perspectives in
HVPEGaN growth on ammonothermal GaN seeds, Semicond. Sci.
Technol.
31, 93002 (2016),
https://doi.org/10.1088/0268-1242/31/9/093002
[19] M.P. D’Evelyn, H.C. Hong, D.S. Park, H. Lu, E. Kaminsky,
R.R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, and R.J.
Molnal, Bulk GaN crystal growth by the high-pressure
ammonothermal method, J. Cryst. Growth
300, 11–16
(2007),
https://doi.org/10.1016/j.jcrysgro.2006.10.232
[20] J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena,
Polarization-induced hole doping in wide-band-gap uniaxial
semiconductor heterostructures, Science
327, 60–64
(2010),
https://doi.org/10.1126/science.1183226
[21] P. Kozodoy, M. Hansen, S.P. DenBaars, and U.K. Mishra,
Enhanced Mg doping efficiency in Al
0.2Ga
0.8N/GaN
superlattices, Appl. Phys. Lett.
74, 3681–3683 (1999),
https://doi.org/10.1063/1.123220
[22] S. Suihkonen, S. Pimputkar, S. Sintonen, and F. Tuomisto,
Defects in single crystalline ammonothermal gallium nitride,
Adv. Electron. Mater.
3, 1600496 (2017),
https://doi.org/10.1002/aelm.201600496
[23] F. Tuomisto and I. Makkonen, Defect identification in
semiconductors with positron annihilation: Experiment and
theory, Rev. Mod. Phys.
85, 1583–1631 (2013),
https://doi.org/10.1103/RevModPhys.85.1583
[24] F. Tuomisto, J.M. Maki, and M. Zajac, Vacancy defects in
bulk ammonothermal GaN crystal, J. Cryst. Growth
312,
2620–2623 (2010),
https://doi.org/10.1016/j.jcrysgro.2010.04.023
[25] F. Tuomisto, T. Kuittinen, M. Zajac, R. Doradzinski, and D.
Wasik, Vacancy–hydrogen complexes in ammonothermal GaN, J.
Cryst. Growth
403, 114–118 (2014),
https://doi.org/10.1016/j.jcrysgro.2014.06.005
[26] R. Dwilinski, R. Doradzinski, J. Garczynski, L.P.
Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi,
and H. Hayashi, Bulk ammonothermal GaN, J. Cryst. Growth
311,
3015–3018 (2009),
https://doi.org/10.1016/j.jcrysgro.2009.01.052
[27]
https://www.unipress.waw.pl/growth/index.php/ammono-gan-wafers-sales
[28] R. Kucharski, M. Zajac, A. Puchalski, T. Sochacki, M.
Bockowski, J.L. Weyher, M. Iwinska, J. Serafinczuk, R.
Kudrawiec, and Z. Siemiątkowski, Ammonothermal growth of GaN
crystals on HVPE-GaN seeds prepared with the use of
ammonothermal substrates, J. Cryst. Growth
427, 1–6
(2015),
https://doi.org/10.1016/j.jcrysgro.2015.06.019
[29] M. Imanishi, Y. Todoroki, K. Murakami, D. Matsuo, H.
Imabayashi, H. Takazawa, M. Maruyama, M. Imade, M. Yoshimura,
and Y. Mori, Dramatic reduction of dislocations on a GaN point
seed crystal by coalescence of bunched steps during Na-flux
growth, J. Cryst. Growth
427, 87–93 (2015),
https://doi.org/10.1016/j.jcrysgro.2015.07.001
[30] M. Moll, Radiation tolerant semiconductor sensors for
tracking detectors, Nucl. Instrum. Methods Phys. Res. A
565,
202–211 (2006),
https://doi.org/10.1016/j.nima.2006.05.001
[31] L. Snoj, G. Zerovnik, and A. Trkov, Computational analysis
of irradiation facilities at the JSI TRIGA reactor, Appl.
Radiat. Isot.
70, 483–488 (2012),
https://doi.org/10.1016/j.apradiso.2017.09.022
[32] E. Gaubas, T. Ceponis, L. Deveikis, D. Meskauskaite, S.
Miasojedovas, J. Mickevicius, J. Pavlov, K. Pukas, J. Vaitkus,
M. Velicka, M. Zajac, and R. Kucharski, Study of
neutron-irradiated structures of ammonothermal GaN, J. Phys. D
50,
135102 (2017),
https://doi.org/10.1088/1361-6463/aa5c6c
[33] E. Gaubas, T. Čeponis, D. Meškauskaite, J. Mickevičius, J.
Pavlov, V. Rumbauskas, R. Grigonis, M. Zajac, and R. Kucharski,
Pulsed photoionization spectroscopy of traps in as-grown and
neutron-irradiated ammonothermally synthesized GaN, Sci. Rep.
9,
1473 (2019),
https://doi.org/10.1038/s41598-018-38138-6
[34] E. Gaubas, E. Simoen, and J. Vanhellemont, Review-carrier
lifetime spectroscopy for defect characterization in
semiconductor materials and devices, ECS J. Solid State Sci.
Technol.
5, P3108–P3137 (2016),
https://doi.org/10.1149/2.0201604jss
[35] A.A. Kopylov and A.N. Pikhtin, Influence of temperature on
spectra of optical absorption by deep levels in semiconductors,
Sov. Phys. Solid State
16, 1200–1203 (1975)
[36] A. Alkauskas, M.D. McCluskey, and C.G. Van de Walle,
Tutorial: Defects in semiconductors – Combining experiment and
theory, J. Appl. Phys.
119, 181101 (2016),
https://doi.org/10.1063/1.4948245
[37] F. Tuomisto, V. Ranki, D.C. Look, and G.C. Farlow,
Introduction and recovery of Ga and N sublattice defects in
electron-irradiated GaN, Phys. Rev. B
76, 165207 (2007),
https://doi.org/10.1103/PhysRevB.76.165207
[38] F. Tuomisto, Vacancy profiles and clustering in
light-ion-implanted GaN and ZnO, Appl. Surf. Sci.
255,
54 (2008),
https://doi.org/10.1016/j.apsusc.2008.05.172
[39] N.T. Son, C.G. Hemmingsson, T. Paskova, K.R. Evans, A.
Usui, N. Morishita, T. Ohshima, J. Isoya, B. Monemar, and E.
Janzén, Identification of the gallium vacancy-oxygen pair defect
in GaN, Phys. Rev. B
80, 153202 (2009),
https://doi.org/10.1103/PhysRevB.80.153202
[40] N.T. Son, C.G. Hemmingsson, N. Morishita, T. Ohshima, T.
Paskova, K.R. Evans, A. Usui, J. Isoya, B. Monemar, and E.
Janzén, Radiation-induced defects in GaN, Phys. Scr.
T141,
14015 (2010),
https://doi.org/10.1088/0031-8949/2010/T141/014015
[41] H.J. Von Bardeleben, J.L. Cantin, U. Gerstmann, A. Scholle,
S. Greulich-Weber, E. Rauls, M. Landmann, W.G. Schmidt, A.
Gentils, J. Botsoa, and M.F. Barthe, Identification of the
nitrogen split interstitial (N–N)
N in GaN, Phys. Rev.
Lett.
109, 206402 (2012),
https://doi.org/10.1103/PhysRevLett.109.206402
[42] H.J. von Bardeleben, J.L. Cantin, H. Vrielinck, F. Callens,
L. Binet, E. Rauls, and U. Gerstmann, Nitrogen split
interstitial center (N−N)
N in GaN: High frequency EPR
and ENDOR study, Phys. Rev. B
90, 85203 (2014),
https://doi.org/10.1103/PhysRevB.90.085203
[43] R.Y. Korotkov, J.M. Gregie, and B.W. Wessels, Optical
properties of the deep Mn acceptor in GaN:Mn, Appl. Phys. Lett.
80, 1731–1733 (2002),
https://doi.org/10.1063/1.1456544
[44] A. Wolos, M. Palczewska, M. Zajac, J. Gosk, M. Kaminska, A.
Twardowski, M. Bockowski, I. Grzegory, and S. Porowski, Optical
and magnetic properties of Mn in bulk GaN, Phys. Rev. B
69,
115210 (2004),
https://doi.org/10.1103/PhysRevB.69.115210
[45] Z. Zhang, A.R. Arehart, E.C.H. Kyle, J. Chen, E.X. Zhang,
D.M. Fleetwood, R.D. Schrimpf, J.S. Speck, and S.A. Ringel,
Proton irradiation effects on deep level states in Mg-doped
p-type GaN grown by ammonia-based molecular beam epitaxy, Appl.
Phys. Lett.
106, 022104 (2015),
https://doi.org/10.1063/1.4905783
[46] S.J. Chung, O.H. Cha, H.K. Cho, M.S. Jeong, C-H. Hong,
E.-K. Suh, and H.J. Lee, Photocurrent spectroscopy
investigations of Mg-related defects levels in p-type GaN,
Mater. Res. Soc. Symp. Proc.
595, F99W11.83 (1999),
https://doi.org/10.1557/PROC-595-F99W11.83
[47] G.C. Yi and B.W. Wessels, Deep level defects in Mg-doped
GaN, Mater. Res. Soc. Symp. Proc.
423, 525–530 (1996),
https://doi.org/10.1557/PROC-423-525
[48] C.H. Qiu and J.I. Pankove, Deep levels and persistent
photoconductivity in GaN thin films, Appl. Phys. Lett.
70,
1983–1985 (1997),
https://doi.org/10.1063/1.118799
[49] Z. Zhang, C.A. Hurni, A.R. Arehart, J. Yang, R.C. Myers,
J.S. Speck, and S.A. Ringel, Deep traps in nonpolar m-plane GaN
grown by ammonia-based molecular beam epitaxy, Appl. Phys. Lett.
100, 52114 (2012),
https://doi.org/10.1063/1.3682528
[50] J.I. Pankove,
Optical Processes in Semiconductors
(Prentice-Hall, New Jersey, USA, 1971),
https://store.doverpublications.com/0486602753.html
[51] R. Bhattacharya, B. Pal, and B. Bansal, On conversion of
luminescence into absorption and the van Roosbroeck–Shockley
relation, Appl. Phys. Lett.
100, 222103 (2012),
https://doi.org/10.1063/1.4721495
[52] E. Gaubas, T. Ceponis, L. Deveikis, D. Dobrovolskas, V.
Rumbauskas, and M. Viliunas, Room-temperature infrared
photoluminescence in GaN doped with various impurities, Opt.
Mater.
94, 266-271 (2019),
https://doi.org/10.1016/j.optmat.2019.05.054
[53] S. Sintonen, S. Kivisaari, S. Pimputkar, S. Suihkonen, T.
Schulz, J.S. Speck, and S. Nakamura, Incorporation and effects
of impurities in different growth zones within basic
ammonothermal GaN, J. Cryth. Growth
456, 43–50 (2016),
https://doi.org/10.1016/j.jcrysgro.2016.08.040
[54] M. Julkarnain, N. Kamata, T. Fukuda, and Y. Arakawa, Yellow
luminescence band in undoped GaN revealed by two-wavelength
exited photoluminescence, Opt. Mater.
60, 481–486
(2016),
https://doi.org/10.1016/j.optmat.2016.09.003