[PDF]  https://doi.org/10.3952/physics.v59i4.4138

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 59, 224–232 (2019)
 


NONSTOICHIOMETRIC TIN OXIDE FILMS: STUDY BY X-ray DIFFRACTION, RAMAN SCATTERING AND ELECTRON PARAMAGNETIC RESONANCE
 
Dzmitry V. Adamchuka,b, Vitaly K. Ksenevicha, Nikolai A. Poklonskia, Marius Navickasb, and Jūras Banysb
 aFaculty of Physics, Belarusian State University, Nezalezhnastsi Ave. 4, 220030 Minsk, Belarus
bFaculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
Email: ksenevich@bsu.by

Received 18 October 2019; accepted 31 October 2019

Nonstoichiometric SnO/SnO2/SnO2−δ films were fabricated by DC magnetron sputtering and reactive DC magnetron sputtering of tin target with further 2-stage temperature annealing of synthesized materials. X-ray diffraction analysis, Raman spectroscopy and electron paramagnetic resonance (EPR) spectroscopy were employed to study the influence of oxygen content in the plasma during the sputtering process and the temperature of annealing on the stoichiometric and phase composition of synthesized films. It was found that the tin monoxide phase prevailed in the films fabricated by DC magnetron sputtering in the argon plasma followed by a 2-stage annealing process. Nanocrystalline films containing both tin monoxide and tin dioxide were synthesized when reactive magnetron sputtering with a small content of oxygen (of about 1 vol.%) was used. The increase of oxygen content in the plasma to the value of about 2 vol.% leads to the formation of amorphous films. The intensity of the Raman peaks inherent in SnO2 vibration modes was found to depend on the content of the tin monoxide phase in the films. This effect can be attributed to the dissipative transition of electronic excitation from tin monoxide to tin dioxide nanocrystallites.
Keywords: tin oxides, magnetron sputtering, X-ray diffraction, resonance Raman scattering, electron paramagnetic resonance
PACS: 68.55.Nq, 73.61.Le, 78.30.-j, 81.15.Cd


NESTECHIOMETRINĖS ALAVO OKSIDO PLĖVELĖS: RENTGENO SPINDULIŲ DIFRAKCIJOS, RAMANO SKLAIDOS IR ELEKTRONŲ PARAMAGNETINIO REZONANSO TYRIMAI

Dzmitry V. Adamchuka,b, Vitaly K. Ksenevicha, Nikolai A. Poklonskia, Marius Navickasb, Jūras Banysb

aBaltarusijos valstybinio universiteto Fizikos fakultetas, Minskas, Baltarusija
bVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
 
Nestechiometrinės SnO/SnO2/SnO2−δ plėvelės buvo gaminamos nuolatinės srovės (DC) magnetroninio ir reaktyviojo DC magnetroninio dulkinimo būdu, panaudojant alavo bandinį bei gautą medžiagą kaitinant dvejomis pakopomis. Siekiant ištirti deguonies kiekio plazmoje, naudotoje magnetroninio dulkinimo metu, bei kaitinimo temperatūros įtaką bandinių stechiometrinei ir fazinei struktūrai, buvo panaudota Rentgeno struktūrinė analizė, Ramano ir elektronų paramagnetinio rezonanso (EPR) spektroskopijos. Nustatyta, kad bandiniuose, gautuose nuolatinės srovės magnetroninio dulkinimo būdu argono plazmoje, panaudojant dviejų pakopų kaitinimą dominuoja alavo monoksido fazė. Nanokristalinės plėvelės, savyje turinčios tiek alavo monoksido, tiek alavo dioksido, buvo susintetintos reaktyviuoju nuolatinės srovės dulkinimo būdu, panaudojant mažą kiekį deguonies (1 vol%). Deguonies padidėjimas plazmoje iki ~2 vol% skatina amorfinių plėvelių formavimąsi. Nustatyta, kad Ramano spektrų intensyvumai, nusakantys SnO2 vibracines modas, priklauso nuo alavo monoksido kiekio plėvelėse. Šis reiškinys gali būti siejamas su elektroninio sužadinimo sukeltu disipaciniu virsmu iš alavo monoksido į alavo dioksido nanokristalitus.

References / Nuorodos

[1] H.L. Hartnagel, A.L. Dawar, A.K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics Publishing, Bristol, UK, 1995),
https://www.amazon.co.uk/Semiconducting-Transparent-Films-Hartnagel-1995-01-01/dp/B01K17LV9U/
[2] M. Batzill and U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci. 79, 47–154 (2005),
https://doi.org/10.1016/j.progsurf.2005.09.002
[3] J. Lian, Y. Yang, W. Wang, S.G. Parker, V.R. Gonçales, R.D. Tilley, and J. Justin, Amorphous silicon on indium tin oxide: a transparent electrode for simultaneous light activated electrochemistry and optical microscopy, Chem. Commun. 55, 123–126 (2018),
https://doi.org/10.1039/C8CC07889K
[4] B. Eifert, M. Becker, C.T. Reindl, M. Giar, L. Zheng, A. Polity, Y. He, C. Heiliger, and P.J. Klar, Raman studies of the intermediate tin-oxide phase, Phys. Rev. Mater. 1, 014602-1–6 (2017),
https://doi.org/10.1103/PhysRevMaterials.1.014602
[5] I.M. Tiginyanu, O. Lupan, V.V. Ursaki, L. Chow, and M. Enachi, in: Comprehensive Semiconductor Science and Technology, Vol. 3, eds. P. Bhattacharya, R. Fornari, H. Kamimura (Elsevier Science, Amsterdam, 2011) pp. 396–479,
https://doi.org/10.1016/B978-0-44-453153-7.00105-X
[6] C. Kílíç and A. Zunger, Origins of coexistence of conductivity and transparency in SnO2, Phys. Rev. Lett. 88, 09550-1–4 (2002),
https://doi.org/10.1103/PhysRevLett.88.095501
[7] K.G. Godinho, A. Walsh, and G.W. Watson, Energetic and electronic structure analysis of intrinsic defects in SnO2, J. Phys. Chem. C 113, 439–448 (2009),
https://doi.org/10.1021/jp807753t
[8] L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, and P.K. Chu, Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals, J. Raman Spectrosc. 43, 1423–1426 (2012),
https://doi.org/10.1002/jrs.4078
[9] M. Epifani, J.D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, and J.R. Morante, The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals, J. Phys. Chem. C 112, 19540–19546 (2008),
https://doi.org/10.1021/jp804916g
[10] Y. Yang, Y. Wang, and S. Yin, Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity, Appl. Surf. Sci. 420, 399–406 (2017),
https://doi.org/10.1016/j.apsusc.2017.05.176
[11] Z.H. Zhou, Y.M. Min, X.X. Liu, J.Q. Ding, J.H. Guo, F.R. Hu, and L.Z. Liu, Regulation of oxygen vacancy types on SnO2 (110) surface by external strain, AIP Adv. 6, 055102-1–7 (2016),
https://doi.org/10.1063/1.4948748
[12] K. Vijayarangamuthu and S. Rath, Nanostructured tin oxide as a surface-enhanced Raman scattering substrate for the detection of nitroaromatic compounds, Int. J. Appl. Ceram. Technol. 12, 790–794 (2015),
https://doi.org/10.1111/ijac.12266
[13] A. Shanmugasundaram, P. Basak, L. Satyanarayana, and S.V. Manorama, Hierarchical SnO/SnO2 nanocomposites: formation of in-situ p–n junctions and enhanced H2 sensing, Sens. Actuators B Chem. 185, 265–273 (2013),
https://doi.org/10.1016/j.snb.2013.04.097
[14] Z. Wang, P.K. Nayak, A. Albar, N. Wei, U. Schwingenschlögl, and H.N. Alshareef, Transparent SnO–SnO2 p–n junction diodes for electronic and sensing applications, Adv. Mater. Interfaces 2(18), 1500374-1–7 (2015),
https://doi.org/10.1002/admi.201500374
[15] C.M. Campo, J.E. Rodríguez, and A.E. Ramírez, Thermal behaviour of romarchite phase SnO in different atmospheres: a hypothesis about the phase transformation, Heliyon 2, e00112-1–13 (2016),
https://doi.org/10.1016/j.heliyon.2016.e00112
[16] K.S. Shamala, L.C.S. Murthy, and K. Narasimha Rao, Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods, Bull. Mater. Sci. 27(3), 295–301 (2004),
https://doi.org/10.1007/BF02708520
[17] S.H. Park, Y.C. Son, W.S. Willis, S.L. Suib, and K.E. Creasy, Tin oxide films made by physical vapor deposition-thermal oxidation and spray pyrolysis, Chem. Mater. 10(9), 2389–2398 (1998),
https://doi.org/10.1021/cm970672x
[18] M. Marikkannan, V. Vishnukanthan, A. Vijayshankar, J. Mayandi, and J.M. Pearce, A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications, AIP Adv. 5, 027122-1–8 (2015),
https://doi.org/10.1063/1.4909542
[19] V.K. Ksenevich, D.V. Adamchuk, V.B. Odzhaev, and P. Zhukowski, Fabrication and characterization of transparent tin dioxide films with variable stoichiometric composition, Acta Phys. Pol. A 128, 861–863 (2015),
https://doi.org/10.12693/APhysPolA.128.861
[20] D.V. Adamchuck and V.K. Ksenevich, Control of electrical and optical parameters of humidity sensors active elements based on tin oxides films with variable composition, Dev. Meth. Meas. 10(2), 138–150 (2019) [in Russian],
https://doi.org/10.21122/2220-9506-2019-10-2-138-150
[21] P. Boroojerdian, Structural and optical study of SnO nanoparticles synthesized using microwave-assisted hydrothermal route, Int. J. Nanosci. Nanotechnol. 9(2), 95–100 (2013),
[PDF]
[22] D.V. Adamchuck, V.K. Ksenevich, N.I. Gorbachuk, and V.I. Shimanskij, Impedance spectroscopy of polycrystalline tin dioxide films, Dev. Meth. Meas. 7(3), 312–321 (2016) [in Russian],
https://doi.org/10.21122/2220-9506-2016-7-3-312-321
[23] M. Ivanovskaya, E. Ovodok, and V. Golovanov, The nature of paramagnetic defects in tin (IV) oxide, Chem. Phys. 457, 98–105 (2015),
https://doi.org/10.1016/j.chemphys.2015.05.023
[24] D.M. Murphy, in: Metal Oxide Catalysis, Ch. 1, eds. S.D. Jackson and J.S.J. Hargreaves (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008) pp. 1–50,
https://www.wiley.com/en-us/Metal+Oxide+Catalysis%2C+2+Volume+Set-p-9783527626120
[25] V. Jain and G. Lehmann, Electron paramagnetic resonance of Mn2+ in orthorhombic and higher symmetry crystals, Phys. Status Solidi B 159, 495 (1990),
https://doi.org/10.1002/pssb.2221590202
[26] F. Murzakhanov, G. Mamin, A. Voloshin, E. Klimashina, V. Putlyaev, V. Doronin, S. Bakhteev, R. Yusupov, M. Gafurov, and S. Orlinskii, Conventional electron paramagnetic resonance of Mn2+ in synthetic hydroxyapatite at different concentrations of the doped manganese, IOP Conf. Ser. Earth Environ. Sci. 155, 012006 (2018),
https://doi.org/10.1088/1755-1315/155/1/012006
[27] D.J. Gardiner, Practical Raman Spectroscopy (Springer-Verlag, 1989),
https://doi.org/10.1007/978-3-642-74040-4
[28] M.N. Rumyantseva, A.M. Gaskov, N. Rosman, T. Pagnier, and J.R. Morante, Raman surface vibration modes in nanocrystalline SnO2: Correlation with gas sensor performances, Chem. Mater. 17, 893–901 (2005),
https://doi.org/10.1021/cm0490470
[29] E.L. Peltzer y Blanka, A. Svane, N.E. Christensen, C.O. Rodriguez, O.M. Cappannini, and M.S. Moreno, Calculated static and dynamic properties of β-Sn and Sn-O compounds, Phys. Rev. B 48, 15712–15718 (1993),
https://doi.org/10.1103/PhysRevB.48.15712
[30] A. Diéguez, A. Romano-Rodriguez, A. Vilà, and J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles, J. Appl. Phys. 90, 1550–1557 (2001),
https://doi.org/10.1063/1.1385573
[31] D. Tuschel, Exploring resonance Raman spectroscopy, Spectroscopy 33(12), 12–19 (2018),
http://www.spectroscopyonline.com/exploring-resonance-raman-spectroscopy
[32] M. Alaf, M. Guler, D. Gultekin, and H. Akbulut, Effects of substrate temperature on structural properties of tin oxide films produced by plasma oxidation after thermal evaporation, Acta Phys. Pol. A 123, 326–329 (2013),
https://doi.org/10.12693/APhysPolA.123.326