Dzmitry V. Adamchuk
, Nikolai A. Poklonski
References
/
Nuorodos
[1] H.L. Hartnagel, A.L. Dawar, A.K. Jain, and C. Jagadish,
Semiconducting
Transparent Thin Films (Institute of Physics Publishing,
Bristol, UK, 1995),
https://www.amazon.co.uk/Semiconducting-Transparent-Films-Hartnagel-1995-01-01/dp/B01K17LV9U/
[2] M. Batzill and U. Diebold, The surface and materials science
of tin oxide, Prog. Surf. Sci.
79, 47–154 (2005),
https://doi.org/10.1016/j.progsurf.2005.09.002
[3] J. Lian, Y. Yang, W. Wang, S.G. Parker, V.R. Gonçales, R.D.
Tilley, and J. Justin, Amorphous silicon on indium tin oxide: a
transparent electrode for simultaneous light activated
electrochemistry and optical microscopy, Chem. Commun.
55,
123–126 (2018),
https://doi.org/10.1039/C8CC07889K
[4] B. Eifert, M. Becker, C.T. Reindl, M. Giar, L. Zheng, A.
Polity, Y. He, C. Heiliger, and P.J. Klar, Raman studies of the
intermediate tin-oxide phase, Phys. Rev. Mater.
1,
014602-1–6 (2017),
https://doi.org/10.1103/PhysRevMaterials.1.014602
[5] I.M. Tiginyanu, O. Lupan, V.V. Ursaki, L. Chow, and M.
Enachi, in:
Comprehensive Semiconductor Science and
Technology, Vol. 3, eds. P. Bhattacharya, R. Fornari, H.
Kamimura (Elsevier Science, Amsterdam, 2011) pp. 396–479,
https://doi.org/10.1016/B978-0-44-453153-7.00105-X
[6] C. Kílíç and A. Zunger, Origins of coexistence of
conductivity and transparency in SnO
2, Phys. Rev.
Lett.
88, 09550-1–4 (2002),
https://doi.org/10.1103/PhysRevLett.88.095501
[7] K.G. Godinho, A. Walsh, and G.W. Watson, Energetic and
electronic structure analysis of intrinsic defects in SnO
2,
J. Phys. Chem. C
113, 439–448 (2009),
https://doi.org/10.1021/jp807753t
[8] L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, and P.K. Chu,
Identification of oxygen vacancy types from Raman spectra of SnO
2
nanocrystals, J. Raman Spectrosc.
43, 1423–1426 (2012),
https://doi.org/10.1002/jrs.4078
[9] M. Epifani, J.D. Prades, E. Comini, E. Pellicer, M. Avella,
P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, and
J.R. Morante, The role of surface oxygen vacancies in the NO
2
sensing properties of SnO
2 nanocrystals, J. Phys.
Chem. C
112, 19540–19546 (2008),
https://doi.org/10.1021/jp804916g
[10] Y. Yang, Y. Wang, and S. Yin, Oxygen vacancies confined in
SnO
2 nanoparticles for desirable electronic structure
and enhanced visible light photocatalytic activity, Appl. Surf.
Sci.
420, 399–406 (2017),
https://doi.org/10.1016/j.apsusc.2017.05.176
[11] Z.H. Zhou, Y.M. Min, X.X. Liu, J.Q. Ding, J.H. Guo, F.R.
Hu, and L.Z. Liu, Regulation of oxygen vacancy types on SnO
2
(110) surface by external strain, AIP Adv.
6, 055102-1–7
(2016),
https://doi.org/10.1063/1.4948748
[12] K. Vijayarangamuthu and S. Rath, Nanostructured tin oxide
as a surface-enhanced Raman scattering substrate for the
detection of nitroaromatic compounds, Int. J. Appl. Ceram.
Technol.
12, 790–794 (2015),
https://doi.org/10.1111/ijac.12266
[13] A. Shanmugasundaram, P. Basak, L. Satyanarayana, and S.V.
Manorama, Hierarchical SnO/SnO
2 nanocomposites:
formation of
in-situ p–n junctions and enhanced
H
2 sensing, Sens. Actuators B Chem.
185,
265–273 (2013),
https://doi.org/10.1016/j.snb.2013.04.097
[14] Z. Wang, P.K. Nayak, A. Albar, N. Wei, U. Schwingenschlögl,
and H.N. Alshareef, Transparent SnO–SnO
2 p–n junction
diodes for electronic and sensing applications, Adv. Mater.
Interfaces
2(18), 1500374-1–7 (2015),
https://doi.org/10.1002/admi.201500374
[15] C.M. Campo, J.E. Rodríguez, and A.E. Ramírez, Thermal
behaviour of romarchite phase SnO in different atmospheres: a
hypothesis about the phase transformation, Heliyon
2,
e00112-1–13 (2016),
https://doi.org/10.1016/j.heliyon.2016.e00112
[16] K.S. Shamala, L.C.S. Murthy, and K. Narasimha Rao, Studies
on tin oxide films prepared by electron beam evaporation and
spray pyrolysis methods, Bull. Mater. Sci.
27(3),
295–301 (2004),
https://doi.org/10.1007/BF02708520
[17] S.H. Park, Y.C. Son, W.S. Willis, S.L. Suib, and K.E.
Creasy, Tin oxide films made by physical vapor
deposition-thermal oxidation and spray pyrolysis, Chem. Mater.
10(9),
2389–2398 (1998),
https://doi.org/10.1021/cm970672x
[18] M. Marikkannan, V. Vishnukanthan, A. Vijayshankar, J.
Mayandi, and J.M. Pearce, A novel synthesis of tin oxide thin
films by the sol-gel process for optoelectronic applications,
AIP Adv.
5, 027122-1–8 (2015),
https://doi.org/10.1063/1.4909542
[19] V.K. Ksenevich, D.V. Adamchuk, V.B. Odzhaev, and P.
Zhukowski, Fabrication and characterization of transparent tin
dioxide films with variable stoichiometric composition, Acta
Phys. Pol. A
128, 861–863 (2015),
https://doi.org/10.12693/APhysPolA.128.861
[20] D.V. Adamchuck and V.K. Ksenevich, Control of electrical
and optical parameters of humidity sensors active elements based
on tin oxides films with variable composition, Dev. Meth. Meas.
10(2), 138–150 (2019) [in Russian],
https://doi.org/10.21122/2220-9506-2019-10-2-138-150
[21] P. Boroojerdian, Structural and optical study of SnO
nanoparticles synthesized using microwave-assisted hydrothermal
route, Int. J. Nanosci. Nanotechnol.
9(2), 95–100
(2013),
[PDF]
[22] D.V. Adamchuck, V.K. Ksenevich, N.I. Gorbachuk, and V.I.
Shimanskij, Impedance spectroscopy of polycrystalline tin
dioxide films, Dev. Meth. Meas.
7(3), 312–321 (2016) [in
Russian],
https://doi.org/10.21122/2220-9506-2016-7-3-312-321
[23] M. Ivanovskaya, E. Ovodok, and V. Golovanov, The nature of
paramagnetic defects in tin (IV) oxide, Chem. Phys.
457,
98–105 (2015),
https://doi.org/10.1016/j.chemphys.2015.05.023
[24] D.M. Murphy, in:
Metal Oxide Catalysis, Ch. 1, eds.
S.D. Jackson and J.S.J. Hargreaves (Wiley-VCH Verlag GmbH &
Co. KGaA, Weinheim, 2008) pp. 1–50,
https://www.wiley.com/en-us/Metal+Oxide+Catalysis%2C+2+Volume+Set-p-9783527626120
[25] V. Jain and G. Lehmann, Electron paramagnetic resonance of
Mn
2+ in orthorhombic and higher symmetry crystals,
Phys. Status Solidi B
159, 495 (1990),
https://doi.org/10.1002/pssb.2221590202
[26] F. Murzakhanov, G. Mamin, A. Voloshin, E. Klimashina, V.
Putlyaev, V. Doronin, S. Bakhteev, R. Yusupov, M. Gafurov, and
S. Orlinskii, Conventional electron paramagnetic resonance of Mn
2+
in synthetic hydroxyapatite at different concentrations of the
doped manganese, IOP Conf. Ser. Earth Environ. Sci.
155,
012006 (2018),
https://doi.org/10.1088/1755-1315/155/1/012006
[27] D.J. Gardiner,
Practical Raman Spectroscopy
(Springer-Verlag, 1989),
https://doi.org/10.1007/978-3-642-74040-4
[28] M.N. Rumyantseva, A.M. Gaskov, N. Rosman, T. Pagnier, and
J.R. Morante, Raman surface vibration modes in nanocrystalline
SnO
2: Correlation with gas sensor performances, Chem.
Mater.
17, 893–901 (2005),
https://doi.org/10.1021/cm0490470
[29] E.L. Peltzer y Blanka, A. Svane, N.E. Christensen, C.O.
Rodriguez, O.M. Cappannini, and M.S. Moreno, Calculated static
and dynamic properties of β-Sn and Sn-O compounds, Phys. Rev. B
48, 15712–15718 (1993),
https://doi.org/10.1103/PhysRevB.48.15712
[30] A. Diéguez, A. Romano-Rodriguez, A. Vilà, and J.R. Morante,
The complete Raman spectrum of nanometric SnO
2
particles, J. Appl. Phys.
90, 1550–1557 (2001),
https://doi.org/10.1063/1.1385573
[31] D. Tuschel, Exploring resonance Raman spectroscopy,
Spectroscopy
33(12), 12–19 (2018),
http://www.spectroscopyonline.com/exploring-resonance-raman-spectroscopy
[32] M. Alaf, M. Guler, D. Gultekin, and H. Akbulut, Effects of
substrate temperature on structural properties of tin oxide
films produced by plasma oxidation after thermal evaporation,
Acta Phys. Pol. A
123, 326–329 (2013),
https://doi.org/10.12693/APhysPolA.123.326