[1] Organic Electronics, Nat. Mater., Focus Issue: Vol.
12,
No. 7 (2013),
https://www.nature.com/collections/lxgzgbqbcg
[2] H. Koezuka, A. Tsumura, and T. Ando, Field-effect transistor
with polythiophene thin film, Synth. Met.
18, 699
(1987),
https://doi.org/10.1016/0379-6779(87)90964-7
[3] I.D.W. Samuel and G.A. Turnbull, Organic semiconductor
lasers, Chem. Rev.
107, 1272 (2007),
https://doi.org/10.1021/cr050152i
[4] J. Kniepert, M. Schubert, J.C. Blakesley, and D. Neher,
Photogeneration and recombination in P3HT/PCBM solar cells
probed by time-delayed collection field experiments, J. Phys.
Chem. Lett. 2, 700–705 (2011),
https://doi.org/10.1021/jz200155b
[5] D.H.K. Murthy, A. Melianas, Z. Tang, G. Juška, K. Arlauskas,
F. Zhang, L.D.A. Siebbeles, O. Inganäs, and T.J. Savenije,
Origin of reduced bimolecular recombination in blends of
conjugated polymers and fullerenes, Adv. Func. Mat.
23,
4262 (2013),
https://doi.org/10.1002/adfm.201203852
[6] C. Deibel and V. Dyakonov, Polymer–fullerene bulk
heterojunction solar cells, Rep. Prog. Phys.
73, 096401
(2010),
https://doi.org/10.1088/0034-4885/73/9/096401
[7] D. Amarasinghe Vithanage, A. Devižis, V. Abramavičius, Y.
Infahsaeng, D. Abramavičius, R.C.I. MacKenzie, P.E. Keivanidis,
A. Yartsev, D. Hertel, J. Nelson, V. Sundström, and V. Gulbinas,
Visualizing charge separation in bulk heterojunction organic
solar cells, Nat. Commun.
4, 2334 (2013),
https://doi.org/10.1038/ncomms3334
[8] A. Devižis, A. Serbenta, K. Meerholz, D. Hertel, and V.
Gulbinas, Ultrafast dynamics of carrier mobility in a conjugated
polymer probed at molecular and microscopic length scales, Phys.
Rev. Lett.
103, 027404 (2009),
https://doi.org/10.1103/PhysRevLett.103.027404
[9] D. Moses, J. Wang, G. Yu, and A.J. Heeger,
Temperature-independent photoconductivity in thin films of
semiconducting polymers: photocarrier sweep-out prior to deep
trapping, Phys. Rev. Lett.
80, 2685 (1998),
https://doi.org/10.1103/PhysRevLett.80.2685
[10] N. Stutzmann, R.H. Friend, and H. Sirringhaus,
Self-aligned, vertical-channel, polymer field-effect
transistors, Science
299, 1881 (2003),
https://doi.org/10.1126/science.1081279
[11] A. Melianas, F. Etzold, T.J. Savenije, F. Laquai, O.
Inganäs, and M. Kemerink, Photo-generated carriers lose energy
during extraction from polymer-fullerene solar cells, Nat.
Commun.
6, 8778 (2015),
https://doi.org/10.1038/ncomms9778
[12] A. Melianas, V. Pranculis, A. Devižis, V. Gulbinas, O.
Inganäs, and M. Kemerink, Dispersion‐dominated photocurrent in
polymer: fullerene solar cells, Adv. Func. Mat.
24, 4507
(2014),
https://doi.org/10.1002/adfm.201400404
[13] A. Einstein, Über die von der molekularkinetischen Theorie
der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten
suspendierten Teilchen, Ann. Phys.
322, 549–560 (1905)
[in German],
https://doi.org/10.1002/andp.200590005
[14] M. von Smoluchowski, Zur kinetischen Theorie der Brownschen
Molekularbewegung und der Suspensionen, Ann. Phys.
326,
756–780 (1906) [in German],
https://doi.org/10.1002/andp.19063261405
[15] Y. Roichman and N. Tessler, Generalized Einstein relation
for disordered semiconductors – implications for device
performance, Appl. Phys. Lett.
80, 1948 (2002),
https://doi.org/10.1063/1.1461419
[16] G.A.H. Wetzelaer, L.J. Koster, and P.W. Blom, Validity of
the Einstein relation in disordered organic semiconductors,
Phys. Rev. Lett.
107, 066605 (2011),
https://doi.org/10.1103/PhysRevLett.107.066605
[17] P.W. Anderson, Absence of diffusion in certain random
lattices, Phys. Rev.
109, 1492 (1958),
https://doi.org/10.1103/PhysRev.109.1492
[18] J. Frenkel, On pre-breakdown phenomena in insulators and
electronic semi-conductors, Phys. Rev.
54, 647–648
(1938),
https://doi.org/10.1103/PhysRev.54.647
[19] P. Rottländer, M. Hehn, and A. Schuhl, Determining the
interfacial barrier height and its relation to tunnel
magnetoresistance, Phys. Rev. B
65(5), 054422 (2002),
https://doi.org/10.1103/PhysRevB.65.054422
[20] H. Bässler, Charge transport in disordered organic
photoconductors – A Monte Carlo simulation study, Phys. Status
Solidi B
175, 15 (1993),
https://doi.org/10.1002/pssb.2221750102
[21] P.M. Borsenberger, E.H. Magin, and J.J. Fitzgerald, Hole
transport in 1,1-bis((di-4-tolylamino)phenyl) cyclohexane (TAPC)
doped poly(styrene)s, J. Phys. Chem.
97, 8250 (1993),
https://doi.org/10.1021/j100133a022
[22] W.F. Laquai, G. Wegner, C. Im, H. Bässler, and S. Heun,
Comparative study of hole transport in polyspirobifluorene
polymers measured by the charge-generation layer time-of-flight
technique, J. Appl. Phys.
99, 023712 (2006),
https://doi.org/10.1063/1.2165413
[23] A. Miller, Transient grating studies of carrier diffusion
and mobility in semiconductors, in:
Nonlinear Optics in
Semiconductors II, Semiconductors and Semimetals Ser.,
Vol. 59 (Academic Press, 1998) pp. 287–312,
https://doi.org/10.1016/S0080-8784(08)62734-9
[24] D. Moses, M. Sinclair, and A.J. Heeger, Carrier
photogeneration and mobility in polydiacetylene: Fast transient
photoconductivity, Phys. Rev. Lett.
58, 2710 (1987),
https://doi.org/10.1103/PhysRevLett.58.2710
[25] O. Esenturk, J.S. Melinger, and E.J. Heilweil, Terahertz
mobility measurements on poly-3-hexylthiophene films: Device
comparison, molecular weight, and film processing effects, J.
Appl. Phys.
103, 023102 (2008),
https://doi.org/10.1063/1.2828028
[26] P. Parkinson, J. Lloyd-Hughes, M.B. Johnston, and L.M.
Herz, Efficient generation of charges via below-gap
photoexcitation of polymer-fullerene blend films investigated by
terahertz spectroscopy, Phys. Rev. B
78, 115321 (2008),
https://doi.org/10.1103/PhysRevB.78.115321
[27] V. Gulbinas, R. Kananavičius, L. Valkunas, and H. Bässler,
Dynamic Stark effect as a probe of the evolution of geminate
electron-hole pairs in a conjugated polymer, Phys. Rev. B
66,
233203 (2002),
https://doi.org/10.1103/PhysRevB.66.233203
[28] J. Cabanillas-Gonzalez, T. Virgili, A. Gambetta, G.
Lanzani, T.D. Anthopoulos, and D.M. de Leeuw, Photoinduced
transient stark spectroscopy in organic semiconductors: A method
for charge mobility determination in the picosecond regime,
Phys. Rev. Lett.
96, 106601 (2006),
https://doi.org/10.1103/PhysRevLett.96.106601
[29] C.H. Lee, J.Y. Park, Y.W. Park, D. Moses, A.J. Heeger, T.
Noguchi, and T. Ohnishi, Polarization dependence of the
photoconductivity of stretch-oriented poly(p-phenylenevinylene)
films, Synth. Met.
101, 444–445 (1999),
https://doi.org/10.1016/S0379-6779(98)01139-4
[30] D. Moses, H. Okumoto, C.H. Lee, A.J. Heeger, T. Ohnishi,
and T. Noguchi, Mechanism of carrier generation in
poly(phenylene vinylene): Transient photoconductivity and
photoluminescence at high electric fields, Phys. Rev. B
54,
4748–4754 (1996),
https://doi.org/10.1103/PhysRevB.54.4748
[31] C.A. Schmuttenmaer, Exploring dynamics in the far-infrared
with terahertz spectroscopy, Chem. Rev.
104, 1759–1779
(2004),
https://doi.org/10.1021/cr020685g
[32] M.C. Beard, G.M. Turner, and C.A. Schmuttenmaer,
Subpicosecond carrier dynamics in low-temperature grown GaAs as
measured by time-resolved terahertz spectroscopy, J. Appl. Phys.
90, 5915 (2001),
https://doi.org/10.1063/1.1416140
[33] E. Hendry, M. Koeberg, J.M. Schins, H.K. Nienhuys, V.
Sundström, L.D.A. Siebbeles, and M. Bonn, Interchain effects in
the ultrafast photophysics of a semiconducting polymer: THz
time-domain spectroscopy of thin films and isolated chains in
solution, Phys. Rev. B
71, 5201 (2005),
https://doi.org/10.1103/PhysRevB.71.125201
[34] A.E. Jailaubekov, A.P. Willard, J.R. Tritsch, W.-L. Chan,
N. Sai, R. Gearba, L.G. Kaake, K.J. Williams, K. Leung, P.J.
Rossky, and X-Y. Zhu, Hot charge-transfer excitons set the time
limit for charge separation at donor/acceptor interfaces in
organic photovoltaics, Nature Mater.
12, 66 (2013),
https://doi.org/10.1038/nmat3500
[35] X. Wu, H. Park, X.-Y. Zhu, Probing transient electric
fields in photoexcited organic semiconductor thin films and
interfaces by time-resolved second harmonic generation, J. Phys.
Chem. C
118, 10670 (2014),
https://doi.org/10.1021/jp502381j
[36] D. Taguchi, M. Weis, T. Manaka, and M. Iwamoto, Probing of
carrier behavior in organic electroluminescent diode using
electric field induced optical second-harmonic generation
measurement, Appl. Phys. Lett.
95, 263310 (2009),
https://doi.org/10.1063/1.3277155
[37] S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J.
Clark, T.S. van der Poll, G.C. Bazan, and R.H. Friend, Ultrafast
long-range charge separation in organic semiconductor
photovoltaic diodes, Science
343, 512–516 (2014),
https://doi.org/10.1126/science.1246249
[38] E.A. Silinsh and V. Capek,
Organic Molecular Crystals:
Interaction, Localization and Transport Phenomena (AIP
Press, New York, 1994)
[39] N.E. Geacintov and M.J. Pope, Generation of charge carriers
in anthracene with polarized light, Chem. Phys.
47, 1194
(1965),
https://doi.org/10.1063/1.1712044
[40] L. Onsager, Initial recombination of ions, Phys. Rev.
54,
554 (1938),
https://doi.org/10.1103/PhysRev.54.554
[41] J. Noolandi and K.M. Hong, Theory of photogeneration and
fluorescence quenching, J. Chem. Phys.
70, 3230 (1979),
https://doi.org/10.1063/1.437912
[42] Z. Popovic, A study of carrier generation mechanism in
x‐metal‐free phthalocyanine, J. Chem. Phys.
78, 1552
(1983),
https://doi.org/10.1063/1.444846
[43] T. Saito, W. Sisk, T. Kobayashi, S. Suzuki, and T.
Iwayanagi, Photocarrier generation processes of phthalocyanines
studied by photocurrent and electroabsorption measurements, J.
Phys. Chem.
97, 8026 (1993),
https://doi.org/10.1021/j100132a036
[44] Z.D. Popovic, M.I. Khan, S.J. Atherton, A.-M. Hor, and J.L.
Goodman, Study of carrier generation in titanyl phthalocyanine
(TiOPc) by electric-field-induced quenching of integrated and
time-resolved fluorescence, J. Phys. Chem. B
102,
657–663 (1998),
https://doi.org/10.1021/jp973188q
[45] V. Gulbinas, R. Jakubenas, S. Pakalnis, and A. Undzenas,
Dynamics of charge carrier precursor photogeneration in titanyl
phthalocyanine, J. Chem. Phys.
107, 4927–4933 (1997),
https://doi.org/10.1063/1.474856
[46] L. Robins, J. Orenstein, and R. Superfine, Observation of
the triplet excited state of a conjugated-polymer crystal, Phys.
Rev. Lett.
56, 1850 (1986),
https://doi.org/10.1103/PhysRevLett.56.1850
[47] C.H. Lee, G. Yu, D. Moses, and A.J. Heeger, Picosecond
transient photoconductivity in poly(p-phenylenevinylene), Phys.
Rev. B
49, 2396–2407 (1994),
https://doi.org/10.1103/PhysRevB.49.2396
[48]
Primary Photoexcitations in Conjugated Polymers:
Molecular Exciton Versus Semiconductor Band Model, ed.
N.S. Sariciftci (World Scientific, Singapore, 1998),
https://doi.org/10.1142/3299
[49] M. Yan, L.J. Rothberg, F. Papadimitrakopoulos, M.E. Galvin,
and T.M. Miller, Spatially indirect excitons as primary
photoexcitations in conjugated polymers, Phys. Rev. Lett.
72,
1104 (1994),
https://doi.org/10.1103/PhysRevLett.72.1104
[50] U. Scherf, A. Bohnen, and K. Mullen, Polyarylenes and
poly(arylenevinylene)s, 9. The oxidized states of a
(1,4‐phenylene) ladder polymer, Makromol. Chem.
193,
1127 (1992),
https://doi.org/10.1002/macp.1992.021930511
[51] E.L. Frankevich, A.A. Lymarev, I. Sokolik, F.E. Karasz, S.
Blumstengel, R.H. Baughman, and H.H. Hörhold, Polaron-pair
generation in poly(phenylene vinylenes), Phys. Rev. B
46,
9320 (1992),
https://doi.org/10.1103/PhysRevB.46.9320
[52] W. Graupner, G. Cerullo, G. Lanzani, M. Nisoli, E.W. List,
G. Leising, and S. De Silvestri, Direct observation of ultrafast
field-induced charge generation in ladder-type
poly(para-phenylene), Phys. Rev. Lett.
81, 3259 (1998),
https://doi.org/10.1103/PhysRevLett.81.3259
[53] Y. Zaushitsyn, V. Gulbinas, D. Zigmantas, F. Zhang, O.
Inganäs, V. Sundström, and A. Yartsev, Ultrafast light-induced
charge pair formation dynamics in
poly[3-(2’-methoxy-5’-octylphenyl) thiophene], Phys. Rev. B
70,
075202 (2004),
https://doi.org/10.1103/PhysRevB.70.075202
[54] V. Gulbinas, Y. Zaushitsyn, V. Sundström, D. Hertel, H.
Bässler, and A. Yartsev, Dynamics of the electric field-assisted
charge carrier photogeneration in ladder-type
poly(para-phenylene) at a low excitation intensity, Phys. Rev.
Lett.
89, 107401 (2002),
https://doi.org/10.1103/PhysRevLett.89.107401
[55] I.G. Scheblykin, A. Yartsev, T. Pullerits, V. Gulbinas, and
V. Sundström, Excited state and charge photogeneration dynamics
in conjugated polymers, J. Phys. Chem. B
111, 6303–6321
(2007),
https://doi.org/10.1021/jp068864f
[56] V. Gulbinas, R. Kananavičius, L. Valkūnas, H. Bässler, and
V. Sundström, Charge carrier photogeneration in conjugated
polymer, Mater. Sci. Forum
384–385, 279–286, (2002),
https://doi.org/10.4028/www.scientific.net/MSF.384-385.279
[57] M. Weiter, H.B. Bässler, V. Gulbinas, and U. Scherf,
Transient photoconductivity in a film of ladder-type
poly-phenylene: Failure of the Onsager approach, Chem. Phys.
Lett.
379, 177–182 (2003),
https://doi.org/10.1016/j.cplett.2003.08.043
[58] V. Gulbinas, Y. Zaushitsyn, H. Bässler, A. Yartsev, and V.
Sundström, Dynamics of charge pair generation in ladder type
poly(para-phenylene) at different excitation photon energies,
Phys. Rev. B
70, 035215 (2004),
https://doi.org/10.1103/PhysRevB.70.035215
[59] W. Graupner, S. Eder, M. Mauri, G. Leising, and U. Scherf,
Excited states in PPP-type ladderpolymers probed by photoinduced
absorption, Synth. Met.
69, 419 (1995),
https://doi.org/10.1016/0379-6779(94)02511-V
[60] W. Graupner, T. Jost, K. Petritsch, S. Tasch, F. Meghdadi,
G. Leising, M. Graupner, and A. Hermetter, Optoelectronic
properties of polyphenyls, Annu. Tech. Conf. Soc. Plast. Eng.
43,
1339–1343 (1997)
[61] V. Gulbinas, D. Hertel, A. Yartsev, and V. Sundström,
Charge carrier photogeneration and recombination in ladder-type
poly(paraphenylene): Interplay between impurities and external
electric field, Phys. Rev. B
76, 235203 (2007),
https://doi.org/10.1002/masy.200450802
[62] V. Arkhipov, H. Bässler, E. Emelyanova, D. Hertel, V.
Gulbinas, and L. Rothberg, Exciton dissociations in conjugated
polymers, Macromol. Symp.
212, 13–24 (2004),
https://doi.org/10.1002/masy.200450802
[63] J. Hou, O. Inganas, R.H. Friend, and F. Gao, Organic solar
cells based on non-fullerene acceptors, Nat. Mater.
17,
119119 (2018),
https://doi.org/10.1038/nmat5063
[64] S. Gunes, H. Neugebauer, and N.S. Sariciftci, Conjugated
polymer-based organic solar cells, Chem. Rev.
107,
1324–1338 (2007),
https://doi.org/10.1021/cr050149z
[65] H. Bässler and A. Köhler, ‘Hot or cold’: How do charge
transfer states at the donor–acceptor interface of an organic
solar dissociate?, Phys. Chem. Chem. Phys.
17, 28451
(2015),
https://doi.org/10.1039/c5cp04110d
[66] C.S. Ponseca Jr., P. Chábera, J. Uhlig, P. Persson, and V.
Sundström, Ultrafast electron dynamics in solar energy
conversion, Chem. Rev.
117, 10940−11024 (2017),
https://doi.org/10.1021/acs.chemrev.6b00807
[67] C.J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S.
Luzzati, J.C. Hummelen, and S. Sariciftci, Tracing photoinduced
electron transfer process in conjugated polymer/fullerene bulk
heterojunctions in real time, Chem. Phys. Lett.
340, 232
(2001),
https://doi.org/10.1016/S0009-2614(01)00431-6
[68] F.L. Zhang, K.G. Jespersen, C. Björström, M. Svensson, M.R.
Andersson, V. Sundström, K. Magnusson, E. Moons, A. Yartsev, and
O. Inganas, Copolymer/fullerene blends, Adv. Funct. Mater.
16,
667 (2006),
https://doi.org/10.1002/adfm.200500339
[69] R. Hidayat, Y. Nishihara, A. Fujii, M. Ozaki, K. Yoshino,
and E. Frankevich, Time-resolved optical and electrical study of
second-order processes responsible for the formation of free
polarons in conjugated polymers, Phys. Rev. B
66, 075214
(2002),
https://doi.org/10.1103/PhysRevB.66.075214
[70] S.D. Dimitrov, A.A. Bakulin, C.B. Nielsen, B.C. Schroeder,
J.P. Du, H. Bronstein, I. McCulloch, R.H. Friend, and J.R.
Durrant, On the energetic dependence of charge separation in
low-band-gap polymer/fullerene blends, J. Am. Chem. Soc.
134,
18189–18192 (2012),
https://doi.org/10.1021/ja308177d
[71] G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J.
Egelhaaf, D. Brida, G. Cerullo, and G. Lanzani, Hot exciton
dissociation in polymer solar cells, Nat. Mater.
12,
29–33 (2013),
https://doi.org/10.1038/nmat3502
[72] K. Chen, A.J. Barker, M.E. Reish, K.C. Gordon, and J.M.
Hodgkiss, Broadband ultrafast photoluminescence spectroscopy
resolves charge photogeneration via delocalized hot excitons in
polymer-fullerene photovoltaic blends, J. Am. Chem. Soc.
135,
18502–18512 (2013),
https://doi.org/10.1021/ja408235h
[73] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W.M.
Zhang, M. Heeney, I. McCulloch, J. Nelson, D.D.C. Bradley, and
J.R. Durrant, Charge carrier formation in
polythiophene/fullerene blend films studied by transient
absorption spectroscopy, J. Am. Chem. Soc.
130,
3030–3042 (2008),
https://doi.org/10.1021/ja076568q
[74] V. Abramavičius, D. Amarasinghe Vithanage, A. Devižis, Y.
Infahsaeng, A. Bruno, S. Foster, P.E. Keivanidis, D.
Abramavičius, J. Nelson, A. Yartsev, V. Sundström, and V.
Gulbinas, Carrier motion in as-spun and annealed P3HT:PCBM
blends revealed by ultrafast optical electric field probing and
Monte Carlo simulations, Phys. Chem. Chem. Phys.
16,
2686–2692 (2014),
https://doi.org/10.1039/C3CP54605E
[75] K. Vandewal, S. Albrecht, E.T. Hoke, K.R. Graham, J.
Widmer, J.D. Douglas, M. Schubert, W.R. Mateker, J.T. Bloking,
G.F. Burkhard, et al., Efficient charge generation by relaxed
charge-transfer states at organic interfaces, Nat. Mater.
13,
63–68 (2014),
https://doi.org/10.1038/nmat3807
[76] A. Armin, M. Velusamy, P. Wolfer, Y.L. Zhang, P.L. Burn, P.
Meredith, and A. Pivrikas, Quantum efficiency of organic solar
cells: Electro-optical cavity considerations, ACS Photonics
1,
173–181 (2014),
https://doi.org/10.1021/ph400044k
[77] T.G.J. van der Hofstad, D.D. Nuzzo, M. van dez Berg, R.A.J.
Janssen, and S.C.J. Meskers, Influence of photon excess energy
on charge carrier dynamics in a polymer-fullerene solar cell,
Adv. Energy. Mater.
2, 1095–1099 (2012),
https://doi.org/10.1002/aenm.201200030
[78] M.A. Loi, S. Toffanin, M. Muccini, M. Forster, U. Scherf,
and M. Scharber, Charge transfer excitons in bulk
heterojunctions of a polyfluorene copolymer and a fullerene
derivative, Adv. Func. Mater.
17, 2111–2116 (2007),
https://doi.org/10.1002/adfm.200601098
[79] B. Bernardo, D. Cheyns, B. Verreet, R.D. Schaller, B.P.
Rand, and N.C. Giebink, Delocalization and dielectric screening
of charge transfer states in organic photovoltaic cells, Nat.
Commun.
5, 3245 (2014),
https://doi.org/10.1038/ncomms4245
[80] F.-J. Kahle, C. Saller, S. Olthof, C. Li, J. Lebert, S.
Weiß, E.M. Herzig, S. Hüttner, K. Meerholz, P. Strohriegl, and
A. Köhler, Does electron delocalization influence charge
separation at donor-acceptor interfaces in organic photovoltaic
cells?, J. Phys. Chem. C
122, 21792–21802 (2018),
https://doi.org/10.1021/acs.jpcc.8b06429
[81] V.I. Arkhipov, P. Heremans, and H. Bässler, Why is exciton
dissociation so efficient at the interface between a conjugated
polymer and an electron acceptor?, Appl. Phys. Lett.
82,
4605–4607 (2003),
https://doi.org/10.1063/1.1586456
[82] T.M. Clarke and J.R. Durrant, Charge photogeneration in
organic solar cells, Chem. Rev.
110, 6736−6767 (2010),
https://doi.org/10.1021/cr900271s
[83] B.A. Gregg, Entropy of charge separation in organic
photovoltaic cells: the benefit of higher dimensionality, J.
Phys. Chem. Lett.
2, 3013–3015 (2011),
https://doi.org/10.1021/jz2012403
[84] F. Laquai, G. Wegner, C. Im, H. Bässler, and S. Heun,
Nondispersive hole transport in carbazole- and
anthracene-containing polyspirobifluorene copolymers studied by
the charge-generation layer time-of-flight technique, J. Appl.
Phys.
99, 033710 (2006),
https://doi.org/10.1063/1.2168590
[85] D. Hertel and H. Bässler, Photoconduction in amorphous
organic solids, Chem. Phys. Chem.
9, 2–26 (2008),
https://doi.org/10.1002/cphc.200700575
[86] G. Juska, K. Genevicius, R. Osterbacka, K. Arlauskas, T.
Kreouzis, D.D.C. Bradley, and H. Stubb, Initial transport of
photogenerated charge carriers in p-conjugated polymers, Phys.
Rev. B
67, 081201 (2003),
https://doi.org/10.1103/PhysRevB.67.081201
[87] E. Hendry, J.M. Schins, L.P. Candeias, L.D.A. Siebbeles,
and M. Bonn, Efficiency of exciton and charge carrier
photogeneration in a semiconducting polymer, Phys. Rev. Lett.
92,
6601 (2004),
https://doi.org/10.1103/PhysRevLett.92.196601
[88] E. Hendry, M. Koeberg, J.M. Schins, H.K. Nienhuys, V.
Sundström, L.D.A. Siebbeles, and M. Bonn, Interchain effects in
the ultrafast photophysics of a semiconducting polymer: THz
time-domain spectroscopy of thin films and isolated chains in
solution, Phys. Rev. B
71, 5201 (2005),
https://doi.org/10.1103/PhysRevB.71.125201
[89] E. Hendry, M. Koeberg, J.M. Schins, L.D.A. Siebbeles, and
M. Bonn, Free carrier photogeneration in polythiophene versus
poly(phenylene vinylene) studied with THz spectroscopy, Chem.
Phys. Lett.
432, 441–445 (2006),
https://doi.org/10.1016/j.cplett.2006.10.105
[90] J.M. Warman, G.H. Gelinck, and M.P.D. Haas, The mobility
and relaxation kinetics of charge carriers in molecular
materials studied by means of pulse-radiolysis time-resolved
microwave conductivity: Dialkoxy-substituted phenylene-vinylene
polymers, J. Phys. C
14, 9935 (2002),
https://doi.org/10.1088/0953-8984/14/42/308
[91] G. Dicker, M.P.D. Haas, J.M. Warman, D.M.D. Leeuw, and
L.D.A. Siebbeles, The disperse charge-carrier kinetics in
regioregular poly(3-hexylthiophene), J. Phys. Chem. B
108,
17818 (2004),
https://doi.org/10.1021/jp046853l
[92] P.D. Cunningham, L.M. Hayden, H.-L. Yip, and A.K.-Y. Jen,
Charge carrier dynamics in metalated polymers investigated by
optical-pump terahertz-probe spectroscopy, J. Phys. Chem. B
113,
15427–15432 (2009),
https://doi.org/10.1021/jp906454g
[93] P.D. Cunningham and L.M. Hayden, Carrier dynamics resulting
from above and below gap excitation of P3HT and P3HT/PCBM
investigated by optical-pump terahertz-probe spectroscopy, J.
Phys. Chem. C
112, 7928–7935 (2008),
https://doi.org/10.1021/jp711827g
[94] M.G. Harrison, S. Möller, G. Weiser, G. Urbasch, R.F.
Mahrt, H. Bässler, and U. Scherf, Electrooptical studies of a
soluble conjugated polymer with particularly low intrachain
disorder, Phys. Rev. B
60, 8650 (1999),
https://doi.org/10.1103/PhysRevB.60.8650
[95] A. Devižis, A. Serbenta, D. Hertel, and V. Gulbinas,
Exciton and polaron contributions to photocurrent in MeLPPP on a
picosecond time scale, Mol. Cryst. Liq. Cryst.
496,
16–24 (2008),
https://doi.org/10.1080/15421400802451345
[96] P. Prins, F.C. Grozema, J.M. Schins, S. Patil, U. Scherf,
and L.D.A. Siebbeles, High intrachain hole mobility on molecular
wires of ladder-type poly(p-phenylenes), Phys. Rev. Lett.
96,
146601 (2006),
https://doi.org/10.1103/PhysRevLett.96.146601
[97] A. Devižis, K. Meerholz, D. Hertel, and V. Gulbinas,
Hierarchical charge carrier motion in conjugated polymers, Chem.
Phys. Lett.
498, 302–306 (2010),
https://doi.org/10.1016/j.cplett.2010.08.071
[98] C.H. Lee, G. Yu, and A.J. Heeger, Persistent
photoconductivity in poly(p-phenylenevinylene): Spectral
response and slow relaxation, Phys. Rev. B
47, 15543
(1993),
https://doi.org/10.1103/PhysRevB.47.15543
[99] A. Devizis, K. Meerholz, D. Hertel, and V. Gulbinas,
Ultrafast charge carrier mobility dynamics in
poly(spirobifluorene-co-benzothiadiazole): Influence of
temperature on initial transport, Phys. Rev. B
82,
155204 (2010),
https://doi.org/10.1103/PhysRevB.82.155204
[100] R. Noriega, A. Salleo, and A.J. Spakowitz, Chain
conformations dictate multiscale charge transport phenomena in
disordered semiconducting polymers, PNAS
110,
16315–16320 (2013),
https://doi.org/10.1073/pnas.1307158110
[101] A. Devižis, D. Hertel, K. Meerholz, V. Gulbinas, and E.
Moser, Time-independent, high electron mobility in thin PC61BM
films: relevance to organic photovoltaics, Org. Electron.
15,
3729–3734 (2014),
https://doi.org/10.1016/j.orgel.2014.10.028
[102] L.J.A. Koster, Charge carrier mobility in disordered
organic blends for photovoltaics, Phys. Rev. B
81,
205318 (2010),
https://doi.org/10.1103/PhysRevB.81.205318
[103] X. Ai, M.C. Beard, K.P. Knutsen, S.E. Shaheen, G. Rumbles,
and R.J. Ellingson, Photoinduced charge carrier generation in a
poly(3-hexylthiophene) and methanofullerene bulk heterojunction
investigated by time-resolved terahertz spectroscopy, J. Phys.
Chem. B
110, 25462−25471 (2006),
https://doi.org/10.1021/jp065212i
[104] P.D. Cunningham and L.M. Hayden, Carrier dynamics
resulting from above and below gap excitation of P3HT and
P3HT/PCBM investigated by optical-pump terahertz-probe
spectroscopy, J. Phys. Chem. C
112, 7928–7935 (2008),
https://doi.org/10.1021/jp711827g
[105] C.S. Ponseca, A. Yartsev, E. Wang, M.R. Andersson, D.
Vithanage, and V. Sundström, Ultrafast terahertz
photoconductivity of bulk heterojunction materials reveals high
carrier mobility up to nanosecond time scale, J. Am. Chem. Soc.
134, 11836–11839 (2012),
https://doi.org/10.1021/ja301757y
[106] D.G. Cooke, F.C. Krebs, and P.U. Jepsen, Direct
observation of sub-100 fs mobile charge generation in a
polymer-fullerene film, Phys. Rev. Lett.
108, 056603
(2012),
https://doi.org/10.1103/PhysRevLett.108.056603
[107] H. Němec, H.-K. Nienhuys, F. Zhang, O. Inganäs, A.
Yartsev, and V. Sundström, Charge carrier dynamics in
alternating polyfluorene copolymer: fullerene blends probed by
terahertz spectroscopy, J. Phys. Chem. C
112, 6558–6563
(2008),
https://doi.org/10.1021/jp710184r
[108] R. Jasiūnas, A. Melianas, Y. Xia, N. Felekidis, V.
Gulbinas, and M. Kemerink, Dead ends limit charge carrier
extraction from all-polymer bulk heterojunction solar cells,
Adv. Electron. Mater.
4, 1800144 (2018),
https://doi.org/10.1002/aelm.201800144
[109] G.A.H. Wetzelaer, L.J.A. Koster, and P.W.M. Blom, Validity
of the Einstein relation in disordered organic semiconductors,
Phys. Rev. Lett.
107, 066605 (2011),
https://doi.org/10.1103/PhysRevLett.107.066605
[110] V. Abramavicius, V. Pranculis, A. Melianas, O. Inganäs, V.
Gulbinas, and D. Abramavicius, Role of coherence and
delocalization in photoinduced electron transfer at organic
interfaces, Sci. Rep.
6, 32914 (2016),
https://doi.org/10.1038/srep32914
[111] V. Pranculis, Y. Infahsaeng, Z. Tang, A. Devižis, D.A.
Vithanage, C.S. Ponseca Jr., O. Inganäs, A.P. Yartsev, V.
Gulbinas, and V. Sundström, Charge carrier generation and
transport in different stoichiometry APFO3:PC61BM solar cells,
J. Am. Chem. Soc.
136, 11331–11338 (2014),
https://doi.org/10.1021/ja503301m
[112] M. Schubert, E. Preis, J. Blakesley, P. Pingel, U. Scherf,
and D. Neher, Mobility relaxation and electron trapping in a
donor/acceptor copolymer, Phys. Rev. B
87, 024203
(2013),
https://doi.org/10.1103/PhysRevB.87.024203
[113] S. De, T. Pascher, M. Maiti, K.G. Jespersen, T. Kesti, F.
Zhang, O. Inganäs, A. Yartsev, and V. Sundström, Geminate charge
recombination in alternating polyfluorene copolymer/fullerene
blends, J. Am. Chem. Soc.
129, 8466 (2007),
https://doi.org/10.1021/ja068909q
[114] V. Pranculis, A. Ruseckas, D.A. Vithanage, G.J. Hedley,
I.D.W. Samuel, and V. Gulbinas, Influence of blend ratio and
processing additive on free carrier yield and mobility in
PTB7:PC71BM photovoltaic solar cells, J. Phys. Chem. C
120,
9588–9594 (2016),
https://doi.org/10.1021/acs.jpcc.6b01548
[115] R. Augulis, A. Devižis, D. Peckus, V. Gulbinas, D. Hertel,
and K. Meerholz, High electron mobility and its role in charge
carrier generation in merocyanine/fullerene blend, J. Phys.
Chem. C
119, 5761–5770 (2015),
https://doi.org/10.1021/jp5054698
[116] A. Devizis, D. Peckus, D. Hertel, K. Meerholz, and V.
Gulbinas, Charge carrier generation and transport in a
polyfluorene copolymer with electron donating side groups doped
with PCBM, J. Phys. Chem.
117, 15871–15878 (2013),
https://doi.org/10.1021/jp4014256
[117] A. Devižis, J. De Jonghe-Risse, R. Hany, F. Nuesch, S.
Jenatsch, V. Gulbinas, and J.- E. Moser, Dissociation of charge
transfer states and carrier separation in bilayer organic solar
cells: A time-resolved electroabsorption spectroscopy study, J.
Am. Chem. Soc.,
137, 8192–8198 (2015),
https://doi.org/10.1021/jacs.5b03682
[118] D.A. Vithanage, A.B. Matheson, V. Pranculis, G.J. Hedley,
S.J. Pearson, V. Gulbinas, I.D.W. Samuel, and A. Ruseckas,
Barrier-less slow dissociation of photogenerated charge pairs in
high-performance polymer-fullerene solar cells, J. Phys. Chem. C
121, 14060–14065 (2017),
https://doi.org/10.1021/acs.jpcc.7b04868
[119] M.A. Baldo, R.J. Holmes, and S.R. Forrest, Prospects for
electrically pumped organic lasers, Phys. Rev. B
66,
035321 (2002),
https://doi.org/10.1103/PhysRevB.66.035321
[120] A. Melianas, V. Pranculis, A. Devižis, V. Gulbinas, O.
Inganäs, and M. Kemerink, Dispersion-dominated photocurrent in
polymer:fullerene solar cells, Adv. Funct. Mater.
24,
4507–4514 (2014),
https://doi.org/10.1002/adfm.201400404
[121] A. Melianas, V. Pranculis, Y. Xia, N. Felekidis, O.
Inganäs, V. Gulbinas, and M. Kemerink, Photogenerated carrier
mobility significantly exceeds injected carrier mobility in
organic solar cells, Adv. Energy Mater.
7, 160214
(2017),
https://doi.org/10.1002/aenm.201602143
[122] N.J. van der Kaap and L.J.A. Koster, Charge carrier
thermalization in organic diodes, Sci. Rep.
6, 19794
(2016),
https://doi.org/10.1038/srep19794
[123] V.M. Le Corre, A.R. Chatri, N.Y. Doumon, and L.J.A.
Koster, Charge carrier extraction in organic solar cells
governed by steady-state mobilities, Adv. Energy Mater.
7,
1701138 (2017),
https://doi.org/10.1002/aenm.201701138
[124] S. Athanasopoulos, F. Schauer, V. Nádaždy, M. Weiß, F.J.
Kahle, U. Scherf, H. Bässler, and A. Köhler, What is the Binding
Energy of a Charge Transfer State in an Organic Solar Cell, Adv.
Energy Mater.
9, 1900814 (2019),
https://doi.org/10.1002/aenm.201900814