Linas Ardaravičius, Oleg Kiprijanovič, Mindaugas
Ramonas, Emilis Šermukšnis, Artur Šimukovič, and Arvydas
Matulionis
Received 20 May 2019; revised 11 July 2019; accepted 25 November
2019
[1] D.C. Look, Progress in ZnO materials and devices, J.
Electron. Mater.
35, 1299 (2006),
https://doi.org/10.1007/s11664-006-0258-y
[2] C. Klingshirn, ZnO: From basics towards applications, Phys.
Status Solidi B
244, 3027 (2007),
https://doi.org/10.1002/pssb.200743072
[3]
GaN and ZnO-based Materials and Devices, ed. S.
Pearton (Springer-Verlag, Berlin, 2012),
https://doi.org/10.1007/978-3-642-23521-4
[4] J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L.
Lambrecht, and K.F. Brennan, High field electron transport
properties of bulk ZnO, J. Appl. Phys.
86, 6864 (1999),
https://doi.org/10.1063/1.371764
[5] K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, and
M. Yano, Characteristics of a Zn
0.7Mg
0.3O/ZnO
heterostructure field-effect transistor grown on sapphire
substrate by molecular-beam epitaxy, Appl. Phys. Lett.
87,
112106 (2005),
https://doi.org/10.1063/1.2045558
[6] B. Bayraktaroglu, K. Leedy, and R. Neidhard, High-frequency
ZnO thin-film transistors on Si substrates, IEEE Electron Device
Lett.
30, 946 (2009),
https://doi.org/10.1109/LED.2009.2025672
[7] H. Morkoç and Ü. Özgür,
Zinc Oxide: Fundamentals,
Materials and Device Technology (Wiley-VCH, Weinheim,
2009),
https://doi.org/10.1002/9783527623945
[8] S.K. O'Leary, B.E. Foutz, M.S. Shur, and L.F. Eastman,
Steady-state and transient electron transport within bulk
wurtzite zinc oxide, Solid State Commun.
150, 2182
(2010),
https://doi.org/10.1016/j.ssc.2010.08.033
[9] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito,
and T. Fukuda, Growth of the 2-in-size bulk ZnO single crystals
by the hydrothermal method, J. Cryst. Growth
260, 166
(2004),
https://doi.org/10.1016/j.jcrysgro.2003.08.019
[10] Y. Li, G.S. Tompa, S. Liang, C. Gorla, Y. Lu, and J. Doyle,
Transparent and conductive Ga-doped ZnO films grown by low
pressure metal organic chemical vapor deposition, J. Vac. Sci.
Technol. A
15, 1063 (1997),
https://doi.org/10.1116/1.580430
[11] W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, T.
Venkatesan, and H. Shen, Ultraviolet photoconductive detector
based on epitaxial Mg
0.34Zn
0.66O thin
films, Appl. Phys. Lett.
78, 2787 (2001),
https://doi.org/10.1063/1.1368378
[12] S.O. Kucheyev, C. Jagadish, J.S. Williams, P.N.K.
Deenapanray, M. Yano, K. Koike, S. Sasa, M. Inoue, and K. Ogata,
Implant isolation of ZnO, J. Appl. Phys.
93, 2972
(2003),
https://doi.org/10.1063/1.1542939
[13] D.G. Thomas, The exciton spectrum of zinc oxide, J. Phys.
Chem. Solids
15, 86 (1960),
https://doi.org/10.1016/0022-3697(60)90104-9
[14] L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.-K.
Xue, and X. Du, Oxygen vacancies: The origin of n-type
conductivity in ZnO, Phys. Rev. B
93, 235305 (2016),
https://doi.org/10.1103/PhysRevB.93.235305
[15] K.I. Hagemark and P.E. Toren, Determination of excess Zn in
ZnO. The phase boundary ZnZn
1+xO, J.
Electrochem. Soc.
122, 992 (1975),
https://doi.org/10.1149/1.2134384
[16] L.E. Halliburton, N.C. Giles, N.Y. Garces, M. Luo, C. Xu,
L. Bai, and L.A. Boatner, Production of native donors in ZnO by
annealing at high temperature in Zn vapor, Appl. Phys. Lett.
87,
172108 (2005),
https://doi.org/10.1063/1.2117630
[17] L.S. Vlasenko and G.D. Watkins, Optical detection of
electron paramagnetic resonance in room-temperature
electron-irradiated ZnO, Phys. Rev. B
71, 125210 (2005),
https://doi.org/10.1103/PhysRevB.71.125210
[18] F. Tuomisto, K. Saarinen, K. Grasza, and A. Mycielski,
Observation of Zn vacancies in ZnO grown by chemical vapor
transport, Phys. Status Solidi B
243, 794 (2006),
https://doi.org/10.1002/pssb.200564658
[19] A. Janotti and C.G. Van de Walle, Oxygen vacancies in ZnO,
Appl. Phys. Lett.
87, 122102 (2005),
https://doi.org/10.1063/1.2053360
[20] A. Tsukazaki, A. Ohtomo, and M. Kawasaki, High-mobility
electronic transport in ZnO thin films, Appl. Phys. Lett.
88,
152106 (2006),
https://doi.org/10.1063/1.2193727
[21] Y. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, A.B.
Yankovich, A.V. Kvit, P.M. Voyles, and H. Morkoç, Electron
scattering mechanisms in GZO films grown on a-sapphire
substrates by plasma-enhanced molecular beam epitaxy, J. Appl.
Phys.
111, 103713 (2012),
https://doi.org/10.1063/1.4720456
[22] W.A. Hadi, M.S. Shur, and S.K. O'Leary, The sensitivity of
the steady-state and transient electron transport within bulk
wurtzite zinc oxide to variations in the crystal temperature,
the doping concentration, and the non-parabolicity coefficient,
J. Mater. Sci. Mater. Electron.
24, 2 (2013),
https://doi.org/10.1007/s10854-012-0782-x
[23] E. Furno, F. Bertazzi, M. Goano, G. Ghione, and E.
Bellotti, Hydrodynamic transport parameters of wurtzite ZnO from
analytic- and full-band Monte Carlo simulation, Solid State
Electron.
52, 1796 (2008),
https://doi.org/10.1016/j.sse.2008.08.001
[24] W.A. Hadi, M.S. Shur, and S.K. O'Leary, A transient
electron transport analysis of bulk wurtzite zinc oxide, J.
Appl. Phys.
112, 033720 (2012),
https://doi.org/10.1063/1.4745027
[25] S. Sasa, T. Maitani, Y. Furuya, T. Amano, K. Koike, M.
Yano, and M. Inoue, Microwave performance of ZnO/ZnMgO
heterostructure field effect transistors, Phys. Status Solidi A
208, 449 (2011),
https://doi.org/10.1002/pssa.201000509
[26] L. Ardaravičius, O. Kiprijanovič, J. Liberis, M. Ramonas,
E. Šermukšnis, A. Matulionis, M. Toporkov, V. Avrutin, Ü. Özgür,
and H. Morkoç, High-field electron transport in doped ZnO,
Mater. Res. Express
4, 066301 (2017),
https://doi.org/10.1088/2053-1591/aa744b
[27] L. Ardaravičius, O. Kiprijanovič, M. Ramonas, E.
Šermukšnis, J. Liberis, A. Šimukovič, A. Matulionis, K. Ding,
Md.B. Ullah, V. Avrutin, Ü. Özgür, and H. Morkoç, Electron drift
velocity in wurtzite ZnO at high electric fields: experiment and
simulation, J. Appl. Phys.
126, 185703 (2019),
https://doi.org/10.1063/1.5100078
[28] M. Ramonas and C. Jungemann, A deterministic approach to
noise in a non-equilibrium electron-phonon system based on the
Boltzmann equation, J. Comput. Electron.
14, 43 (2015),
https://doi.org/10.1007/s10825-014-0627-3
[29] L. Ardaravičius, M. Ramonas, J. Liberis, O. Kiprijanovič,
A. Matulionis, J. Xie, M. Wu, J. H. Leach, and H. Morkoç,
Electron drift velocity in lattice-matched AlInN/AlN/GaN channel
at high electric fields, J. Appl. Phys.
106, 073708
(2009),
https://doi.org/10.1063/1.3236569
[30] L. Ardaravičius, O. Kiprijanovič, J. Liberis, A.
Matulionis, E. Šermukšnis, R.A. Ferreyra, V. Avrutin, Ü. Özgür,
and H. Morkoç, Threshold field for soft damage and electron
drift velocity in InGaN two-dimensional channels, Semicond. Sci.
Technol.
30, 105016 (2015),
https://doi.org/10.1088/0268-1242/30/10/105016
[31] L. Ardaravičius, A. Matulionis, J. Liberis, O.
Kiprijanovič, M. Ramonas, L.F. Eastman, J.R. Shealy, and A.
Vertiatchikh, Electron drift velocity in AlGaN/GaN channel at
high electric fields, Appl. Phys. Lett.
83, 4038 (2003),
https://doi.org/10.1063/1.1626258