[PDF]  https://doi.org/10.3952/physics.v60i1.4164

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 57–66 (2020)
 


BLACK SILICON QUALITY CONTROL BY CONDITIONS OF NICKEL-ASSISTED ETCHING OF CRYSTALLINE SILICON SURFACES IN PHOTOVOLTAIC DEVICES
 
Mindaugas Kamarauskas, Marius Treideris, Vladimir Agafonov, Audružis Mironas, Viktorija Strazdienė, Alfonsas Rėza, and Arūnas Šetkus
  Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: mindaugas.kamarauskas@ftmc.lt

Received 30 May 2019; revised 28 October 2019; accepted 3 December 2019

Here we present a study of the nickel-assisted etching applied to form uniform black silicon layers on crystalline silicon substrates. We related the parameters used for technological process control (etchant, nickel thickness) to parameters of the obtained surface and explain the correlation using the etching model responsible for etching of the silicon covered by a thin nickel film. The increase in the thickness of the metal catalyst did not suppress the etching completely but allowed one to tune the roughness of the silicon surface. The rate of the electrochemical etching was additionally changed by adaptation of the proportion of components in the complex etchant. Depending on the intentionally selected conditions, the duration of the optimized process was from 3 to 10 min. The lowest optical reflection commonly accepted as the black silicon surface was obtained for the mixture with a low amount of the active etchant component. It was demonstrated that the method is acceptable to improve the characteristics of a photovoltaic cell.
Keywords: silicon etching, metal-assisted etching, black silicon, light trapping, photovoltaic cell
PACS: 81.16.-c, 81.16.Rf


NIKELIU INICIJUOTO SILICIO ĖSDINIMO SĄLYGŲ ĮTAKA FOTOVOLTAIKAI SKIRTO JUODO SILICIO KOKYBEI

  Mindaugas Kamarauskas, Marius Treideris, Vladimir Agafonov, Audružis Mironas, Viktorija Strazdienė, Alfonsas Rėza, Arūnas Šetkus

Fizinių ir technologijos mokslų centras, Vilnius, Lithuania

Detaliai ištirtas būdas suformuoti juodo silicio sluoksnius su metalo inicijuotu ėsdinimu naudojant nikelį kaip katalizatorių. Siūlomoje metodikos versijoje sunkiai kontroliuojamas nanodalelių formavimo etapas yra pakeistas ištisinio ultraplono nikelio sluoksnio auginimu. Tekstūravimo procesas pagrįstas žinomais elektrocheminiame ėsdinime medžiagos pernašos ir ėsdinimo mechanizmais, pritaikytais prie didelio ploto plonų metalinių sluoksnių, dengiančių silicio paviršių, sistemos. Toks metodas leidžia suformuoti didelio ploto vienodas / tolygias juodo Si sritis. Pastebėta, kad didėjant katalizatoriaus storiui didėja ėsdinamo paviršiaus šiurkštumas ir kartu mažėja atspindys nuo paviršiaus. Tiriant ėsdiklio koncentracijos įtaką nustatyta, kad mažiausias atspindys pasiekiamas, kai aktyviosios ėsdinimo medžiagos kiekis ėsdinimo tirpale yra mažas, ir kad optimalus ėsdinimo laikas priklauso nuo ėsdiklio koncentracijos (svyruoja 3–10 min.). Galiausiai juodo Si bandiniuose buvo suformuota pn sandūra ir ištirtos elektrinės savybės. Rezultatai buvo palyginti su įprastinio paviršiaus apdorojimo saulės elementų elektrinėmis savybėmis.
 
References / Nuorodos

[1] F. Chigondo, From metallurgical-grade to solar-grade silicon: An overview, Silicon 10(3), 789–798 (2018),
https://doi.org/10.1007/s12633-016-9532-7
[2] J. Lv, T. Zhang, P. Zhao, and Sh. Li, Review application of nanostructured black silicon, Nanoscale Res. Lett. 13, 110 (2018),
https://doi.org/10.1186/s11671-018-2523-4
[3] X. Liu, P.R. Coxon, M. Peters, B. Hoex, J.M. Cole, and D.J. Fray, Black silicon: fabrication methods, properties and solar energy applications, Energy Environ. Sci. 7(10), 3223–3263 (2014),
https://doi.org/10.1039/C4EE01152J
[4] B. Iandolo, A.P. Sanchez Nery, R.S. Davidsen, and O. Hansen, Black silicon with ultra‐low surface recombination velocity fabricated by inductively coupled power plasma, Phys. Status Solidi Rapid Res. Lett. 13(2), 1800477 (2019),
https://doi.org/10.1002/pssr.201800477
[5] M.H. Shiao, C.P. Lai, B.H. Liao, and Y.S. Lin, Effect of photoillumination on gold-nanoparticle-assisted chemical etching of silicon, J. Nanomater. 2018, 5479605 (2018),
https://doi.org/10.1155/2018/5479605
[6] R. Venkatesan, M.K. Arivalagan, V. Venkatachalapathy, J.M. Pearce, and J. Mayandi, Effects of silver catalyst concentration in metal assisted chemical etching of silicon, Mater. Lett. 221, 206–210 (2018),
https://doi.org/10.1016/j.matlet.2018.03.053
[7] A.V. Takaloo, M. Kolahdouz, J. Poursafar, F. Es, R. Turan, and S. Ki-Joo, Fabrication of low reflective nanopore-type black Si layer using one-step Ni-assisted chemical etching for Si solar cell application, Mater. Res. Express 5(3), 035905 (2018),
https://doi.org/10.1088/2053-1591/aab2ee
[8] K. Gao, H. Shen, Y. Liu, Q. Tang, Y. Jiang, W. Yang, Y. Li, and Ch. Huang, Fabrication of black silicon by Ni assisted chemical etching, Mater. Res. Express 5(1), 015020 (2018),
https://doi.org/10.1088/2053-1591/aaa1fb
[9] M. Treideris, A. Reza, M. Kamarauskas, V. Agafonov, and A. Setkus, in: Proceedings of the 33rd European Photovoltaic Solar Energy Conference and Exhibition (2017) pp. 687–689,
https://doi.org/10.4229/EUPVSEC20172017-2AV.2.36
[10] D. Necas and P. Klapetek, Gwyddion: an open-source software for SPM data analysis, Cent. Eur. J. Phys. 10(1), 181–188 (2012),
https://doi.org/10.2478/s11534-011-0096-2
[11] X. Li and P.W. Bohm, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett. 77(16), 2572–2574 (2000),
https://doi.org/10.1063/1.1319191
[12] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, Metal‐assisted chemical etching of silicon: A review, Adv. Mater. 23(2), 285–308 (2011),
https://doi.org/10.1002/adma.201001784
[13] C. Chartier, S. Bastide, and C. Levy Clement, Metal-assisted chemical etching of silicon in HF–H2O2, Electrochim. Acta 53, 5509–5516 (2008),
https://doi.org/10.1016/j.electacta.2008.03.009
[14] R.M. Khalil, Kinetics of decomposition of hydrogen peroxide over different electrodeposited nickel powder catalysts, J. King Abdulaziz Univ. Sci. 2, 91–100 (1990),
[PDF]
[15] H. Han, Zh. Huang, and W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications, Nano Today 9, 271–304 (2014),
https://doi.org/10.1016/j.nantod.2014.04.013