[PDF]  https://doi.org/10.3952/physics.v60i1.4166

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 78–89 (2020)
 


HYBRID ORGANIC-INORGANIC Fe3O(TFBDC)3(H2O)3·(DMF)3 COMPOUND SYNTHESIZED BY SLOW EVAPORATION METHOD: CHARACTERIZATION AND COMPARISON OF MAGNETIC PROPERTIES
  Andrius Laurikėnasb, Kęstutis Mažeikab, Dalis Baltrūnasa, Ramūnas Skaudžiusa, Aldona Beganskienėa, and Aivaras Kareivaa
 aInstitute of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
bCenter for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
Email: aivaras.kareiva@chgf.vu.lt

Received 19 October 2019; revised 26 October 2019; accepted 4 November 2019

In this study for the synthesis of a hybrid organic-inorganic Fe3O(TFBDC)3(H2O)3·(DMF)3 compound a slow evaporation method has been suggested. THe synthesis product was characterized using X-ray powder diffraction (XRD) analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) coupled with SEM and electron paramagnetic resonance (EPR) spectroscopy. THe antiferromagnetic/weakly ferromagnetic behaviour of the synthesized sample was confirmed by magnetization measurements and Mössbauer spectroscopy. THe synthesized magnetic material could be itself tested for different medical applications and could be used as precursor material for the preparation of nanostructured iron oxides with a variety of useful properties for biomedicine.
Keywords: hybrid materials, organic-inorganic, iron, slow evaporation method, magnetic properties
PACS: 75.50.–y, 75.60.Ej, 76.80.+y, 81.05.–t, 81.20–n


HIBRIDINIO ORGANINIO-NEORGANINIO Fe3O(TFBDC)3(H2O)3·(DMF)3 JUNGINIO SINTEZĖ LĖTO GARINIMO METODU. APIBŪDINIMAS IR MAGNETINIŲ SAVYBIŲ PALYGINIMAS

    Andrius Laurikėnasb, Kęstutis Mažeikab, Dalis Baltrūnasa, Ramūnas Skaudžiusa, Aldona Beganskienėa, Aivaras Kareivaa

aVilniaus universiteto Chemijos institutas, Vilnius, Lietuva
bFizinių ir technologijos mokslų centras, Vilnius, Lietuva
 
Lėto garinimo metodu susintetintas hibridinis organinis-neorganinis Fe3O(TFBDC)3(H2O)3·(DMF)3 junginys. Susintetintas naujas junginys buvo apibūdintas rentgeno spindulių difrakcinės (XRD) analizės, skenuojančios elektroninės mikroskopijos (SEM), energijos dispersinės rentgeno spindulių spektroskopijos (EDX) ir paramagnetinio rezonanso spektroskopijos (EPR) metodais. Susintetinto mėginio antiferomagnetinė / silpnai feromagnetinė reakcija buvo patvirtinta magnetėjimo ir Mössbauerio spektroskopijos tyrimų rezultatais. Susintetinta magnetinė medžiaga gali būti tiriama medicininiams tikslams ir panaudota kaip pirmtakas nanostruktūrinto geležies oksido sintezei.

References / Nuorodos

[1] Y.Y. Lin and C.B. Mao, Bio-inspired supramolecular self-assembly towards soft nanomaterials, Front. Mater. Sci. 5, 247–265 (2011),
https://doi.org/10.1007/s11706-011-0141-5
[2] N. Fukuda, A. Tsuchiya, J. Sunarso, R. Toita, K. Tsuru, Y. Mori, and K. Ishikawa, Surface plasma treatment and phosphorylation enhance the biological performance of poly(ether ether ketone), Colloids Surf. B Biointerfaces 173, 36–42 (2019),
https://doi.org/10.1016/j.colsurfb.2018.09.032
[3] M. Abumanhal, R. Ben-Cnaan, I. Feldman, S. Keren, and I. Leibovitch, Polyester urethane implants for orbital trapdoor fracture repair in children, J. Oral Maxillofac. Surg. 77, 126–131 (2019),
https://doi.org/10.1016/j.joms.2018.08.005
[4] H.J. Maeng, D.H. Kim, N.W. Kim, H. Ruh, D.K. Lee, and H. Yu, Synthesis of spherical Prussian blue with high surface area using acid etching, Curr. Appl. Phys. 18, S21–S27 (2018),
https://doi.org/10.1016/j.cap.2017.11.014
[5] Y.D. Miao, F.N. Xie, J.Y. Cen, F. Zhou, X.F. Tao, J.F. Luo, G.C. Han, X.L. Kong, X.M. Yang, J.H. Sun, and J. Ling, Fe3+@polyDOPA-b-polysarcosine, a T1-weighted MRI contrast agent via controlled NTA polymerization, ACS Macro Lett. 7, 693–698 (2018),
https://doi.org/10.1021/acsmacrolett.8b00287
[6] R.T. Cha, J.J. Li, Y. Liu, Y.F. Zhang, Q. Xie, and M.M. Zhang, Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery, Colloids Surf. B Biointerfaces 158, 213–221 (2017),
https://doi.org/10.1016/j.colsurfb.2017.06.049
[7] D. Chelminiak, M. Ziegler-Borowska, and H. Kaczmarek, Polymer coated magnetite nanoparticles for biomedical applications. Part II. Fe3O4 nanoparticles coated by synthetic polymers, Polimery 60, 87–94 (2015),
https://doi.org/10.14314/polimery.2015.087
[8] J.R. Pinney, G. Melkus, A. Cerchiari, J. Hawkins, and T.A. Desai, Novel functionalization of discrete polymeric biomaterial microstructures for applications in imaging and three-dimensional manipulation, ACS Appl. Mater. Interfaces 6, 14477–14485 (2014),
https://doi.org/10.1021/am503778t
[9] M.A. Tafoya, S. Madi, and L.O. Sillerud, Superparamagnetic nanoparticle-enhanced MRI of Alzheimer's disease plaques and activated microglia in 3X transgenic mouse brains: Contrast optimization, J. Magn. Res. Imaging 46, 574–588 (2017),
https://doi.org/10.1002/jmri.25563
[10] Y. Kuwahara, T. Miyazaki, Y. Shirosaki, G.G. Liu, and M. Kawashita, Structures of organic additives modified magnetite nanoparticles, Ceram. Int. 42, 6000–6004 (2016),
https://doi.org/10.1016/j.ceramint.2015.12.152
[11] H.H. Zou, L. Wang, C.H. Zeng, X.L. Gao, Q.Q. Wang, and S.L. Zhong, Rare-earth coordination polymer micro/nanomaterials: Preparation, properties and applications, Front. Mater. Sci. 12, 327–347 (2018),
https://doi.org/10.1007/s11706-018-0444-x
[12] S. Aryal, J. Key, C. Stigliano, J.S. Ananta, M. Zhong, and P. Decuzzi, Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging, Biomaterials 34, 7725–7732 (2013),
https://doi.org/10.1016/j.biomaterials.2013.07.003
[13] K. Roshani, M. Etemadzade, R. Farhoudi, S.E.S. Ebrahimi, M.P. Hamedani, A. Assadi, and M.S. Ardestani, Fe3+-EDTA-zinc oxide nano-diagnostics: Synthesis and in vitro cellular evaluation, Biosci. Biotechnol. Res. Commun. 10, 445–454 (2017),
https://doi.org/10.21786/bbrc/10.3/18
[14] J.F. Collingwood and F. Adams, in: Metals in the Brain: Measurement and Imaging,  Neuromethods book series, volume 124, ed. A.R. White (Humana Press, New York, 2017) pp. 7–32,
https://doi.org/10.1007/978-1-4939-6918-0_2
[15] S.C. Wuang, K.G. Neoh, E.-T. Kang, D.W. Pack, and D.E. Leckband, Heparinized magnetic nanoparticles: In-vitro assessment for biomedical applications, Adv. Funct. Mater. 16, 1723–1730 (2006),
https://doi.org/10.1002/adfm.200500879
[16] E. Vismara, A. Valerio, A. Coletti, G. Torri, S. Bertini, G. Eisele, R. Gornati, and G. Bernardini, Non-covalent synthesis of metal oxide nanoparticle-heparin hybrid systems: A new approach to bioactive nanoparticles, Int. J. Molec. Sci. 14, 13463–13481 (2013),
https://doi.org/10.3390/ijms140713463
[17] M.D. Rodriguez-Torres, L.S. Acosta-Torres, and L.A. Diaz-Torres, Heparin-based nanoparticles: An overview of their applications, J. Nanomater. 2018, Article ID 9780489 (2018),
https://doi.org/10.1155/2018/9780489
[18] L.P. Wang, G. Jang, D.K. Ban, V. Sant, J. Seth, S. Kazmi, N. Patel, Q.Q. Yang, J. Lee, W. Janetanakit, S.S. Wang, B.P.vHead, G. Glinsky, and R. Lal, Multifunctional stimuli responsive polymer-gated iron and gold-embedded silica nano golf balls: Nanoshuttles for targeted on-demand theranostics, Bone Res. 5, Article No. 17051 (2017),
https://doi.org/10.1038/boneres.2017.51
[19] A.J. Theruvath, H. Nejadnik, A.M. Muehe, F. Gassert, N.J. Lacayo, S.B. Goodman, and H.E. Daldrup-Link, Tracking cell transplants in femoral osteonecrosis with magnetic resonance imaging: a proof-of-concept study in patients, Clinic. Cancer Res. 24, 6223–6229 (2018),
https://doi.org/10.1158/1078-0432.CCR-18-1687
[20] M. Regenboog, A.E. Bohte, E.M. Akkerman, J. Stoker, and C.E.M. Hollak, Iron storage in liver, bone marrow and splenic Gaucheroma reflects residual disease in type 1 Gaucher disease patients on treatment, British J. Haematol. 179, 635–647 (2017),
https://doi.org/10.1111/bjh.14915
[21] A. Prichodko, F. Enrichi, Z. Stankeviciute, A. Benedetti, I. Grigoraviciute-Puroniene, and A. Kareiva, Study of Eu3+ and Tm3+ substitution effects in sol-gel fabricated calcium hydroxyapatite, J. Sol-Gel Sci. Technol. 81, 261–267 (2017),
https://doi.org/10.1007/s10971-016-4194-x
[22] A. Laurikenas, A. Katelnikovas, R. Skaudzius, and A. Kareiva, Synthesis and characterization of Tb3+ and Eu3+ metal-organic frameworks with TFBDC2– linkers, Opt. Mater. 83, 363–369 (2018),
https://doi.org/10.1016/j.optmat.2017.05.037
[23] A. Smalenskaite, A.N. Salak, M.G.S. Ferreira, R. Skaudzius, and A. Kareiva, Sol-gel synthesis and characterization of hybrid inorganic-organic Tb(III)-terephthalate containing layered double hydroxides, Opt. Mater. 80, 186–196 (2018),
https://doi.org/10.1016/j.optmat.2018.04.048
[24] N. Mahfoudh, K. Karoui, K. Khirouni, and A. Ben Rhaiem, Optical, electrical properties and conduction mechanism of [(CH3)2NH2]2ZnCl4 compound, Physica B Condens. Matter 554, 126–136 (2019),
https://doi.org/10.1016/j.physb.2018.11.018
[25] A. Laurikėnas, J. Barkauskas, J. Reklaitis, G. Niaura, D. Baltrūnas, and A. Kareiva, Formation peculiarities of iron (III) acetate: Potential precursor for iron and mixed-metal-organic frameworks (MOFs), Lith. J. Phys. 56, 35−41 (2016),
https://doi.org/10.3952/physics.v56i1.3274
[26] J.H. Yoon, S.B. Choi, Y.J. Oh, M.J. Seo, Y.H. Jhon, T.-B. Lee, D. Kim, S.H. Choi, and J. Kim, a porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3·(DMF)3.5, Catal. Today 120, 324–329 (2007),
https://doi.org/10.1016/j.cattod.2006.09.003
[27] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 2012),
https://global.oup.com/academic/product/electron-paramagnetic-resonance-of-transition-ions-9780199651528
[28] E. Coronado, C. Marti-Gastaldo, E. Navarro-Moratalla, and A. Ribera, Intercalation of [M(ox)3]3–(M = Cr, Rh) complexes into (NiFeIII)-Fe-II-LDH, Appl. Clay Sci. 48, 228–234 (2010),
https://doi.org/10.1016/j.clay.2009.11.054
[29] C.V. Popescu and E. Munck, Electronic structure of the H cluster in [Fe]-hydrogenases, J. Am. Chem. Soc. 121, 7877–7884 (1999),
https://doi.org/10.1021/ja991243y
[30] N. Hoshino and T. Akutagawa, A trinuclear iron(III) complex of a triple noninnocent ligand for spin-structured molecular conductors, Chem. Eur. J. 24, 19323–19331 (2018),
https://doi.org/10.1002/chem.201804280
[31] J.F. De Conto, M.R. Oliveira, R.J. Oliveira, K.V. Campos, E.W. De Menezes, E.V. Benvenutti, E. Franceschi, C.C. Santana, and S.M. Egues, Synthesis of silica modified with 1-methylimidazolium chloride by sol-gel method: a comparison between microwave radiation-assisted and conventional methods, J. Non-Cryst. Solids 471, 209–214 (2017),
https://doi.org/10.1016/j.jnoncrysol.2017.05.041
[32] A.C. Sudik, A.P. Cote, and O.M. Yaghi, Metalorganic frameworks based on trigonal prismatic building blocks and the new 'acs' topology, Inorg. Chem. 44, 2998–3000 (2005),
https://doi.org/10.1021/ic050064g
[33] J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, New York, 2009),
http://www.cambridge.org/9781108717519
[34] J.M.D. Coey, A. Barry, J. Brotto, H. Rakoto, S. Brennan, W.N. Mussel, A. Collomb, and D. Fruchart, Spin-flop in goethite, J. Phys. Condens. Matter 7, 759–768 (1995),
https://doi.org/10.1088/0953-8984/7/4/006
[35] F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, and S. Mørup, Magnetic properties of hematite nanoparticles, Phys. Rev. B 61, 6826–6838 (2000),
https://doi.org/10.1103/PhysRevB.61.6826
[36] Mössbauer Spectroscopy of Frozen Solutions, eds. A. Vertes and D.L. Nagy (Akadémiai Kiadó, Budapest, 1990),
https://www.amazon.co.uk/Mossbauer-Spectroscropy-Frozen-Solutions-Vertes/dp/9630553473/
[37] E. De Grave and R.E. Vandenberghe, 57Fe Mössbauer effect study of well crystallized goethite (α-FeOOH), Hyperfine Interact. 28, 643–646 (1986),
https://doi.org/10.1007/BF02061530
[38] C.A. Barrero, R.E. Vandenberghe, and E. De Grave, the effect of Al-content and crystallinity on the magnetic properties of goethites, Hyperfine Interact. 122, 39–46 (1999),
https://doi.org/10.1023/A:1012681219674
[39] V. Klimas, K. Mažeika, V. Jasulaitienė, and A. Jagminas, Formation, morphology and composition of F- and Cl-stabilized iron β-oxyhydroxides, J. Fluor. Chem. 170, 1–9 (2015),
https://doi.org/10.1016/j.jfluchem.2014.12.002
[40] D. Chambaere and E. De Grave, On the Néel temperature of β-FeOOH: Structural dependence and its implications, J. Magn. Magn. Mater. 42, 263–268 (1984),
https://doi.org/10.1016/0304-8853(84)90107-0
[41] S.J. Oh, D.C. Cook, and H.E. Townsend, Characterization of iron oxides commonly formed as corrosion products on steel, Hyperfine Interact. 112, 59–66 (1998),
https://doi.org/10.1023/A:1011076308501
[42] J. Marins, T. Montagnon, H. Ezzaier, C. Hurel, O. Sandre, D. Baltrūnas, K. Mažeika, A. Petrov, and P. Kuzhir, Colloidal stability of aqueous suspensions of polymer-coated iron oxide nanorods: Implications for biomedical applications, ACS Appl. Nano Mater. 1, 6760–6772 (2018),
https://doi.org/10.1021/acsanm.8b01558
[43] P. Veverka, M. Pashchenko, L. Kubíčková, J. Kuličková, Z. Jirák, R. Havelek, K. Královec, J. Kohout, and O. Kamana, Rod-like particles of silica-coated maghemite: Synthesis via akaganeite, characterization and biological properties, J. Magn. Magn. Mater. 476, 149–156 (2019),
https://doi.org/10.1016/j.jmmm.2018.12.037
[44] M. Catauro, F. Papale, and F. Bollino, Characterization and biological properties of TiO2/PCL hybrid layers prepared via sol-gel dip coating for surface modification of titanium implants, J. Non-Cryst. Solids 415, 9–15 (2015),
https://doi.org/10.1016/j.jnoncrysol.2014.12.008
[45] C.P. Guntlin, S.T. Ochsenbein, M. Worle, R. Erni, K.V. Kravchyk, and M.V. Kovalenko, Popcorn-shaped FexO (wustite) nanoparticles from a single-source precursor: Colloidal synthesis and magnetic properties, Chem. Mater. 30, 1249–1256 (2018),
https://doi.org/10.1021/acs.chemmater.7b04382
[46] A. Serra and E. Valles, Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications, Appl. Mater Today 12, 207–234 (2018),
https://doi.org/10.1016/j.apmt.2018.05.006
[47] V. Malik, A. Pal, O. Pravaz, J.J. Crassous, S. Granville, B. Grobety, A.M. Hirt, H. Dietsch, and P. Schurtenberger, Hybrid magnetic iron oxide nanoparticles with tunable field-directed selfassembly, Nanoscale 9, 14405–14413 (2017),
https://doi.org/10.1039/C7NR04518B
[48] S. Tanaka, Y.V. Kaneti, R. Bhattacharjee, M.N. Islam, R. Nakahata, N. Abdullah, S.I. Yusa, N. Nam-Trung, M.J.A. Shiddiky, Y. Yamauchi, and M.S.A. Hossain, Mesoporous iron oxide synthesized using poly(styrene-b-acrylic acid-b-ethylene glycol) block copolymer micelles as templates for colorimetric and electrochemical detection of glucose, ACS Appl. Mater. Interfaces 10, 1039–1049 (2018),
https://doi.org/10.1021/acsami.7b13835
[49] H. Shokrollahi, Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids, Mater. Sci. Eng. C 33, 2476–2487 (2013),
https://doi.org/10.1016/j.msec.2013.03.028