Received 19 October 2019; revised 26 October 2019; accepted 4
November 2019
[1] Y.Y. Lin and C.B. Mao, Bio-inspired supramolecular
self-assembly towards soft nanomaterials, Front. Mater. Sci.
5,
247–265 (2011),
https://doi.org/10.1007/s11706-011-0141-5
[2] N. Fukuda, A. Tsuchiya, J. Sunarso, R. Toita, K. Tsuru, Y.
Mori, and K. Ishikawa, Surface plasma treatment and
phosphorylation enhance the biological performance of poly(ether
ether ketone), Colloids Surf. B Biointerfaces
173, 36–42
(2019),
https://doi.org/10.1016/j.colsurfb.2018.09.032
[3] M. Abumanhal, R. Ben-Cnaan, I. Feldman, S. Keren, and I.
Leibovitch, Polyester urethane implants for orbital trapdoor
fracture repair in children, J. Oral Maxillofac. Surg.
77,
126–131 (2019),
https://doi.org/10.1016/j.joms.2018.08.005
[4] H.J. Maeng, D.H. Kim, N.W. Kim, H. Ruh, D.K. Lee, and H. Yu,
Synthesis of spherical Prussian blue with high surface area
using acid etching, Curr. Appl. Phys.
18, S21–S27
(2018),
https://doi.org/10.1016/j.cap.2017.11.014
[5] Y.D. Miao, F.N. Xie, J.Y. Cen, F. Zhou, X.F. Tao, J.F. Luo,
G.C. Han, X.L. Kong, X.M. Yang, J.H. Sun, and J. Ling, Fe
3+@polyDOPA-
b-polysarcosine,
a T
1-weighted MRI contrast agent via controlled NTA
polymerization, ACS Macro Lett.
7, 693–698 (2018),
https://doi.org/10.1021/acsmacrolett.8b00287
[6] R.T. Cha, J.J. Li, Y. Liu, Y.F. Zhang, Q. Xie, and M.M.
Zhang, Fe
3O
4 nanoparticles modified by
CD-containing star polymer for MRI and drug delivery, Colloids
Surf. B Biointerfaces
158, 213–221 (2017),
https://doi.org/10.1016/j.colsurfb.2017.06.049
[7] D. Chelminiak, M. Ziegler-Borowska, and H. Kaczmarek,
Polymer coated magnetite nanoparticles for biomedical
applications. Part II. Fe
3O
4 nanoparticles
coated by synthetic polymers, Polimery
60, 87–94 (2015),
https://doi.org/10.14314/polimery.2015.087
[8] J.R. Pinney, G. Melkus, A. Cerchiari, J. Hawkins, and T.A.
Desai, Novel functionalization of discrete polymeric biomaterial
microstructures for applications in imaging and
three-dimensional manipulation, ACS Appl. Mater. Interfaces
6,
14477–14485 (2014),
https://doi.org/10.1021/am503778t
[9] M.A. Tafoya, S. Madi, and L.O. Sillerud, Superparamagnetic
nanoparticle-enhanced MRI of Alzheimer's disease plaques and
activated microglia in 3X transgenic mouse brains: Contrast
optimization, J. Magn. Res. Imaging
46, 574–588 (2017),
https://doi.org/10.1002/jmri.25563
[10] Y. Kuwahara, T. Miyazaki, Y. Shirosaki, G.G. Liu, and M.
Kawashita, Structures of organic additives modified magnetite
nanoparticles, Ceram. Int.
42, 6000–6004 (2016),
https://doi.org/10.1016/j.ceramint.2015.12.152
[11] H.H. Zou, L. Wang, C.H. Zeng, X.L. Gao, Q.Q. Wang, and S.L.
Zhong, Rare-earth coordination polymer micro/nanomaterials:
Preparation, properties and applications, Front. Mater. Sci.
12,
327–347 (2018),
https://doi.org/10.1007/s11706-018-0444-x
[12] S. Aryal, J. Key, C. Stigliano, J.S. Ananta, M. Zhong, and
P. Decuzzi, Engineered magnetic hybrid nanoparticles with
enhanced relaxivity for tumor imaging, Biomaterials
34,
7725–7732 (2013),
https://doi.org/10.1016/j.biomaterials.2013.07.003
[13] K. Roshani, M. Etemadzade, R. Farhoudi, S.E.S. Ebrahimi,
M.P. Hamedani, A. Assadi, and M.S. Ardestani, Fe
3+-EDTA-zinc
oxide nano-diagnostics: Synthesis and in vitro cellular
evaluation, Biosci. Biotechnol. Res. Commun.
10, 445–454
(2017),
https://doi.org/10.21786/bbrc/10.3/18
[14] J.F. Collingwood and F. Adams, in:
Metals in the Brain:
Measurement and Imaging, Neuromethods book series,
volume 124, ed. A.R. White (Humana Press, New York, 2017) pp.
7–32,
https://doi.org/10.1007/978-1-4939-6918-0_2
[15] S.C. Wuang, K.G. Neoh, E.-T. Kang, D.W. Pack, and D.E.
Leckband, Heparinized magnetic nanoparticles: In-vitro
assessment for biomedical applications, Adv. Funct. Mater.
16,
1723–1730 (2006),
https://doi.org/10.1002/adfm.200500879
[16] E. Vismara, A. Valerio, A. Coletti, G. Torri, S. Bertini,
G. Eisele, R. Gornati, and G. Bernardini, Non-covalent synthesis
of metal oxide nanoparticle-heparin hybrid systems: A new
approach to bioactive nanoparticles, Int. J. Molec. Sci.
14,
13463–13481 (2013),
https://doi.org/10.3390/ijms140713463
[17] M.D. Rodriguez-Torres, L.S. Acosta-Torres, and L.A.
Diaz-Torres, Heparin-based nanoparticles: An overview of their
applications, J. Nanomater.
2018, Article ID 9780489
(2018),
https://doi.org/10.1155/2018/9780489
[18] L.P. Wang, G. Jang, D.K. Ban, V. Sant, J. Seth, S. Kazmi,
N. Patel, Q.Q. Yang, J. Lee, W. Janetanakit, S.S. Wang,
B.P.vHead, G. Glinsky, and R. Lal, Multifunctional stimuli
responsive polymer-gated iron and gold-embedded silica nano golf
balls: Nanoshuttles for targeted on-demand theranostics, Bone
Res.
5, Article No. 17051 (2017),
https://doi.org/10.1038/boneres.2017.51
[19] A.J. Theruvath, H. Nejadnik, A.M. Muehe, F. Gassert, N.J.
Lacayo, S.B. Goodman, and H.E. Daldrup-Link, Tracking cell
transplants in femoral osteonecrosis with magnetic resonance
imaging: a proof-of-concept study in patients, Clinic. Cancer
Res.
24, 6223–6229 (2018),
https://doi.org/10.1158/1078-0432.CCR-18-1687
[20] M. Regenboog, A.E. Bohte, E.M. Akkerman, J. Stoker, and
C.E.M. Hollak, Iron storage in liver, bone marrow and splenic
Gaucheroma reflects residual disease in type 1 Gaucher disease
patients on treatment, British J. Haematol.
179, 635–647
(2017),
https://doi.org/10.1111/bjh.14915
[21] A. Prichodko, F. Enrichi, Z. Stankeviciute, A. Benedetti,
I. Grigoraviciute-Puroniene, and A. Kareiva, Study of Eu
3+
and Tm
3+ substitution effects in sol-gel fabricated
calcium hydroxyapatite, J. Sol-Gel Sci. Technol.
81,
261–267 (2017),
https://doi.org/10.1007/s10971-016-4194-x
[22] A. Laurikenas, A. Katelnikovas, R. Skaudzius, and A.
Kareiva, Synthesis and characterization of Tb
3+ and
Eu
3+ metal-organic frameworks with TFBDC
2–
linkers, Opt. Mater.
83, 363–369 (2018),
https://doi.org/10.1016/j.optmat.2017.05.037
[23] A. Smalenskaite, A.N. Salak, M.G.S. Ferreira, R. Skaudzius,
and A. Kareiva, Sol-gel synthesis and characterization of hybrid
inorganic-organic Tb(III)-terephthalate containing layered
double hydroxides, Opt. Mater.
80, 186–196 (2018),
https://doi.org/10.1016/j.optmat.2018.04.048
[24] N. Mahfoudh, K. Karoui, K. Khirouni, and A. Ben Rhaiem,
Optical, electrical properties and conduction mechanism of [(CH
3)
2NH
2]2ZnCl
4
compound, Physica B Condens. Matter
554, 126–136 (2019),
https://doi.org/10.1016/j.physb.2018.11.018
[25] A. Laurikėnas, J. Barkauskas, J. Reklaitis, G. Niaura, D.
Baltrūnas, and A. Kareiva, Formation peculiarities of iron (III)
acetate: Potential precursor for iron and mixed-metal-organic
frameworks (MOFs), Lith. J. Phys.
56, 35−41 (2016),
https://doi.org/10.3952/physics.v56i1.3274
[26] J.H. Yoon, S.B. Choi, Y.J. Oh, M.J. Seo, Y.H. Jhon, T.-B.
Lee, D. Kim, S.H. Choi, and J. Kim, a porous mixed-valent iron
MOF exhibiting the acs net: Synthesis, characterization and
sorption behavior of Fe
3O(F
4BDC)
3(H
2O)
3·(DMF)
3.5,
Catal. Today
120, 324–329 (2007),
https://doi.org/10.1016/j.cattod.2006.09.003
[27] A. Abragam and B. Bleaney,
Electron Paramagnetic
Resonance of Transition Ions (Oxford University Press,
Oxford, 2012),
https://global.oup.com/academic/product/electron-paramagnetic-resonance-of-transition-ions-9780199651528
[28] E. Coronado, C. Marti-Gastaldo, E. Navarro-Moratalla, and
A. Ribera, Intercalation of [M(ox)
3]
3–(M =
Cr, Rh) complexes into (NiFeIII)-Fe-II-LDH, Appl. Clay Sci.
48,
228–234 (2010),
https://doi.org/10.1016/j.clay.2009.11.054
[29] C.V. Popescu and E. Munck, Electronic structure of the H
cluster in [Fe]-hydrogenases, J. Am. Chem. Soc.
121,
7877–7884 (1999),
https://doi.org/10.1021/ja991243y
[30] N. Hoshino and T. Akutagawa, A trinuclear iron(III) complex
of a triple noninnocent ligand for spin-structured molecular
conductors, Chem. Eur. J.
24, 19323–19331 (2018),
https://doi.org/10.1002/chem.201804280
[31] J.F. De Conto, M.R. Oliveira, R.J. Oliveira, K.V. Campos,
E.W. De Menezes, E.V. Benvenutti, E. Franceschi, C.C. Santana,
and S.M. Egues, Synthesis of silica modified with
1-methylimidazolium chloride by sol-gel method: a comparison
between microwave radiation-assisted and conventional methods,
J. Non-Cryst. Solids
471, 209–214 (2017),
https://doi.org/10.1016/j.jnoncrysol.2017.05.041
[32] A.C. Sudik, A.P. Cote, and O.M. Yaghi, Metalorganic
frameworks based on trigonal prismatic building blocks and the
new 'acs' topology, Inorg. Chem.
44, 2998–3000 (2005),
https://doi.org/10.1021/ic050064g
[33] J.M.D. Coey,
Magnetism and Magnetic Materials
(Cambridge University Press, Cambridge, New York, 2009),
http://www.cambridge.org/9781108717519
[34] J.M.D. Coey, A. Barry, J. Brotto, H. Rakoto, S. Brennan,
W.N. Mussel, A. Collomb, and D. Fruchart, Spin-flop in goethite,
J. Phys. Condens. Matter
7, 759–768 (1995),
https://doi.org/10.1088/0953-8984/7/4/006
[35] F. Bødker, M.F. Hansen, C.B. Koch, K. Lefmann, and S.
Mørup, Magnetic properties of hematite nanoparticles, Phys. Rev.
B
61, 6826–6838 (2000),
https://doi.org/10.1103/PhysRevB.61.6826
[36]
Mössbauer Spectroscopy of Frozen Solutions, eds. A.
Vertes and D.L. Nagy (Akadémiai Kiadó, Budapest, 1990),
https://www.amazon.co.uk/Mossbauer-Spectroscropy-Frozen-Solutions-Vertes/dp/9630553473/
[37] E. De Grave and R.E. Vandenberghe,
57Fe
Mössbauer effect study of well crystallized goethite (
α-FeOOH),
Hyperfine Interact.
28, 643–646 (1986),
https://doi.org/10.1007/BF02061530
[38] C.A. Barrero, R.E. Vandenberghe, and E. De Grave, the
effect of Al-content and crystallinity on the magnetic
properties of goethites, Hyperfine Interact.
122, 39–46
(1999),
https://doi.org/10.1023/A:1012681219674
[39] V. Klimas, K. Mažeika, V. Jasulaitienė, and A. Jagminas,
Formation, morphology and composition of F- and Cl-stabilized
iron
β-oxyhydroxides, J. Fluor. Chem.
170, 1–9
(2015),
https://doi.org/10.1016/j.jfluchem.2014.12.002
[40] D. Chambaere and E. De Grave, On the Néel temperature of
β-FeOOH:
Structural dependence and its implications, J. Magn. Magn.
Mater.
42, 263–268 (1984),
https://doi.org/10.1016/0304-8853(84)90107-0
[41] S.J. Oh, D.C. Cook, and H.E. Townsend, Characterization of
iron oxides commonly formed as corrosion products on steel,
Hyperfine Interact.
112, 59–66 (1998),
https://doi.org/10.1023/A:1011076308501
[42] J. Marins, T. Montagnon, H. Ezzaier, C. Hurel, O. Sandre,
D. Baltrūnas, K. Mažeika, A. Petrov, and P. Kuzhir, Colloidal
stability of aqueous suspensions of polymer-coated iron oxide
nanorods: Implications for biomedical applications, ACS Appl.
Nano Mater.
1, 6760–6772 (2018),
https://doi.org/10.1021/acsanm.8b01558
[43] P. Veverka, M. Pashchenko, L. Kubíčková, J. Kuličková, Z.
Jirák, R. Havelek, K. Královec, J. Kohout, and O. Kamana,
Rod-like particles of silica-coated maghemite: Synthesis via
akaganeite, characterization and biological properties, J. Magn.
Magn. Mater.
476, 149–156 (2019),
https://doi.org/10.1016/j.jmmm.2018.12.037
[44] M. Catauro, F. Papale, and F. Bollino, Characterization and
biological properties of TiO
2/PCL hybrid layers
prepared via sol-gel dip coating for surface modification of
titanium implants, J. Non-Cryst. Solids
415, 9–15
(2015),
https://doi.org/10.1016/j.jnoncrysol.2014.12.008
[45] C.P. Guntlin, S.T. Ochsenbein, M. Worle, R. Erni, K.V.
Kravchyk, and M.V. Kovalenko, Popcorn-shaped Fe
xO
(wustite) nanoparticles from a single-source precursor:
Colloidal synthesis and magnetic properties, Chem. Mater.
30,
1249–1256 (2018),
https://doi.org/10.1021/acs.chemmater.7b04382
[46] A. Serra and E. Valles, Advanced electrochemical synthesis
of multicomponent metallic nanorods and nanowires: Fundamentals
and applications, Appl. Mater Today
12, 207–234 (2018),
https://doi.org/10.1016/j.apmt.2018.05.006
[47] V. Malik, A. Pal, O. Pravaz, J.J. Crassous, S. Granville,
B. Grobety, A.M. Hirt, H. Dietsch, and P. Schurtenberger, Hybrid
magnetic iron oxide nanoparticles with tunable field-directed
selfassembly, Nanoscale
9, 14405–14413 (2017),
https://doi.org/10.1039/C7NR04518B
[48] S. Tanaka, Y.V. Kaneti, R. Bhattacharjee, M.N. Islam, R.
Nakahata, N. Abdullah, S.I. Yusa, N. Nam-Trung, M.J.A. Shiddiky,
Y. Yamauchi, and M.S.A. Hossain, Mesoporous iron oxide
synthesized using poly(styrene-b-acrylic acid-b-ethylene glycol)
block copolymer micelles as templates for colorimetric and
electrochemical detection of glucose, ACS Appl. Mater.
Interfaces
10, 1039–1049 (2018),
https://doi.org/10.1021/acsami.7b13835
[49] H. Shokrollahi, Structure, synthetic methods, magnetic
properties and biomedical applications of ferrofluids, Mater.
Sci. Eng. C
33, 2476–2487 (2013),
https://doi.org/10.1016/j.msec.2013.03.028