Andrius Poškus, Rokas Dobužinskas, Mindaugas
Viliūnas, and Kęstutis Arlauskas
Received 19 November 2019; revised 22 January 2020; accepted 23
January 2020
[1] H. Mescher, E. Hamann, and U. Lemmer, Simulation and design
of folded perovskite X-ray detectors, Sci. Rep.
9, 5231
(2019),
https://doi.org/10.1038/s41598-019-41440-6
[2] L. Li, X. Liu, H. Zhang, B. Zhang, W. Jie, P.J. Sellin, C.
Hu, G. Zeng, and Y. Xu, Enhanced X-ray sensitivity of MAPbBr
3
detector by tailoring the interface-states density, ACS Appl.
Mater. Interfaces
11, 7522 (2019),
https://doi.org/10.1021/acsami.8b18598
[3] U. Lemmer and H. Mescher, Novel hybrid organic-inorganic
perovskite detector designs based on multilayered device
architectures: simulation and design, Proc. SPIE
10948,
109480W (2019),
https://doi.org/10.1117/12.2511739
[4] K.D.G.I. Jayawardena, H.M. Thirimanne, S.F. Tedde, J.E.
Huerdler, A.J. Parnell, R.M.I. Bandara, C.A. Mills, and S.R.P.
Silva, Millimeter-scale unipolar transport in high sensitivity
organic-inorganic semiconductor X-ray detectors, ACS Nano
13,
6973 (2019),
https://doi.org/10.1021/acsnano.9b01916
[5] A. Ciavatti, L. Basiricò, I. Fratelli, S. Lai, P. Cosseddu,
A. Bonfiglio, J.E. Anthony, and B. Fraboni, Boosting direct
X‐ray detection in organic thin films by small molecules
tailoring, Adv. Funct. Mater.
29, 1806119 (2019),
https://doi.org/10.1002/adfm.201806119
[6] J. Oliveira, P.M. Martins, V. Correia, L. Hilliou, D.
Petrovykh, and S. Lanceros-Mendez, Water based scintillator ink
for printed X-ray radiation detectors, Polym. Test.
69,
26 (2018),
https://doi.org/10.1016/j.polymertesting.2018.04.042
[7] H.S. Gill, B. Elshahat, A. Kokil, L. Li, R. Mosurkal, P.
Zygmanski, E. Sajo, and J. Kumar, Flexible perovskite-based
X-ray detectors for dose monitoring in medical imaging
applications, Phys. Med.
5, 20 (2018),
https://doi.org/10.1016/j.phmed.2018.04.001
[8] R. Dobužinskas, A. Poškus, and K. Arlauskas, X-ray
sensitivity of small organic molecule and zinc cadmium sulfide
mixture layers deposited using thermal melting technique, Org.
Electron.
18, 37 (2015),
https://doi.org/10.1016/j.orgel.2015.01.004
[9] A. Intaniwet, C.A. Mills, M. Shkunov, H. Thiem, J.L. Keddie,
and P.J. Sellin, Characterization of thick film
poly(triarylamine) semiconductor diodes for direct X-ray
detection, J. Appl. Phys.
106, 064513 (2009),
https://doi.org/10.1063/1.3225909
[10] B. Elshahat, H.S. Gill, I. Filipyev, S. Shrestha, J.
Hesser, J. Kumar, A. Karellas, P. Zygmanski, and E. Sajo,
Technical Note: Nanometric organic photovoltaic thin film
detectors for dose monitoring in diagnostic x-ray imaging, Med.
Phys.
42, 4027 (2015),
https://doi.org/10.1118/1.4922202
[11] L. Basiricò, A. Ciavatti, T. Cramer, P. Cosseddu, A.
Bonfiglio, and B. Fraboni, Direct X-ray photoconversion in
flexible organic thin film devices operated below 1 V, Nat.
Commun.
7, 13063 (2016),
https://doi.org/10.1038/ncomms13063
[12] C.W. Han and Y.H. Tak, in:
Flat Panel Display
Manufacturing (John Wiley & Sons, Ltd, 2018) pp.
143–158,
https://doi.org/10.1002/9781119161387.ch8_02
[13] H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, and S.-T. Wu,
Liquid crystal display and organic light-emitting diode display:
present status and future perspectives, Light Sci. Appl.
7,
17168 (2018),
https://doi.org/10.1038/lsa.2017.168
[14] H. Vartanian and J. Jurikson-Rhodes, Mobile Device with a
Flexible Organic Light Emitting Diode (OLED) Multi-touch
Display, U.S. Patent Application US20170337858A1 (2017),
[U.
S. Patent Application]
[15] N.S. Sariciftci, From organic electronics to bio-organic
electronics, Nonlinear Opt. Quantum Opt.
50(1–3), 137
(2019),
https://www.oldcitypublishing.com/journals/nloqo-home/nloqo-issue-contents/nloqo-volume-50-number-1-3-2019/nloqo-50-1-3-p-137-144/
[16] X. Cai, B. Gao, X.-L. Li, Y. Cao, and S.-J. Su,
Singlet-triplet splitting energy management via acceptor
substitution: complanation molecular design for deep-blue
thermally activated delayed fluorescence emitters and organic
light-emitting diodes application, Adv. Funct. Mater.
26,
8042 (2016),
https://doi.org/10.1002/adfm.201603520
[17] J. Park, S. Lee, and H.H. Lee, High-mobility polymer
thin-film transistors fabricated by solvent-assisted
drop-casting, Org. Electron.
7, 256 (2006),
https://doi.org/10.1016/j.orgel.2006.03.008
[18] H. Yang and P. Jiang, Large-scale colloidal self-assembly
by doctor blade coating, Langmuir
26, 13173 (2010),
https://doi.org/10.1021/la101721v
[19] Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B.
Mannsfeld, J. Chen, D. Nordlund, M.F. Toney, J. Huang, and Z.
Bao, Ultra-high mobility transparent organic thin film
transistors grown by an off-centre spin-coating method, Nat.
Commun.
5, 3005 (2014),
https://doi.org/10.1038/ncomms4005
[20]
Roll-to-Roll Manufacturing: Process Elements and Recent
Advances, eds. J. Greener, G.H. Pearson, and M. Cakmak
(Wiley, Hoboken, NJ, 2018),
https://www.wiley.com/en-lt/Roll+to+Roll+Manufacturing:+Process+Elements+and+Recent+Advances-p-9781119162209
[21] S. Logothetidis and A. Laskarakis, in:
Solution-Processable
Components for Organic Electronic Devices, eds. J.
Ulanski, B. Luszczynska, and K. Matyjaszewski (Wiley-VCH Verlag
GmbH & Co. KGaA, Weinheim, Germany, 2019) pp. 627–653,
https://doi.org/10.1002/9783527813872.ch12
[22] F. Pastorelli, T.M. Schmidt, M. Hösel, R.R. Søndergaard, M.
Jørgensen, and F.C. Krebs, The organic power transistor:
roll-to-roll manufacture, thermal behavior, and power handling
when driving printed electronics, Adv. Eng. Mater.
18,
51 (2016),
https://doi.org/10.1002/adem.201500348
[23] D. Yu, D. Beckelmann, M. Opsölder, B. Schäfer, K. Moh, R.
Hensel, P.W. De Oliveira, and E. Arzt, Roll-to-roll
manufacturing of micropatterned adhesives by template
compression, Materials
12, 97 (2019),
https://doi.org/10.3390/ma12010097
[24] H. Wang, Z. Zeng, P. Xu, L. Li, G. Zeng, R. Xiao, Z. Tang,
D. Huang, L. Tang, C. Lai, et al., Recent progress in covalent
organic framework thin films: fabrications, applications and
perspectives, Chem. Soc. Rev.
48, 488 (2019),
https://doi.org/10.1039/C8CS00376A
[25] C.S. Kim, S. Lee, E.D. Gomez, J.E. Anthony, and Y.-L. Loo,
Solvent-dependent electrical characteristics and stability of
organic thin-film transistors with drop cast
bis(triisopropylsilylethynyl) pentacene, Appl. Phys. Lett.
93,
103302 (2008),
https://doi.org/10.1063/1.2979691
[26] R. Dobužinskas, A. Poškus, M. Viliūnas, V. Jankauskas, M.
Daškevičienė, V. Getautis, and K. Arlauskas, Melt spin coating
for X‐ray‐sensitive hybrid organic-inorganic layers of small
carbazolyl‐containing molecules blended with tungsten, Phys.
Status Solidi A
216(23), 1900635 (2019),
https://doi.org/10.1002/pssa.201900635
[27] Y. Zhao, X. Zhao, M. Roders, A. Gumyusenge, A.L. Ayzner,
and J. Mei, Melt-processing of complementary semiconducting
polymer blends for high performance organic transistors, Adv.
Mater.
29, 1605056 (2017),
https://doi.org/10.1002/adma.201605056
[28] D.B. Mitzi, C.D. Dimitrakopoulos, J. Rosner, D.R. Medeiros,
Z. Xu, and C. Noyan, Hybrid field-effect transistor based on a
low-temperature melt-processed channel layer, Adv. Mater. 14,
1772 (2002),
https://doi.org/10.1002/1521-4095(20021203)14:23<1772::AID-ADMA1772>3.0.CO;2-Y
[29] S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J.
Greenspan, L. Laperriere, O. Bubon, A. Reznik, D. DeCrescenzo,
K.S. Karim, and J.A. Rowlands, Amorphous and polycrystalline
photoconductors for direct conversion flat panel X-ray image
sensors, Sensors
11, 5112 (2011),
https://doi.org/10.3390/s110505112
[30] A. Intaniwet, C.A. Mills, M. Shkunov, P.J. Sellin, and J.L.
Keddie, Heavy metallic oxide nanoparticles for enhanced
sensitivity in semiconducting polymer X-ray detectors,
Nanotechnology
23, 235502 (2012),
https://doi.org/10.1088/0957-4484/23/23/235502
[31] Y. Wang, X. Liu, X. Li, F. Zhai, S. Yan, N. Liu, Z. Chai,
Y. Xu, X. Ouyang, and S. Wang, Direct radiation detection by a
semiconductive metalorganic framework, J. Am. Chem. Soc.
141,
8030 (2019),
https://doi.org/10.1021/jacs.9b01270
[32] Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo, Y.S.
Choi, I.T. Han, S.Y. Lee, and N.-G. Park, Printable
organometallic perovskite enables large-area, low-dose X-ray
imaging, Nature
550, 87 (2017),
https://doi.org/10.1038/nature24032
[33] C.A. Mills, H. Al-Otaibi, A. Intaniwet, M. Shkunov, S.
Pani, J.L. Keddie, and P.J. Sellin, Enhanced X-ray detection
sensitivity in semiconducting polymer diodes containing metallic
nanoparticles, J. Phys. Appl. Phys.
46, 275102 (2013),
https://doi.org/10.1088/0022-3727/46/27/275102
[34] M. Daskeviciene, V. Getautis, J.V. Grazulevicius, A.
Stanisauskaite, J. Antulis, V. Gaidelis, V. Jankauskas, and J.
Sidaravicius, Crosslinkable carbazolyl-containing molecular
glasses for electrophotography, J. Imaging Sci. Technol.
46(5),
467 (2002),
https://www.ingentaconnect.com/content/ist/jist/2002/00000046/00000005/art00010
[35] W.D. Schubert and E. Lassner, Production and
characterization of hydrogen-reduced submicron tungsten powders
- Part 1: State of the art in research, production and
characterization of raw materials and tungsten powders, Int. J.
Refract. Met. Hard Mater.
10, 133 (1991),
https://doi.org/10.1016/0263-4368(91)90017-I
[36] S. Kutkevicius, A. Stanisauskaite, V. Getautis, A.
Railaite, and S. Uss, Synthesis of carbazole containing organic
photosemiconductors using dimercapto compounds, J. Prakt. Chem.,
337, 315 (1995),
https://doi.org/10.1002/prac.19953370165
[37] J. Heller, D. Lyman, and W. Hewett, The synthesis and
polymerization studies of some higher homologues of
9-vinylcarbazole, Makromol. Chem.
73, 48–59 (1964),
https://doi.org/10.1002/macp.1964.020730104
[38]
Average Energy Required to Produce an Ion Pair,
Report, ICRU-31 (Washington DC, 1979),
https://icru.org/home/reports/average-energy-required-to-produce-an-ion-pair-report-31
[39] S.T. Perkins, D.E. Cullen, and S.M. Seltzer,
Tables and
Graphs of Electron-Interaction Cross Sections from 10 eV to
100 GeV Derived from the LLNL Evaluated Electron Data Library
(EEDL), Z = 1–100, Technical Report, UCRL-50400-Vol. 31,
5691165 (1991),
https://doi.org/10.2172/5691165
[40] Y.-K. Kim, K.K. Irikura, M.E. Rudd, M.A. Ali, P.M. Stone,
et. al.,
Electron-Impact Cross Section for Ionization and
Excitation, NIST Standard Reference Database 107 (National
Institute of Standards and Technology, 1997),
https://dx.doi.org/10.18434/T4KK5C
[41] D.E. Cullen, J.H. Hubbell, and L. Kissel,
EPDL97: The
Evaluated Photo Data Library '97 Version, Report,
UCRL-50400-Vol. 6-Rev. 5, 295438 (1997),
https://doi.org/10.2172/295438
[42] S.T. Perkins, D.E. Cullen, M.H. Chen, J. Rathkopf, J.
Scofield, and J.H. Hubbell,
Tables and Graphs of Atomic
Subshell and Relaxation Data Derived from the LLNL Evaluated
Atomic Data Library (EADL), Z = 1–100, Report,
UCRL-50400-Vol. 30, 10121422 (1991),
https://doi.org/10.2172/10121422
[43] A. Poškus, Monte Carlo estimation of average energy
required to produce an ion pair in noble gases by electrons with
energies from 1 keV to 100 MeV, J. Nucl. Sci. Technol.
52,
675 (2015),
https://doi.org/10.1080/00223131.2014.974710