Received 29 November 2019; revised 7 February 2020; accepted 10
February 2020
[1] M. Karaliūnas, V. Jakštas, K.E. Nasser, R. Venckevičius, A.
Urbanowicz, I. Kašalynas, and G. Valušis, Application of
terahertz spectroscopy for characterization of biologically
active organic molecules in natural environment, Proc. SPIE
9934,
99340P (2016),
https://doi.org/10.1117/12.2238242
[2] M. Karaliūnas, K.E. Nasser, A. Urbanowicz, I. Kašalynas, D.
Bražinskienė, S. Asadauskas, and G. Valušis, Non-destructive
inspection of food and technical oils by terahertz spectroscopy,
Sci. Rep.
8, 18025 (2018),
https://doi.org/10.1038/s41598-018-36151-3
[3] U. Puc, A. Abina, A. Jeglič, A. Zidanšek, I. Kašalynas, R.
Venckevičius, and G. Valušis, Spectroscopic analysis of
melatonin in the terahertz frequency range, Sensors
18(12),
4098 (2018),
https://doi.org/10.3390/s18124098
[4] Q. Sun, Y. He, K. Liu, S. Fan, E.P.J. Parrott, and E.
Pickwell-MacPherson, Recent advances in terahertz technology for
biomedical applications, Quant. Imaging Med. Surg.
7(3),
345–355 (2017),
https://doi.org/10.21037/qims.2017.06.02
[5] J.-H. Son, S.J. Oh, and H. Cheon, Potential clinical
applications of terahertz radiation, J. Appl. Phys.
125(19),
190901 (2019),
https://doi.org/10.1063/1.5080205
[6] I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, K.
Köhler, and G. Valušis, Terahertz imaging with bow-tie
InGaAs-based diode with broken symmetry, Electron. Lett.
45,
833–835 (2009),
https://doi.org/10.1049/el.2009.0336
[7] I. Kasalynas, R. Venckevicius, and G. Valusis, Continuous
wave spectroscopic terahertz imaging with InGaAs bow-tie diodes
at room temperature, IEEE Sens. J.
13(1), 50–54 (2013),
https://doi.org/10.1109/JSEN.2012.2223459
[8] F. Wahaia, G. Valusis, L.M. Bernardo, A. Almeida, J.A.
Moreira, P.C. Lopes, J. Macutkevic, I. Kasalynas, D. Seliuta, R.
Adomavicius, R. Henrique, and M. Lopes, Detection of colon
cancer by terahertz techniques, J. Mol. Struct.
1006(1–3),
77–82 (2011),
https://doi.org/10.1016/j.molstruc.2011.05.049
[9] I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F.
Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A.
Švigelj, and J. Trontelj, Spectroscopic terahertz imaging at
room temperature employing microbolometer terahertz sensors and
its application to the study of carcinoma tissues, Sensors
16(4),
432 (2016),
https://doi.org/10.3390/s16040432
[10] O. Mitrofanov, I. Brener, T.S. Luk, and J.L. Reno,
Photoconductive terahertz near-field detector with a hybrid
nanoantenna array cavity, ACS Photonics
2(12), 1763–1768
(2015),
https://doi.org/10.1021/acsphotonics.5b00475
[11] T. Kiwa, T. Kamiya, T. Morimoto, K. Fujiwara, Y. Maeno, Y.
Akiwa, M. Iida, T. Kuroda, K. Sakai, H. Nose, M. Kobayashi, and
K. Tsukada, Imaging of chemical reactions using a terahertz
chemical microscope, Photonics
6(1), 10 (2019),
https://doi.org/10.3390/photonics6010010
[12] M. Tamošiūnaitė, V. Tamošiūnas, and G. Valušis, Wireless
communications beyond 5G: Uncertainties of terahertz wave
attenuation due to rain, Lith. J. Phys.
58(2), 149
(2018),
https://doi.org/10.3952/physics.v58i2.3744
[13] I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis,
and G. Valušis, InGaAs-based bow-tie diode for spectroscopic
terahertz imaging, J. Appl. Phys.
110(11), 114505
(2011),
https://doi.org/10.1063/1.3658017
[14] V. Jakštas, J. Jorudas, V. Janonis, L. Minkevičius, I.
Kašalynas, P. Prystawko, and M. Leszczynski, Development of
AlGaN/GaN/SiC high-electron-mobility transistors for THz
detection, Lith. J. Phys.
58(2), 188 (2018),
https://doi.org/10.3952/physics.v58i2.3748
[15] L. Minkevičius, V. Tamošiunas, K. Madeikis, B. Voisiat, I.
Kašalynas, and G. Valušis, On-chip integration of laser-ablated
zone plates for detection enhancement of InGaAs bow-tie
terahertz detectors, Electron. Lett.
50(19), 1367
(2014),
https://doi.org/10.1049/el.2014.1893
[16] L. Minkevičius, S. Indrišiūnas, R. Šniaukas, B. Voisiat, V.
Janonis, V. Tamošiūnas, I. Kašalynas, G. Račiukaitis, and G.
Valušis, Terahertz multilevel phase Fresnel lenses fabricated by
laser patterning of silicon, Opt. Lett.
42(10), 1875
(2017),
https://doi.org/10.1364/OL.42.001875
[17] D. Jokubauskis, L. Minkevičius, M. Karaliūnas, S.
Indrišiūnas, I. Kašalynas, G. Račiukaitis, and G. Valušis,
Fibonacci terahertz imaging by silicon diffractive optics, Opt.
Lett.
43(12), 2795 (2018),
https://doi.org/10.1364/OL.43.002795
[18] D. Glaab, S. Boppel, A. Lisauskas, U. Pfeiffer, E. Öjefors,
and H.G. Roskos, Terahertz heterodyne detection with silicon
field-effect transistors, Appl. Phys. Lett.
96(4),
042106 (2010),
https://doi.org/10.1063/1.3292016
[19] L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G.
Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, and K. Köhler,
Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,
Appl. Phys. Lett.
99(13), 131101 (2011),
https://doi.org/10.1063/1.3641907
[20] D. Jokubauskis, L. Minkevičius, D. Seliuta, I. Kašalynas,
and G. Valušis, Terahertz homodyne spectroscopic imaging of
concealed low-absorbing objects, Opt. Eng.
58(2), 023104
(2019),
https://doi.org/10.1117/1.OE.58.2.023104
[21] W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D.
Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Łusakowski,
M. Sakowicz, et al., Field effect transistors for terahertz
detection and emission, J. Infrared Millim. Terahertz Waves
32(5),
618
–628 (2011),
https://doi.org/10.1007/s10762-010-9647-7
[22] V. Jakštas, I. Grigelionis, V. Janonis, G. Valušis, I.
Kašalynas, G. Seniutinas, S. Juodkazis, P. Prystawko, and M.
Leszczyński, Electrically driven terahertz radiation of 2DEG
plasmons in AlGaN/GaN structures at 110 K temperature, Appl.
Phys. Lett.
110(20), 202101 (2017),
https://doi.org/10.1063/1.4983286
[23] R.C. Miller, A.C. Gossard, D.A. Kleinman, and O. Munteanu,
Parabolic quantum wells with the GaAs-Al
xGa
1-xAs
system, Phys. Rev. B
29, 3740 (1984),
https://doi.org/10.1103/PhysRevB.29.3740
[24] J. Ulrich, R. Zobl, K. Unterrainer, G. Strasser, E. Gornik,
K.D. Maranowski, and A.C. Gossard, Temperature dependence of
far-infrared electroluminescence in parabolic quantum wells,
Appl. Phys. Lett.
74(21), 3158 (1999),
https://doi.org/10.1063/1.124091
[25] R. Bratschitsch, T. Müller, R. Kersting, G. Strasser, and
K. Unterrainer, Coherent terahertz emission from optically
pumped intersubband plasmons in parabolic quantum wells, Appl.
Phys. Lett.
76(24), 3501 (2000),
https://doi.org/10.1063/1.126687
[26] H. Dakhlaoui, Tunability of the optical absorption and
refractive index changes in step-like and parabolic quantum
wells under external electric field, Optik
168, 416
(2018),
https://doi.org/10.1016/j.ijleo.2018.04.109
[27] M. Geiser, C. Walther, G. Scalari, M. Beck, M. Fischer, L.
Nevou, and J. Faist, Strong light-matter coupling at terahertz
frequencies at room temperature in electronic LC resonators,
Appl. Phys. Lett.
97(19), 191107 (2010),
https://doi.org/10.1063/1.3511446
[28] M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou,
and J. Faist, Ultrastrong coupling regime and plasmon polaritons
in parabolic semiconductor quantum wells, Phys. Rev. Lett.
108,
106402 (2012),
https://doi.org/10.1103/PhysRevLett.108.106402
[29] A. Tzimis, A.V. Trifonov, G. Christmann, S.I. Tsintzos, Z.
Hatzopoulos, I.V. Ignatiev, A.V. Kavokin, and P.G. Savvidis,
Strong coupling and stimulated emission in single parabolic
quantum well microcavity for terahertz cascade, Appl. Phys.
Lett.
107(10), 101101 (2015),
https://doi.org/10.1063/1.4930165
[30] B. Paulillo, J.-M. Manceau, L.H. Li, A.G. Davies, E.H.
Linfield, and R. Colombelli, Room temperature strong
light-matter coupling in three dimensional terahertz meta-atoms,
Appl. Phys. Lett.
108(10), 101101 (2016),
https://doi.org/10.1063/1.4943167
[31] S. Pūkienė, M. Karaliūnas, A. Jasinskas, E. Dudutienė, B.
Čechavičius, J. Devenson, R. Butkutė, A. Udal, and G. Valušis,
Enhancement of photoluminescence of GaAsBi quantum wells by
parabolic design of AlGaAs barriers, Nanotechnology
30(45),
455001 (2019),
https://doi.org/10.1088/1361-6528/ab36f3
[32] M. Karaliunas, J. Pagalys, V. Jakštas, R. Norkus, A.
Urbanowicz, J. Devenson, R. Butkute, A. Udal, and G. Valušis,
Spectral properties of incoherent terahertz torch based on
parabolic Ga(As, Bi)/AlGaAs quantum wells, Proc. SPIE
11124,
1112409 (2019),
https://doi.org/10.1117/12.2528428
[33] P. Lautenschlager, M. Garriga, S. Logothetidis, and M.
Cardona, Interband critical points of GaAs and their temperature
dependence, Phys. Rev. B
35, 9174 (1987),
https://doi.org/10.1103/PhysRevB.35.9174
[34] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band
parameters for III-V compound semiconductors and their alloys,
J. Appl. Phys.
89(11), 5815 (2001),
https://doi.org/10.1063/1.1368156
[35] T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama,
Intersubband absorption linewidth in GaAs quantum wells due to
scattering by interface roughness, phonons, alloy disorder, and
impurities, J. Appl. Phys.
93(3), 1586 (2003),
https://doi.org/10.1063/1.1535733
[36] P. Harrison,
Quantum Wells, Wires and Dots: Theoretical
and Computational Physics of Semiconductor Nanostructures,
2nd ed. (John Wiley and Sons, Chichester, 2005) pp. 459,
https://doi.org/10.1002/0470010827
[37] R. Reeder, Z. Ikonić, P. Harrison, A. Udal, and E. Velmre,
Laterally pumped GaAs/AlGaAs quantum wells as sources of
broadband terahertz radiation, Appl. Phys. Lett.
102(7),
073715 (2007),
https://doi.org/10.1063/1.2783779
[38] Q. Guo, C.K. Ong, H.C. Poon, and Y.P. Feng, Calculation of
electron effective masses in AlAs, Phys. Status Solidi B
197(1),
111–117 (1996),
https://doi.org/10.1002/pssb.2221970117
[39] V. Karpus, R. Norkus, R. Butkutė, S. Stanionytė, B.
Čechavičius, and A. Krotkus, THz-excitation spectroscopy
technique for band-offset determination, Opt. Express
26(26),
33807 (2018),
https://doi.org/10.1364/OE.26.033807
[40] I.P. Marko, S.R. Jin, K. Hild, Z. Batool, Z.L. Bushell, P.
Ludewig, W. Stolz, K. Volz, R. Butkutė, V. Pačebutas, A.
Geizutis, A. Krotkus, and S.J. Sweeney, Properties of hybrid
MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum
well lasers, Semicond. Sci. Technol.
30(9), 094008
(2015),
https://doi.org/10.1088/0268-1242/30/9/094008
[41] A. Udal, R. Reeder, E. Velmre, and P. Harrison, Comparison
of methods for solving the Schrödinger equation for multiquantum
well heterostructure applications, Proc. Estonian Acad. Sci.
Eng.
12(2–3), 246 (2006),
[PDF]
[42] Y. Arakawa, H. Sakaki, M. Nishioka, J. Yoshino, and T.
Kamiya, Recombination lifetime of carriers in GaAs-GaAlAs
quantum wells near room temperature, Appl. Phys. Lett.
46(5),
519 (1985),
https://doi.org/10.1063/1.95578
[43] R. Ferreira and G. Bastard, Evaluation of some scattering
times for electrons in unbiased and biased single- and
multiple-quantum-well structures, Phys. Rev. B
40, 1074
(1989),
https://doi.org/10.1103/PhysRevB.40.1074
[44] P. Harrison,
Quantum Wells, Wires and Dots: Theoretical
and Computational Physics of Semiconductor Nanostructures,
2nd ed. (John Wiley and Sons, Chichester, 2005) pp. 342,
https://doi.org/10.1002/0470010827
[45] Y. Huang and C. Lien, Very large Stark shift in
three-coupled-quantum wells and their application to tunable
far-infrared photodetectors, J. Appl. Phys.
77(7), 3433
(1995),
https://doi.org/10.1063/1.358635
[46] R. Butkutė, V. Pačebutas, A. Krotkus, N. Knaub, and K.
Volz, Migration-enhanced epitaxy of thin GaAsBi layers, Lith. J.
Phys.
54(2), 125 (2014),
https://doi.org/10.3952/physics.v54i2.2922
[47] R. Butkutė, G. Niaura, E. Pozingytė, B. Čechavičius, A.
Selskis, M. Skapas, V. Karpus, and A. Krotkus, Bismuth quantum
dots in annealed GaAsBi/AlAs quantum wells, Nanoscale Res. Lett.
12(1), 436 (2017),
https://doi.org/10.1186/s11671-017-2205-7