Received 24 January 2020; revised 26 March 2020; accepted 6 April
2020
[1] Y. Vysochanskii, T. Janssen, R. Currat, R. Folk, J. Banys,
J. Grigas, and V. Samulionis,
Phase Transitions in
Ferroelectric Phosphorous Chalcogenide Crystals (Vilnius
University Publishing House, Vilnius, 2008),
https://www.amazon.com/Transitions-Ferroelectric-Phosphorous-Chalcogenide-Crystals/dp/9986198852
[2] Y. Li and D.J. Singh, Properties of the ferroelectric
visible light absorbing semiconductors: Sn
2P
2S
6
and Sn
2P
2Se
6, Phys. Rev. Mater.
1(7), 075102 (2017),
https://doi.org/10.1103/PhysRevMaterials.1.075402
[3] M. Zhao, G. Gou, X. Ding, and J. Sun, Enhancing visible
light absorption for ferroelectric Sn
2P
2S
6
by Se anion substitution, J. Phys. Chem. C
122(44),
25565–25572 (2018),
https://doi.org/10.1021/acs.jpcc.8b08402
[4] K. Rushchanskii, Y. Vysochanskii, and D. Strauch,
Ferroelectricity, nonlinear dynamics, and relaxation effects in
monoclinic Sn
2P
2S
6, Phys. Rev.
Lett.
99(20), 207601 (2007),
https://doi.org/10.1103/PhysRevLett.99.207601
[5] R. Yevych, M. Medulych, and Y. Vysochanskii, Nonlinear
dynamics of ferroelectrics with three-well local potential,
Condens. Matter Phys.
21(2), 23001 (2018),
https://doi.org/10.5488/CMP.21.23001
[6] K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii,
Electronic structure and phase transition in ferroelectric Sn
2P
2S
6
crystal, Int. J. Mol. Sci.
13(12), 14356–14384 (2012),
https://doi.org/10.3390/ijms131114356
[7] V. Shvalya, A. Oleaga, A. Salazar, A. Kohutych, and Y.
Vysochanskii, Critical behaviour study of ferroelectric
semiconductors (Pb
xSn
1–x)
2P
2S
6
from thermal diffusivity measurements, Thermochim. Acta
617,
136–143 (2015),
https://doi.org/10.1016/j.tca.2015.08.031
[8] R. Yevych, V. Haborets, M. Medulych, A. Molnar, A. Kohutych,
A. Dziaugys, J. Banys, and Y. Vysochanskii, Valence fluctuations
in Sn(Pb)
2P
2S
6 ferroelectrics,
Low Temp. Phys.
42(12), 1155–1162 (2016),
https://doi.org/10.1063/1.4973005
[9] K. Ruzhchanskii, R. Bilanych, A. Molnar, R. Yevych, A.
Kohutych, S. Perechinskii, V. Samulionis, J. Banys, and Y.
Vysochanskii, Ferroelectricity in (Pb
ySn
1–y)
2P
2S
6
mixed crystals and random field BEG model, Phys. Status Solidi B
253(2), 384–391 (2016),
https://doi.org/10.1002/pssb.201552138
[10] P. Ondrejkovic, M. Guennou, M. Kempa, Y. Vysochanskii, G.
Garbarino, and J. Hlinka, An x-ray scattering study of Sn
2P
2S
6:
Absence of incommensurate phase up to 1 GPa, J. Phys. Condens.
Matter
25(11), 115901 (2013),
https://doi.org/10.1088/0953-8984/25/11/115901
[11] K. Moriya, K. Iwauchi, M. Ushida, A. Nakagawa, K. Watanabe,
S. Yano, S. Motojima, and Y. Akagi, Dielectric studies of
ferroelectric phase transitions in Pb
2xSn
2(1–x)P
2S
6
single crystals, J. Phys. Soc. Japan
64(5), 1775–1784
(1995),
https://doi.org/10.1143/JPSJ.64.1775
[12] A. Oleaga, V. Liubachko, A. Salazar, and Y. Vysochanskii,
Introducing a tricritical point in Sn
2P
2(Se
yS
1–y)
6
ferroelectrics by Pb addition, Thermochim. Acta
675,
38–43 (2019),
https://doi.org/10.1016/j.tca.2019.03.008
[13] V. Shvalya, A. Oleaga, A. Salazar, I. Stoika, and Y.
Vysochanskii, Influence of dopants on the thermal properties and
critical behavior of the ferroelectric transition in uniaxial
ferroelectric Sn
2P
2S
6, J.
Mater. Sci.
51(17), 8156–8167 (2016),
https://doi.org/10.1007/s10853-016-0091-5
[14] K.A. Müller and H. Burkard, SrTiO
3: An intrinsic
quantum paraelectric below 4 K, Phys. Rev. B
19(7),
3593–3602 (1979),
https://doi.org/10.1103/PhysRevB.19.3593
[15] T. Wei, C. Zhu, K.F. Wang, H.L. Cai, J.S. Zhu, and J.M.
Liu, Influence of A-site codoping on ferroelectricity of quantum
paraelectric SrTiO
3, J. Appl. Phys.
103(12),
124104 (2008),
https://doi.org/10.1063/1.2940372
[16] H. Fujishita, S. Kitazawa, M. Saito, R. Ishisaka, H.
Okamoto, and T. Yamaguchi, Quantum paraelectric states in SrTiO
3
and KTaO
3: Barrett model, Vendik model, and quantum
criticality, J. Phys. Soc. Japan
85(7), 074703 (2016),
https://doi.org/10.7566/JPSJ.85.074703
[17] C.W. Rischau, X. Lin, C.P. Grams, D. Finck, S. Harms, J.
Engelmayer, T. Lorenz, J. Gallais, B. Fauqué, J. Hemberger, and
K. Behnia, A ferroelectric quantum phase transition inside the
superconducting dome of Sr
1–xCa
xTiO
3–δ,
Nat. Phys.
13(7), 643–648 (2017),
https://doi.org/10.1038/nphys4085
[18] S.E. Rowley, L.J. Spalek, R.P. Smith, M.P.M. Dean, M. Itoh,
J.F. Scott, G.G. Lonzarich, and S.S. Saxena, Ferroelectric
quantum criticality, Nat. Phys.
10(5), 367–372 (2014),
https://doi.org/10.1038/nphys2924
[19] C.L. Wang and M.L. Zhao, Burns temperature and quantum
temperature scale, J. Adv. Dielectr.
1(2), 163–167
(2011),
https://doi.org/10.1142/S2010135X1100029X
[20] N. Barman, P. Singh, C. Narayana, and K. Varma, Incipient
ferroelectric to a possible ferroelectric transition in Te
4+
doped calcium copper titanate (CaCu
3Ti
4O
12)
ceramics at low temperature as evidenced by Raman and dielectric
spectroscopy, AIP Adv.
7(3), 035105 (2017),
https://doi.org/10.1063/1.4973645
[21] M. Maior, M. Gurzan, S. Molnar, I. Prits, and Y.
Vysochanskii, Effect of germanium doping on pyroelectric and
piezoelectric properties of Sn
2P
2S
6
single crystal, IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47(4), 877–880 (2000),
https://doi.org/10.1038/nphys2924
[22] V.S. Vikhnin, P.A. Markovin, and W. Kleemann, The origin of
polar ordering in incipient ferroelectrics with weak off-center
impurities, Ferroelectrics
218(1), 85–91 (1998),
https://doi.org/10.1080/00150199808227136
[23] P. Barone, D. Di Sante, and S. Picozzi, Improper origin of
polar displacements at CaTiO
3 and CaMnO
3
twin walls, Phys. Rev. B
89(14), 144104 (2014),
https://doi.org/10.1103/PhysRevB.89.144104