[PDF]  https://doi.org/10.3952/physics.v60i2.4227

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 125–131 (2020)
 

QUANTUM PARAELECTRICITY AND INDUCED FERROELECTRICITY BY GERMANIUM DOPING OF (PbySn1–y)2P2S(Se)6 SINGLE CRYSTALS
  Ilona Zamaraitėa, Andrius Džiaugysa, Yulian Vysochanskiib, and Jūras Banysa
  a Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
b Institute of Solid State Physics and Chemistry, Uzhgorod University, 46 Pidgirna St., 88000 Uzhgorod, Ukraine
Email: ilona.zamaraite@ff.vu.lt

Received 24 January 2020; revised 26 March 2020; accepted 6 April 2020

In this paper we report a dielectric study on four single crystals Pb2P2S6, (Pb0.98Ge0.02)2P2S6, (Pb0.7Sn0.3)2P2S6 + 5% Ge and (Pb0.7Sn0.3)2P2Se6 + 5% Ge down to 20 K. A new quantum paraelectric state was reported in the Ge-doped samples at low temperatures. In all of these materials the non-classical T2 temperature dependences of inverse dielectric permittivity were observed. The dielectric constants of Pb2P2S6-based single crystals were measured between 20 and 300 K. The temperature dependences of dielectric permittivity were analysed on the basis of Barrett’s model as a signature of quantum paraelectricity.
Keywords: dielectric properties, ferroelectric phase transition, quantum paraelectricity, phosphorus chalcogenide crystals, PPb2P2S6
PACS: 77.22.-d, 77.80.B-

KVANTINIS PARAELEKTRIŠKUMAS IR INDUKUOTASIS FEROELEKTRIŠKUMAS ĮTERPIANT GERMANĮ Į (PbySn1–y)2P2S(Se)6 KRISTALUS
Ilona Zamaraitėa, Andrius Džiaugysa, Yulian Vysochanskiib, Jūras Banysa

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Užgorodo universiteto Kietojo kūno fizikos ir chemijos institutas, Užgorodas, Ukraina

Darbe tyrinėjamos keturių kristalų – Pb2P2S6, (Pb0,98Ge0,02)2P2S6, (Pb0,7Sn0,3)2P2S6 + 5 % Ge ir (Pb0,7Sn0,3)2P2S6 + 5 % Ge – dielektrinės savybės intervale nuo kambario temperatūros iki 20 K. Atlikti tyrimai leido nustatyti kvantinę paraelektrinę būseną kristaluose, kuriuose buvo įterpta germanio priemaišų. Visose tirtose medžiagose stebėtas atvirkštinės dielektrinės skvarbos nukrypimas nuo Kiuri ir Veiso dėsnio, aprašytas T2 temperatūrine priklausomybe. Tirtųjų kristalų dielektrinės skvarbos temperatūrinės priklausomybės analizuotos remiantis Barrett’o modeliu.
 
References / Nuorodos

[1] Y. Vysochanskii, T. Janssen, R. Currat, R. Folk, J. Banys, J. Grigas, and V. Samulionis, Phase Transitions in Ferroelectric Phosphorous Chalcogenide Crystals (Vilnius University Publishing House, Vilnius, 2008),
https://www.amazon.com/Transitions-Ferroelectric-Phosphorous-Chalcogenide-Crystals/dp/9986198852
[2] Y. Li and D.J. Singh, Properties of the ferroelectric visible light absorbing semiconductors: Sn2P2S6 and Sn2P2Se6, Phys. Rev. Mater. 1(7), 075102 (2017),
https://doi.org/10.1103/PhysRevMaterials.1.075402
[3] M. Zhao, G. Gou, X. Ding, and J. Sun, Enhancing visible light absorption for ferroelectric Sn2P2S6 by Se anion substitution, J. Phys. Chem. C 122(44), 25565–25572 (2018),
https://doi.org/10.1021/acs.jpcc.8b08402
[4] K. Rushchanskii, Y. Vysochanskii, and D. Strauch, Ferroelectricity, nonlinear dynamics, and relaxation effects in monoclinic Sn2P2S6, Phys. Rev. Lett. 99(20), 207601 (2007),
https://doi.org/10.1103/PhysRevLett.99.207601
[5] R. Yevych, M. Medulych, and Y. Vysochanskii, Nonlinear dynamics of ferroelectrics with three-well local potential, Condens. Matter Phys. 21(2), 23001 (2018),
https://doi.org/10.5488/CMP.21.23001
[6] K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, Electronic structure and phase transition in ferroelectric Sn2P2S6 crystal, Int. J. Mol. Sci. 13(12), 14356–14384 (2012),
https://doi.org/10.3390/ijms131114356
[7] V. Shvalya, A. Oleaga, A. Salazar, A. Kohutych, and Y. Vysochanskii, Critical behaviour study of ferroelectric semiconductors (PbxSn1–x)2P2S6 from thermal diffusivity measurements, Thermochim. Acta 617, 136–143 (2015),
https://doi.org/10.1016/j.tca.2015.08.031
[8] R. Yevych, V. Haborets, M. Medulych, A. Molnar, A. Kohutych, A. Dziaugys, J. Banys, and Y. Vysochanskii, Valence fluctuations in Sn(Pb)2P2S6 ferroelectrics, Low Temp. Phys. 42(12), 1155–1162 (2016),
https://doi.org/10.1063/1.4973005
[9] K. Ruzhchanskii, R. Bilanych, A. Molnar, R. Yevych, A. Kohutych, S. Perechinskii, V. Samulionis, J. Banys, and Y. Vysochanskii, Ferroelectricity in (PbySn1–y)2P2S6 mixed crystals and random field BEG model, Phys. Status Solidi B 253(2), 384–391 (2016),
https://doi.org/10.1002/pssb.201552138
[10] P. Ondrejkovic, M. Guennou, M. Kempa, Y. Vysochanskii, G. Garbarino, and J. Hlinka, An x-ray scattering study of Sn2P2S6: Absence of incommensurate phase up to 1 GPa, J. Phys. Condens. Matter 25(11), 115901 (2013),
https://doi.org/10.1088/0953-8984/25/11/115901
[11] K. Moriya, K. Iwauchi, M. Ushida, A. Nakagawa, K. Watanabe, S. Yano, S. Motojima, and Y. Akagi, Dielectric studies of ferroelectric phase transitions in Pb2xSn2(1–x)P2S6 single crystals, J. Phys. Soc. Japan 64(5), 1775–1784 (1995),
https://doi.org/10.1143/JPSJ.64.1775
[12] A. Oleaga, V. Liubachko, A. Salazar, and Y. Vysochanskii, Introducing a tricritical point in Sn2P2(SeyS1–y)6 ferroelectrics by Pb addition, Thermochim. Acta 675, 38–43 (2019),
https://doi.org/10.1016/j.tca.2019.03.008
[13] V. Shvalya, A. Oleaga, A. Salazar, I. Stoika, and Y. Vysochanskii, Influence of dopants on the thermal properties and critical behavior of the ferroelectric transition in uniaxial ferroelectric Sn2P2S6, J. Mater. Sci. 51(17), 8156–8167 (2016),
https://doi.org/10.1007/s10853-016-0091-5
[14] K.A. Müller and H. Burkard, SrTiO3: An intrinsic quantum paraelectric below 4 K, Phys. Rev. B 19(7), 3593–3602 (1979),
https://doi.org/10.1103/PhysRevB.19.3593
[15] T. Wei, C. Zhu, K.F. Wang, H.L. Cai, J.S. Zhu, and J.M. Liu, Influence of A-site codoping on ferroelectricity of quantum paraelectric SrTiO3, J. Appl. Phys. 103(12), 124104 (2008),
https://doi.org/10.1063/1.2940372
[16] H. Fujishita, S. Kitazawa, M. Saito, R. Ishisaka, H. Okamoto, and T. Yamaguchi, Quantum paraelectric states in SrTiO3 and KTaO3: Barrett model, Vendik model, and quantum criticality, J. Phys. Soc. Japan 85(7), 074703 (2016),
https://doi.org/10.7566/JPSJ.85.074703
[17] C.W. Rischau, X. Lin, C.P. Grams, D. Finck, S. Harms, J. Engelmayer, T. Lorenz, J. Gallais, B. Fauqué, J. Hemberger, and K. Behnia, A ferroelectric quantum phase transition inside the superconducting dome of Sr1–xCaxTiO3–δ, Nat. Phys. 13(7), 643–648 (2017),
https://doi.org/10.1038/nphys4085
[18] S.E. Rowley, L.J. Spalek, R.P. Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich, and S.S. Saxena, Ferroelectric quantum criticality, Nat. Phys. 10(5), 367–372 (2014),
https://doi.org/10.1038/nphys2924
[19] C.L. Wang and M.L. Zhao, Burns temperature and quantum temperature scale, J. Adv. Dielectr. 1(2), 163–167 (2011),
https://doi.org/10.1142/S2010135X1100029X
[20] N. Barman, P. Singh, C. Narayana, and K. Varma, Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12) ceramics at low temperature as evidenced by Raman and dielectric spectroscopy, AIP Adv. 7(3), 035105 (2017),
https://doi.org/10.1063/1.4973645
[21] M. Maior, M. Gurzan, S. Molnar, I. Prits, and Y. Vysochanskii, Effect of germanium doping on pyroelectric and piezoelectric properties of Sn2P2S6 single crystal, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(4), 877–880 (2000),
https://doi.org/10.1038/nphys2924
[22] V.S. Vikhnin, P.A. Markovin, and W. Kleemann, The origin of polar ordering in incipient ferroelectrics with weak off-center impurities, Ferroelectrics 218(1), 85–91 (1998),
https://doi.org/10.1080/00150199808227136
[23] P. Barone, D. Di Sante, and S. Picozzi, Improper origin of polar displacements at CaTiO3 and CaMnO3 twin walls, Phys. Rev. B 89(14), 144104 (2014),
https://doi.org/10.1103/PhysRevB.89.144104