Received 11 December 2019; revised 1 February 2020; accepted 5
February 2020
[1] N.P. Reeves, J. Cholewicki, J.H. van Dieën, G. Kawchuk, and
P.W. Hodges, Are stability and instability relevant concepts for
back pain?, J. Orthop. Sport. Phys. Ther.
49(6), 415–424
(2019),
https://doi.org/10.2519/jospt.2019.8144
[2] C.M.E. Rustenburg, S.S.A. Faraj, R.M. Holewijn, I. Kingma,
B.J. van Royen, A. Stadhouder, and K.S. Emanuel, The
biomechanical effect of single-level laminectomy and posterior
instrumentation on spinal stability in degenerative lumbar
scoliosis: A human cadaveric study, Neurosurg. Focus
46(5),
E15 (2019),
https://doi.org/10.3171/2019.2.FOCUS1911
[3] K.B. Anderson, K.L. Holloway-Kew, M. Mohebbi, M.A. Kotowicz,
D. Hans, and J.A. Pasco, Is trabecular bone score less affected
by degenerative-changes at the spine than lumbar spine BMD?,
Arch. Osteoporos.
13(127), 1–9 (2018),
https://doi.org/10.1007/s11657-018-0544-3
[4] G. Maquer, J. Schwiedrzik, G. Huber, M.M. Morlock, and P.K.
Zysset, Compressive strength of elderly vertebrae is reduced by
disc degeneration and additional flexion, J. Mech. Behav.
Biomed. Mater.
42(2015), 54–66 (2015),
https://doi.org/10.1016/j.jmbbm.2014.10.016
[5] A. Tsouknidas, G. Maliaris, S. Savvakis, and N. Michailidis,
Anisotropic post-yield response of cancellous bone simulated by
stress-strain curves of bulk equivalent structures, Comput.
Methods Biomech. Biomed. Engin.
18(8), 839–846 (2015),
https://doi.org/10.1080/10255842.2013.849342
[6] S. Nobakhti and S.J. Shefelbine, On the relation of bone
mineral density and the elastic modulus in healthy and
pathologic bone, Curr. Osteoporos. Rep.
16(4), 404–410
(2018),
https://doi.org/10.1007/s11914-018-0449-5
[7] Y. Luo, Empirical functions for conversion of femur areal
and volumetric bone mineral density, J. Med. Biol. Eng.
39(3),
287–293 (2019),
https://doi.org/10.1007/s40846-018-0394-x
[8] J.-Q. Wáng, Z. Káplár, M. Deng, J.F. Griffith, J.C.S. Leung,
A.W.L. Kwok, T. Kwok, P.C. Leung, and Y.X.J. Wáng, Thoracolumbar
intervertebral disc area morphometry in elderly Chinese men and
women: Radiographic quantifications at baseline and changes at
year-4 follow-up, Spine
43(10), E607–E614 (2018),
https://doi.org/10.1097/BRS.0000000000002482
[9] R. Zhong, F. Wei, L. Wang, S. Cui, N. Chen, S. Liu, X. Zou,
The effects of intervertebral disc degeneration combined with
osteoporosis on vascularization and microarchitecture of the
endplate in rhesus monkeys, Eur. Spine J.
25(9),
2705–2715 (2016),
https://doi.org/10.1007/s00586-016-4593-2
[10] Y.P. Sharmazanova, S.A. Miahkov, and I.R. Rybak, MRI
morphometry of vertebral bodies and intervertebral discs of the
lumbar spine in patients with bone mineral density disorders,
Pain. Joints. Spine
2(18), 71–77 (2015),
https://doi.org/10.22141/2224-1507.2.18.2015.79107
[11] S.J. Hall,
Basic Biomechanics, 7th ed. (Cenveo®
Publisher Services, New York, 2015),
https://www.mheducation.com/highered/product/basic-biomechanics-hall/M9781259913877.html
[12] A.G. Patwardhan, K.P. Meade, and T.M. Gavin, in:
AAOS
Atlas of Orthoses and Assistive Devices, 4th ed., eds.
J.D. Hsu, J.W. Michael, and J.R. Fisk (Elsevier Health Sciences,
2008) pp. 83–89,
https://www.barnesandnoble.com/w/aaos-atlas-of-orthoses-and-assistive-devices-john-d-hsu/1100098091
[13] F. Zhang, K. Zhang, H.-J. Tian, A.-M. Wu, X.F. Cheng, T.J.
Zhou, and J. Zhao, Correlation between lumbar intervertebral
disc height and lumbar spine sagittal alignment among
asymptomatic Asian young adults, J. Orthop. Surg. Res.
13(1),
13–34 (2018),
https://doi.org/10.1186/s13018-018-0737-x
[14] A.J. Teichtahl, M.A. Finnin, Y. Wang, A.E. Wluka, D.M.
Urquhart, R. O'Sullivan, G. Jones, and F.M. Cicuttini, The
natural history of Modic changes in a community-based cohort,
Joint Bone Spine
84(2), 197–202 (2017),
https://doi.org/10.1016/j.jbspin.2016.03.011
[15] A.J. Teichtahl, D.M. Urquhart, Y. Wang, A.E. Wluka, S.
Heritier, and F.M. Cicuttini, A dose-response relationship
between severity of disc degeneration and intervertebral disc
height in the lumbosacral spine, Arthritis Res. Ther.
17(297),
1–6 (2015),
https://doi.org/10.1186/s13075-015-0820-1
[16] Y. Okamoto, H. Murakami, S. Demura, S. Kato, K. Yoshioka,
H. Hayashi, J. Sakamoto, N. Kawahara, and H. Tsuchiya, The
effect of kyphotic deformity because of vertebral fracture: A
finite element analysis of a 10° and 20° wedge-shaped vertebral
fracture model, Spine J.
15(4), 713–720 (2015),
https://doi.org/10.1016/j.spinee.2014.11.019
[17] R. Zhu, W.-X. Niu, Z.-L. Zeng, J.-H. Tong, Z.-W. Zhen, S.
Zhou, Y. Yu, and L.-M. Cheng, The effects of muscle weakness on
degenerative spondylolisthesis: A finite element study, Clin.
Biomech.
41(2017), 34–38 (2017),
https://doi.org/10.1016/j.clinbiomech.2016.11.007
[18] M. Kinzl, J. Schwiedrzik, P.K. Zysset, and D.H. Pahr, An
experimentally validated finite element method for augmented
vertebral bodies, Clin. Biomech.
28(1), 15–22 (2013),
https://doi.org/10.1016/j.clinbiomech.2012.09.008
[19] C. Lan, C. Kuo, C. Chen, and H. Hu, Finite element analysis
of biomechanical behavior of whole thoraco-lumbar spine with
ligamentous effect, Chang. J. Med.
2013(11), 26–41
(2013),
[PDF]
[20] R. Blanchard, C. Morin, A. Malandrino, A. Vella, Z. Sant,
and C. Hellmich, Patient-specific fracture risk assessment of
vertebrae: A multiscale approach coupling X-ray physics and
continuum micromechanics, Int. J. Numer. Method. Biomed. Eng.
32(9),
1–36 (2016),
https://doi.org/10.1002/cnm.2760
[21] R.M. Zebaze, A. Ghasem-Zadeh, A. Bohte, S. Iuliano-Burns,
M. Mirams, R.I. Price, E.J. Mackie, and E. Seeman, Intracortical
remodelling and porosity in the distal radius and post-mortem
femurs of women: A cross-sectional study, Lancet
375(9727),
1729–1736 (2010),
https://doi.org/10.1016/S0140-6736(10)60320-0
[22] E.J. Hamilton, A. Ghasem-Zadeh, E. Gianatti, D. Lim-Joon,
D. Bolton, R. Zebaze, E. Seeman, J.D. Zajac, and M. Grossmann,
Structural decay of bone microarchitecture in men with prostate
cancer treated with androgen deprivation therapy, J. Clin.
Endocrinol. Metab.
95(12), E456–E463 (2010),
https://doi.org/10.1210/jc.2010-0902
[23] S. Li, E. Demirci, and V.V. Silberschmidt, Variability and
anisotropy of mechanical behavior of cortical bone in tension
and compression, J. Mech. Behav. Biomed. Mater.
21(2013),
109–120 (2013),
https://doi.org/10.1016/j.jmbbm.2013.02.021
[24] O. Ardatov, A. Maknickas, and R. Kačianauskas, in:
Mechanika'2014:
Proceedings of the 19th International Conference
(Technologija, Kaunas, 2014) pp. 14–19
[25] O. Chabarova, V. Alekna, R. Kačianauskas, and O. Ardatov,
Finite element investigation osteoporotic lumbar L1 vertebra
buckling in a presence of torsional load, Mechanics
23(3),
326–333 (2017),
https://doi.org/10.5755/j01.mech.23.3.18476
[26] M. Wierszycki, K. Szajek, T. Łodygowski, and M. Nowak, A
two-scale approach for trabecular bone microstructure modeling
based on computational homogenization procedure, Comput. Mech.
54(2),
287–298 (2014),
https://doi.org/10.1007/s00466-014-0984-6
[27] K. McDonald, J. Little, M. Pearcy, and C. Adam, Development
of a multi-scale finite element model of the osteoporotic lumbar
vertebral body for the investigation of apparent level vertebra
mechanics and micro-level trabecular mechanics, Med. Eng. Phys.
32(6), 653–661 (2010),
https://doi.org/10.1016/j.medengphy.2010.04.006
[28] S.M. Finley, D.S. Brodke, N.T. Spina, C.A. DeDen, and B.J.
Ellis, FEBio finite element models of the human lumbar spine,
Comput. Methods Biomech. Biomed. Engin.
21(6), 444–452
(2018),
https://doi.org/10.1080/10255842.2018.1478967
[29] A. Polikeit, L.P. Nolte, and S.J. Ferguson, Simulated
influence of osteoporosis and disc degeneration on the load
transfer in a lumbar functional spinal unit, J. Biomech.
37(7),
1061–1069 (2004),
https://doi.org/10.1016/j.jbiomech.2003.11.018
[30] Y.H. Kim, M. Wu, and K. Kim, Stress analysis of
osteoporotic lumbar vertebra using finite element model with
microscaled beam-shell trabecular-cortical structure, J. Appl.
Math.
2013(5), 1–6 (2013),
https://doi.org/10.1155/2013/285165
[31] T.-M. Guo, J. Lu, Y.-L. Xing, G.-X. Liu, H.-Y. Zhu, L.
Yang, and X.-M. Qiao, A 3-dimensional finite element analysis of
adjacent segment disk degeneration induced by transforaminal
lumbar interbody fusion after pedicle screw fixation, World
Neurosurg.
124(2019), e51–e57 (2019),
https://doi.org/10.1016/j.wneu.2018.11.195
[32] E. Ibarz, Y. Más, J. Mateo, A. Lobo-Escolar, A. Herrera,
and L. Gracia, Instability of the lumbar spine due to disc
degeneration. A finite element simulation, Adv. Biosci.
Biotechnol.
4(4), 548–556 (2013),
https://doi.org/10.4236/abb.2013.44072
[33] A. Polikeit, L.P. Nolte, and S.J. Ferguson, Simulated
influence of osteoporosis and disc degeneration on the load
transfer in a lumbar functional spinal unit, J. Biomech.
37(7),
1061–1069 (2004),
https://doi.org/10.1016/j.jbiomech.2003.11.018
[34] A.C. Jones and R.K. Wilcox, Finite element analysis of the
spine: Towards a framework of verification, validation and
sensitivity analysis, Med. Eng. Phys.
30(10), 1287–1304
(2008),
https://doi.org/10.1016/j.medengphy.2008.09.006
[35] N.M.B. Monteiro, M.P.T. da Silva, J.O.M.G. Folgado, and
J.P.L. Melancia, Structural analysis of the intervertebral discs
adjacent to an interbody fusion using multibody dynamics and
finite element cosimulation, Multibody Syst. Dyn.
25(2),
245–270 (2011),
https://doi.org/10.1007/s11044-010-9226-7
[36] S. Zahaf, H. Habib, B. Mansouri, A. Belarbi, and Z. Azari,
The effect of the eccentric loading on the components of the
spine, Global J. Res. Eng.
16(4), 2249–4596 (2016),
[PDF]
[37] M. Ghadiri, A. Khanmohammadi, H. Reza Mahdavi, M. Ahmadi,
T. Mirzaei, and H. Easy, Fracture mechanics analysis of fourth
lumbar vertebra in method of finite element analysis, Int. J.
Adv. Biol. Biomed. Res.
2(7), 2217–2224 (2014),
[PDF]
[38] R.N. Alkalay and T.P. Harrigan, Mechanical assessment of
the effects of metastatic lytic defect on the structural
response of human thoracolumbar spine, J. Orthop. Res.
34(10),
1808–1819 (2016),
https://doi.org/10.1002/jor.23154
[39] S. Charosky, P. Moreno, and P. Maxy, Instability and
instrumentation failures after a PSO: a finite element analysis,
Eur. Spine J.
23(11), 2340–2349 (2014),
https://doi.org/10.1007/s00586-014-3295-x
[40] H. Ng, E. Teo, and V. Lee, Statistical factorial analysis
on the material property sensitivity of the mechanical responses
of the C4-C6 under compression, anterior and posterior shear, J.
Biomech.
37(5), 771–777 (2004),
https://doi.org/10.1016/j.jbiomech.2003.09.025
[41] R. Fan, H. Gong, S. Qiu, X. Zhang, J. Fang, and D. Zhu,
Effects of resting modes on human lumbar spines with different
levels of degenerated intervertebral discs: a finite element
investigation, BMC Musculoskelet. Disord.
16(221), 1–15
(2015),
https://doi.org/10.1186/s12891-015-0686-z
[42] F. Niemeyer, H.-J. Wilke, and H. Schmidt, Geometry strongly
influences the response of numerical models of the lumbar spine
– A probabilistic finite element analysis, J. Biomech.
45(8),
1414–1423 (2012),
https://doi.org/10.1016/j.jbiomech.2012.02.021
[43] M.B. Panzer and D.S. Cronin, C4–C5 segment finite element
model development, validation, and load-sharing investigation,
J. Biomech.
42(4), 480–490 (2009),
https://doi.org/10.1016/j.jbiomech.2008.11.036
[44] W.-M. Chen, J. Jin, T. Park, K.-S. Ryu, and S.-J. Lee,
Strain behavior of malaligned cervical spine implanted with
metal-on-polyethylene, metal-on-metal, and elastomeric
artificial disc prostheses – A finite element analysis, Clin.
Biomech.
59(2018), 19–26 (2018),
https://doi.org/10.1016/j.clinbiomech.2018.08.005
[45] S.M. Renner, R.N. Natarajan, A.G. Patwardhan, R.M. Havey,
L.I. Voronov, B.Y. Guo, G.B. Andersson, and H.S. An, Novel model
to analyze the effect of a large compressive follower pre-load
on range of motions in a lumbar spine, J. Biomech.
40(6),
1326–1332 (2007),
https://doi.org/10.1016/j.jbiomech.2006.05.019
[46] E. Madenci and I. Guven, in:
Finite Element Method and
Applications in Engineering Using ANSYS® (Springer US,
Boston, MA, 2015) pp. 35–74,
https://doi.org/10.1007/978-1-4899-7550-8_3
[47] P. Gopinath, Lumbar segmental instability: Points to
ponder, J. Orthop.
12(4), 165 (2015),
https://doi.org/10.1016/j.jor.2015.09.005