[PDF]  https://doi.org/10.3952/physics.v60i2.4228

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 132–143 (2020)
 

EFFECT OF VERTEBRAL DEGENERATION ON THE INSTABILITY OF SPINE
 
Olga Chabarovaa, Rimantas Kačianauskasa, and Vidmantas Aleknab
  a Department of Applied Mechanics, Vilnius Gediminas Technical University, Saulėtekio 11, 10223 Vilnius, Lithuania
b Faculty of Medicine, Vilnius University, M. K. Čiurlionio 21/27, 03101 Vilnius, Lithuania
Email: olga.chabarova@vgtu.lt

Received 11 December 2019; revised 1 February 2020; accepted 5 February 2020

Insufficient exploration of the dependence between diseases of degenerative bones and the range of motion (ROM) during torsion, flexion and lateral bending limits further understanding about the lumbar biomechanics and treating of the lumbar related dysfunction. The objective of this study was to determine the effect of vertebral degradation on the instability of spine 2 motion L2–L4 segments during torsion, flexion and lateral bending by the finite element method (FEM). Three different 3D FE models comprising the healthy state and the degradation of trabecular bone and cortical bone were developed. Nonlinear numerical analyses of lumbar spine stability discovered that osteoporotic degradation can lead to critical segmental ROM and intervertebral shearing values, which results in the loss of spine stability for the case of flexion loading. Instability is caused by microscopic changes in the thickness of cortical shell. This analysis of the intervertebral shearing and ROM may be further used to diagnose such translation abnormalities like hypomobility or hypermobility.
Keywords: osteoporosis, lumbar, FEM, instability
PACS: 87.10.Kn, 87.15.A, 87.19.rm, 87.19.xr, 46.70.-p

SLANKSTELIŲ DEGENERACIJOS ĮTAKA STUBURO NESTABILUMUI
Olga Chabarovaa, Rimantas Kačianauskasa, Vidmantas Aleknab

a Vilniaus Gedimino technikos universiteto Taikomosios mechanikos katedra, Vilnius, Lietuva
b Vilniaus universiteto Medicinos fakultetas, Vilnius, Lietuva

Degeneracinių kaulų ligų ir judesio amplitudės (ROM) priklausomybės veikiant sukimo, lenkimo ir šoninio lenkimo apkrovoms tyrimų trūkumas neleidžia pakankamai tiksliai suprasti stuburo juosmens biomechanikos ir taikyti efektyvesnių juosmens disfunkcijos gydymo metodų. Šio tyrimo tikslas – baigtinių elementų metodu (BEM) nustatyti slankstelių degradacijos įtaką stuburo dviejų judamųjų segmentų L2–L4 nestabilumui veikiant sukimo, lenkimo ir šoninio lenkimo apkrovoms. Buvo sukurti trys skirtingi 3D BE modeliai, apimantys sveiką slankstelį, trabekulinio kaulo ir kortikalinio kaulo degradaciją. Atlikta stuburo juosmens dalies netiesinė skaitmeninė stabilumo analizė parodė, kad osteoporotinė degradacija, veikiant lenkimo apkrovai, gali lemti kritines segmentinio ROM ir tarpslankstelinės šlyties vertes ir dėl to gali būti prarastas stuburo stabilumas. Nestabilumą lemia mikroskopiniai kortikalinio kevalo storio pokyčiai. Ši tarpslankstelinės šlyties ir ROM analizė gali būti naudojama diagnozuojant slankstelių mobilumo, tokio kaip hipomobilumas ar hipermobilumas, anomalijas.
 
References / Nuorodos

[1] N.P. Reeves, J. Cholewicki, J.H. van Dieën, G. Kawchuk, and P.W. Hodges, Are stability and instability relevant concepts for back pain?, J. Orthop. Sport. Phys. Ther. 49(6), 415–424 (2019),
https://doi.org/10.2519/jospt.2019.8144
[2] C.M.E. Rustenburg, S.S.A. Faraj, R.M. Holewijn, I. Kingma, B.J. van Royen, A. Stadhouder, and K.S. Emanuel, The biomechanical effect of single-level laminectomy and posterior instrumentation on spinal stability in degenerative lumbar scoliosis: A human cadaveric study, Neurosurg. Focus 46(5), E15 (2019),
https://doi.org/10.3171/2019.2.FOCUS1911
[3] K.B. Anderson, K.L. Holloway-Kew, M. Mohebbi, M.A. Kotowicz, D. Hans, and J.A. Pasco, Is trabecular bone score less affected by degenerative-changes at the spine than lumbar spine BMD?, Arch. Osteoporos. 13(127), 1–9 (2018),
https://doi.org/10.1007/s11657-018-0544-3
[4] G. Maquer, J. Schwiedrzik, G. Huber, M.M. Morlock, and P.K. Zysset, Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion, J. Mech. Behav. Biomed. Mater. 42(2015), 54–66 (2015),
https://doi.org/10.1016/j.jmbbm.2014.10.016
[5] A. Tsouknidas, G. Maliaris, S. Savvakis, and N. Michailidis, Anisotropic post-yield response of cancellous bone simulated by stress-strain curves of bulk equivalent structures, Comput. Methods Biomech. Biomed. Engin. 18(8), 839–846 (2015),
https://doi.org/10.1080/10255842.2013.849342
[6] S. Nobakhti and S.J. Shefelbine, On the relation of bone mineral density and the elastic modulus in healthy and pathologic bone, Curr. Osteoporos. Rep. 16(4), 404–410 (2018),
https://doi.org/10.1007/s11914-018-0449-5
[7] Y. Luo, Empirical functions for conversion of femur areal and volumetric bone mineral density, J. Med. Biol. Eng. 39(3), 287–293 (2019),
https://doi.org/10.1007/s40846-018-0394-x
[8] J.-Q. Wáng, Z. Káplár, M. Deng, J.F. Griffith, J.C.S. Leung, A.W.L. Kwok, T. Kwok, P.C. Leung, and Y.X.J. Wáng, Thoracolumbar intervertebral disc area morphometry in elderly Chinese men and women: Radiographic quantifications at baseline and changes at year-4 follow-up, Spine 43(10), E607–E614 (2018),
https://doi.org/10.1097/BRS.0000000000002482
[9] R. Zhong, F. Wei, L. Wang, S. Cui, N. Chen, S. Liu, X. Zou, The effects of intervertebral disc degeneration combined with osteoporosis on vascularization and microarchitecture of the endplate in rhesus monkeys, Eur. Spine J. 25(9), 2705–2715 (2016),
https://doi.org/10.1007/s00586-016-4593-2
[10] Y.P. Sharmazanova, S.A. Miahkov, and I.R. Rybak, MRI morphometry of vertebral bodies and intervertebral discs of the lumbar spine in patients with bone mineral density disorders, Pain. Joints. Spine 2(18), 71–77 (2015),
https://doi.org/10.22141/2224-1507.2.18.2015.79107
[11] S.J. Hall, Basic Biomechanics, 7th ed. (Cenveo® Publisher Services, New York, 2015),
https://www.mheducation.com/highered/product/basic-biomechanics-hall/M9781259913877.html
[12] A.G. Patwardhan, K.P. Meade, and T.M. Gavin, in: AAOS Atlas of Orthoses and Assistive Devices, 4th ed., eds. J.D. Hsu, J.W. Michael, and J.R. Fisk (Elsevier Health Sciences, 2008) pp. 83–89,
https://www.barnesandnoble.com/w/aaos-atlas-of-orthoses-and-assistive-devices-john-d-hsu/1100098091
[13] F. Zhang, K. Zhang, H.-J. Tian, A.-M. Wu, X.F. Cheng, T.J. Zhou, and J. Zhao, Correlation between lumbar intervertebral disc height and lumbar spine sagittal alignment among asymptomatic Asian young adults, J. Orthop. Surg. Res. 13(1), 13–34 (2018),
https://doi.org/10.1186/s13018-018-0737-x
[14] A.J. Teichtahl, M.A. Finnin, Y. Wang, A.E. Wluka, D.M. Urquhart, R. O'Sullivan, G. Jones, and F.M. Cicuttini, The natural history of Modic changes in a community-based cohort, Joint Bone Spine 84(2), 197–202 (2017),
https://doi.org/10.1016/j.jbspin.2016.03.011
[15] A.J. Teichtahl, D.M. Urquhart, Y. Wang, A.E. Wluka, S. Heritier, and F.M. Cicuttini, A dose-response relationship between severity of disc degeneration and intervertebral disc height in the lumbosacral spine, Arthritis Res. Ther. 17(297), 1–6 (2015),
https://doi.org/10.1186/s13075-015-0820-1
[16] Y. Okamoto, H. Murakami, S. Demura, S. Kato, K. Yoshioka, H. Hayashi, J. Sakamoto, N. Kawahara, and H. Tsuchiya, The effect of kyphotic deformity because of vertebral fracture: A finite element analysis of a 10° and 20° wedge-shaped vertebral fracture model, Spine J. 15(4), 713–720 (2015),
https://doi.org/10.1016/j.spinee.2014.11.019
[17] R. Zhu, W.-X. Niu, Z.-L. Zeng, J.-H. Tong, Z.-W. Zhen, S. Zhou, Y. Yu, and L.-M. Cheng, The effects of muscle weakness on degenerative spondylolisthesis: A finite element study, Clin. Biomech. 41(2017), 34–38 (2017),
https://doi.org/10.1016/j.clinbiomech.2016.11.007
[18] M. Kinzl, J. Schwiedrzik, P.K. Zysset, and D.H. Pahr, An experimentally validated finite element method for augmented vertebral bodies, Clin. Biomech. 28(1), 15–22 (2013),
https://doi.org/10.1016/j.clinbiomech.2012.09.008
[19] C. Lan, C. Kuo, C. Chen, and H. Hu, Finite element analysis of biomechanical behavior of whole thoraco-lumbar spine with ligamentous effect, Chang. J. Med. 2013(11), 26–41 (2013),
[PDF]
[20] R. Blanchard, C. Morin, A. Malandrino, A. Vella, Z. Sant, and C. Hellmich, Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics, Int. J. Numer. Method. Biomed. Eng. 32(9), 1–36 (2016),
https://doi.org/10.1002/cnm.2760
[21] R.M. Zebaze, A. Ghasem-Zadeh, A. Bohte, S. Iuliano-Burns, M. Mirams, R.I. Price, E.J. Mackie, and E. Seeman, Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: A cross-sectional study, Lancet 375(9727), 1729–1736 (2010),
https://doi.org/10.1016/S0140-6736(10)60320-0
[22] E.J. Hamilton, A. Ghasem-Zadeh, E. Gianatti, D. Lim-Joon, D. Bolton, R. Zebaze, E. Seeman, J.D. Zajac, and M. Grossmann, Structural decay of bone microarchitecture in men with prostate cancer treated with androgen deprivation therapy, J. Clin. Endocrinol. Metab. 95(12), E456–E463 (2010),
https://doi.org/10.1210/jc.2010-0902
[23] S. Li, E. Demirci, and V.V. Silberschmidt, Variability and anisotropy of mechanical behavior of cortical bone in tension and compression, J. Mech. Behav. Biomed. Mater. 21(2013), 109–120 (2013),
https://doi.org/10.1016/j.jmbbm.2013.02.021
[24] O. Ardatov, A. Maknickas, and R. Kačianauskas, in: Mechanika'2014: Proceedings of the 19th International Conference (Technologija, Kaunas, 2014) pp. 14–19
[25] O. Chabarova, V. Alekna, R. Kačianauskas, and O. Ardatov, Finite element investigation osteoporotic lumbar L1 vertebra buckling in a presence of torsional load, Mechanics 23(3), 326–333 (2017),
https://doi.org/10.5755/j01.mech.23.3.18476
[26] M. Wierszycki, K. Szajek, T. Łodygowski, and M. Nowak, A two-scale approach for trabecular bone microstructure modeling based on computational homogenization procedure, Comput. Mech. 54(2), 287–298 (2014),
https://doi.org/10.1007/s00466-014-0984-6
[27] K. McDonald, J. Little, M. Pearcy, and C. Adam, Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics, Med. Eng. Phys. 32(6), 653–661 (2010),
https://doi.org/10.1016/j.medengphy.2010.04.006
[28] S.M. Finley, D.S. Brodke, N.T. Spina, C.A. DeDen, and B.J. Ellis, FEBio finite element models of the human lumbar spine, Comput. Methods Biomech. Biomed. Engin. 21(6), 444–452 (2018),
https://doi.org/10.1080/10255842.2018.1478967
[29] A. Polikeit, L.P. Nolte, and S.J. Ferguson, Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit, J. Biomech. 37(7), 1061–1069 (2004),
https://doi.org/10.1016/j.jbiomech.2003.11.018
[30] Y.H. Kim, M. Wu, and K. Kim, Stress analysis of osteoporotic lumbar vertebra using finite element model with microscaled beam-shell trabecular-cortical structure, J. Appl. Math. 2013(5), 1–6 (2013),
https://doi.org/10.1155/2013/285165
[31] T.-M. Guo, J. Lu, Y.-L. Xing, G.-X. Liu, H.-Y. Zhu, L. Yang, and X.-M. Qiao, A 3-dimensional finite element analysis of adjacent segment disk degeneration induced by transforaminal lumbar interbody fusion after pedicle screw fixation, World Neurosurg. 124(2019), e51–e57 (2019),
https://doi.org/10.1016/j.wneu.2018.11.195
[32] E. Ibarz, Y. Más, J. Mateo, A. Lobo-Escolar, A. Herrera, and L. Gracia, Instability of the lumbar spine due to disc degeneration. A finite element simulation, Adv. Biosci. Biotechnol. 4(4), 548–556 (2013),
https://doi.org/10.4236/abb.2013.44072
[33] A. Polikeit, L.P. Nolte, and S.J. Ferguson, Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit, J. Biomech. 37(7), 1061–1069 (2004),
https://doi.org/10.1016/j.jbiomech.2003.11.018
[34] A.C. Jones and R.K. Wilcox, Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis, Med. Eng. Phys. 30(10), 1287–1304 (2008),
https://doi.org/10.1016/j.medengphy.2008.09.006
[35] N.M.B. Monteiro, M.P.T. da Silva, J.O.M.G. Folgado, and J.P.L. Melancia, Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation, Multibody Syst. Dyn. 25(2), 245–270 (2011),
https://doi.org/10.1007/s11044-010-9226-7
[36] S. Zahaf, H. Habib, B. Mansouri, A. Belarbi, and Z. Azari, The effect of the eccentric loading on the components of the spine, Global J. Res. Eng. 16(4), 2249–4596 (2016),
[PDF]
[37] M. Ghadiri, A. Khanmohammadi, H. Reza Mahdavi, M. Ahmadi, T. Mirzaei, and H. Easy, Fracture mechanics analysis of fourth lumbar vertebra in method of finite element analysis, Int. J. Adv. Biol. Biomed. Res. 2(7), 2217–2224 (2014),
[PDF]
[38] R.N. Alkalay and T.P. Harrigan, Mechanical assessment of the effects of metastatic lytic defect on the structural response of human thoracolumbar spine, J. Orthop. Res. 34(10), 1808–1819 (2016),
https://doi.org/10.1002/jor.23154
[39] S. Charosky, P. Moreno, and P. Maxy, Instability and instrumentation failures after a PSO: a finite element analysis, Eur. Spine J. 23(11), 2340–2349 (2014),
https://doi.org/10.1007/s00586-014-3295-x
[40] H. Ng, E. Teo, and V. Lee, Statistical factorial analysis on the material property sensitivity of the mechanical responses of the C4-C6 under compression, anterior and posterior shear, J. Biomech. 37(5), 771–777 (2004),
https://doi.org/10.1016/j.jbiomech.2003.09.025
[41] R. Fan, H. Gong, S. Qiu, X. Zhang, J. Fang, and D. Zhu, Effects of resting modes on human lumbar spines with different levels of degenerated intervertebral discs: a finite element investigation, BMC Musculoskelet. Disord. 16(221), 1–15 (2015),
https://doi.org/10.1186/s12891-015-0686-z
[42] F. Niemeyer, H.-J. Wilke, and H. Schmidt, Geometry strongly influences the response of numerical models of the lumbar spine – A probabilistic finite element analysis, J. Biomech. 45(8), 1414–1423 (2012),
https://doi.org/10.1016/j.jbiomech.2012.02.021
[43] M.B. Panzer and D.S. Cronin, C4–C5 segment finite element model development, validation, and load-sharing investigation, J. Biomech. 42(4), 480–490 (2009),
https://doi.org/10.1016/j.jbiomech.2008.11.036
[44] W.-M. Chen, J. Jin, T. Park, K.-S. Ryu, and S.-J. Lee, Strain behavior of malaligned cervical spine implanted with metal-on-polyethylene, metal-on-metal, and elastomeric artificial disc prostheses – A finite element analysis, Clin. Biomech. 59(2018), 19–26 (2018),
https://doi.org/10.1016/j.clinbiomech.2018.08.005
[45] S.M. Renner, R.N. Natarajan, A.G. Patwardhan, R.M. Havey, L.I. Voronov, B.Y. Guo, G.B. Andersson, and H.S. An, Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine, J. Biomech. 40(6), 1326–1332 (2007),
https://doi.org/10.1016/j.jbiomech.2006.05.019
[46] E. Madenci and I. Guven, in: Finite Element Method and Applications in Engineering Using ANSYS® (Springer US, Boston, MA, 2015) pp. 35–74,
https://doi.org/10.1007/978-1-4899-7550-8_3
[47] P. Gopinath, Lumbar segmental instability: Points to ponder, J. Orthop. 12(4), 165 (2015),
https://doi.org/10.1016/j.jor.2015.09.005