[PDF]  https://doi.org/10.3952/physics.v60i3.4301

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 145–153 (2020)
 

OPTIMIZATION OF WIDE-FIELD SECOND-HARMONIC GENERATION MICROSCOPY FOR FAST IMAGING OF LARGE SAMPLE AREAS IN BIOLOGICAL TISSUES
Andrej Dementjeva, Romualdas Rudysb,c, Renata Karpicza, and Danielis Rutkauskasa
  a Institute of Physics, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
b Department of Biomodels, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08406 Vilnius, Lithuania
c Photosana, UAB, Mokslininkų 11, 08412 Vilnius, Lithuania
Email: danielis.rutkauskas@ftmc.lt

Received 19 May 2020; revised 1 July 2020; accepted 1 July 2020

Second-harmonic generation (SHG) microscopy is a label-free imaging method that can be used to visualize the detailed arrangement of collagen structures in biological tissues. Here, we sought to optimize the speed of microscopic SHG image acquisition of macroscopic fixed tissue sample areas by employing the wide-field imaging with a high power and medium, 1 MHz pulse repetition frequency laser in combination with a mechanical sample scanning. Unlike in the conventional laser-scanning microscopy, the optimum of the wide-field acquisition entails an interplay between the size of the illuminated area and the intensity of the generated signal. We delineate quantitative procedures to set the image parameters for the maximum speed of the tiled image acquisition, and also describe the possible optimization of the laser parameters for further enhancement of the speed of acquisition.
Keywords: microscopy, second-harmonic generation, wide-field, collagen, tissue samples
PACS: 87.64.mn, 42.65.Ky, 87.14.em

PLATAUS LAUKO ANTROSIOS HARMONIKOS GENERAVIMO MIKROSKOPO OPTIMIZAVIMAS GREITAM DIDELIŲ BIOLOGINIŲ AUDINIŲ PLOTŲ VAIZDINIMUI
Andrej Dementjeva, Romualdas Rudysb,c, Renata Karpicza, Danielis Rutkauskasa

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Inovatyvios medicinos centras, Vilnius, Lietuva
c UAB Photosana, Vilnius, Lietuva

Antrosios harmonikos generavimo (AHG) mikroskopija yra papildomų žymių nereikalaujantis vaizdinimo metodas, kurį naudojant įmanoma atvaizduoti detalų kolageno darinių išsidėstymą biologiniuose bandiniuose. Šiame darbe optimizuota makroskopinių fiksuoto audinio bandinių plotų mikroskopinių AHG vaizdų registravimo sparta naudojant plataus lauko vaizdinimą su didelės galios ir vidutinio, 1 MHz impulso pasikartojimo dažnio, lazeriu bei mechaniniu bandinio skenavimu. Skirtingai nei įprastos skenuojančios mikroskopijos atveju, plataus lauko vaizdinimo optimumą lemia apšviečiamo bandinio ploto dydžio ir generuojamo signalo intensyvumo kombinacija. Darbe aprašomos kiekybinės procedūros parenkant vaizdo parametrus maksimaliai sudurtinio vaizdo registravimo spartai. Taip pat apibūdinamas galimas lazerio parametrų optimizavimas siekiant tolesnio tos spartos padinimo.
 
References / Nuorodos

[1] A.P. Franken, A.E. Hill, C.W. Peters, and G. Weinreich, Generation of optical harmonics, Phys. Rev. Lett. 7(1), 118–120 (1961),
https://doi.org/10.1103/PhysRevLett.7.118
[2] C.J.R. Sheppard, J.N. Gannaway, R. Kompfner, and D. Walsh, The scanning harmonic optical microscope, IEEE J. Quantum Electron. 13, 912 (1977),
https://doi.org/10.1109/JQE.1977.1069615
[3] I. Freund and M. Deutsch, Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon, Biophys. J. 50(2), 693–712 (1986),
https://doi.org/10.1016/S0006-3495(86)83510-X
[4] W. Mohler, A.C. Millard, and P.J. Campagnola, Second harmonic generation imaging of endogenous structural proteins, Methods 29(1), 97–109 (2003),
https://doi.org/10.1016/S1046-2023(02)00292-X
[5] A. Keikhosravi, J.S. Bredfeldt, A.K. Sagar, and K.W. Eliceiri, Second-harmonic generation imaging of cancer, Methods Cell Biol. 123, 531–546 (2014),
https://doi.org/10.1016/B978-0-12-420138-5.00028-8
[6] P.J. Campagnola and L.M. Loew, Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms, Nat. Biotechnol. 21(11), 1356–1360 (2003),
https://doi.org/10.1038/nbt894
[7] P.J. Campagnola and C.Y. Dong, Second harmonic generation microscopy: Principles and applications to disease diagnosis, Laser Photonics Rev. 5(1), 13–26 (2011),
https://doi.org/10.1002/lpor.200910024
[8] J.N. Gannaway and C.J.R. Sheppard, Second-harmonic imaging in the scanning optical microscope, Opt. Quantum Electron. 10, 435–439 (1978),
https://doi.org/10.1007/BF00620308
[9] E.E. Hoover and J.A. Squier, Advances in multiphoton microscopy technology, Nat. Photonics 7, 93–101 (2013),
https://doi.org/10.1038/nphoton.2013.361
[10] C. Macias-Romero, M.E.P. Didier, P. Jourdain, P. Marquet, P. Magistretti, O.B. Tarun, V. Zubkovs, A. Radenovic, and S. Roke, High throughput second harmonic imaging for label-free biological applications, Opt. Express 22(25), 31102 (2014),
https://doi.org/10.1364/oe.22.031102
[11] H. Zhao, R. Cisek, A. Karunendiran, D. Tokarz, B.A. Stewart, and V. Barzda, Live imaging of contracting muscles with wide-field second harmonic generation microscopy using a high power laser, Biomed. Opt. Express 10(10), 5130 (2019),
https://doi.org/10.1364/boe.10.005130
[12] D. Oron, E. Tal, and Y. Silberberg, Scanningless depth-resolved microscopy, Opt. Express 13(5), 1468 (2005),
https://doi.org/10.1364/OPEX.13.001468
[13] I.A. Rather, V.K. Bajpai, J.H. Han, and G.J. Nam, Imiquimod-induced psoriasis-like skin inflammation in mouse model, Bangladesh J. Pharmacol. 11(4), 849–851 (2016),
https://doi.org/10.3329/bjp.v11i4.28662
[14] R.D. Cardiff, C.H. Miller, and R.J. Munn, Manual hematoxylin and eosin staining of mouse tissue sections, Cold Spring Harb. Protoc. 2014(6), 655–658 (2014),
https://doi.org/10.1101/pdb.prot073411
[15] J.I. Dadap, X.F. Hu, N.M. Russell, J.G. Ekerdt, J.K. Lowell, S. Member, and M.C. Downer, Analysis of second-harmonic generation ultrashort laser pulses at Si(001) interfaces, IEEE J. Sel. Top. Quantum Electron. 1(4), 1145–1155 (1995),
https://doi.org/10.1109/2944.488693
[16] R. Cicchi, D. Massi, S. Sestini, P. Carli, V. De Giorgi, T. Lotti, and F.S. Pavone, Multidimensional non-linear laser imaging of Basal Cell Carcinoma, Opt. Express 15(16), 10135 (2007),
https://doi.org/10.1364/oe.15.010135
[17] R. Le Harzic, I. Riemann, K. König, C. Wüllner, and C. Donitzky, Influence of femtosecond laser pulse irradiation on the viability of cells at 1035, 517, and 345 nm, J. Appl. Phys. 102(11), (2007),
https://doi.org/10.1063/1.2818107
[18] C. Macias-Romero, V. Zubkovs, S. Wang, and S. Roke, Wide-field medium-repetition-rate multiphoton microscopy reduces photodamage of living cells, Biomed. Opt. Express 7(4), 1458 (2016),
https://doi.org/10.1364/boe.7.001458
[19] K. König, P.T.C. So, W.W. Mantulin, and E. Gratton, Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes, Opt. Lett. 22(2), 135 (1997),
https://doi.org/10.1364/ol.22.000135