[1] D. Abramavicius, B. Palmieri, D.V. Voronine, F. Šanda, and
S. Mukamel, Coherent multidimensional optical spectroscopy of
excitons in molecular aggregates; quasiparticle versus
supermolecule perspectives, Chem. Rev.
109, 2350–2408
(2009),
https://doi.org/10.1021/cr800268n
[2] W. Zhuang, T. Hayashi, and S. Mukamel, Coherent
multidimensional vibrational spectroscopy of biomolecules:
Concepts, simulations, and challenges, Angew. Chemie Int. Ed.
48,
3750–3781 (2009),
https://doi.org/10.1002/anie.200802644
[3] M. Cho,
Two-Dimensional Optical Spectroscopy (CRC
Press, 2009),
https://doi.org/10.1201/9781420084306
[4] P. Wen, G. Christmann, J.J. Baumberg, and K.A. Nelson,
Influence of multi-exciton correlations on nonlinear polariton
dynamics in semiconductor microcavities, New J. Phys.
15,
025005 (2013),
https://doi.org/10.1088/1367-2630/15/2/025005
[5] G.S. Schlau-Cohen, A. Ishizaki, and G.R. Fleming,
Two-dimensional electronic spectroscopy and photosynthesis:
Fundamentals and applications to photosynthetic
light-harvesting, Chem. Phys.
386, 1–22 (2011),
https://doi.org/10.1016/j.chemphys.2011.04.025
[6] M. Reppert and A. Tokmakoff, Computational amide I 2D IR
spectroscopy as a probe of protein structure and dynamics, Annu.
Rev. Phys. Chem.
67, 359–386 (2016),
https://doi.org/10.1146/annurev-physchem-040215-112055
[7] S. Hume, G. Hithell, G.M. Greetham, P.M. Donaldson, M.
Towrie, A.W. Parker, M.J. Baker, and N.T. Hunt, Measuring
proteins in H
2O with 2D-IR spectroscopy, Chem. Sci.
10,
6448–6456 (2019),
https://doi.org/10.1039/c9sc01590f
[8] M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, and A.
Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in
liquid water, Science
350, 78–82 (2015),
https://doi.org/10.1126/science.aab3908
[9] L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N.
Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, Coherent
multidimensional spectroscopy of dilute gas-phase nanosystems,
Nat. Commun.
9, 4823 (2018),
https://arxiv.org/abs/1806.08314,
https://doi.org/10.1038/s41467-018-07292-w
[10] V. Tiwari, Y. Acosta Matutes, A.T. Gardiner, T.L.C. Jansen,
R.J. Cogdell, and J.P. Ogilvie, Spatially-resolved
fluorescence-detected two-dimensional electronic spectroscopy
probes varying excitonic structure in photosynthetic bacteria,
Nat. Commun.
9, 4219 (2018),
https://arxiv.org/abs/1802.04395,
https://doi.org/10.1038/s41467-018-06619-x
[11] W.P. De Boeij, M.S. Pshenichnikov, and D.A. Wiersma,
System–bath correlation function probed by conventional and
time-gated stimulated photon echo, J. Phys. Chem.
100,
11806–11823 (1996),
https://doi.org/10.1021/jp961039m
[12] K.F. Everitt, E. Geva, and J.L. Skinner, Determining the
solvation correlation function from three-pulse photon echoes in
liquids, J. Chem. Phys.
114, 1326–1335 (2001),
https://doi.org/10.1063/1.1332811
[13] E.A. Gibson, Z. Shen, and R. Jimenez, Three-pulse photon
echo peak shift spectroscopy as a probe of flexibility and
conformational heterogeneity in protein folding, Chem. Phys.
Lett.
473, 330–335 (2009),
https://doi.org/10.1016/j.cplett.2009.04.002
[14] S. Mukamel,
Principles of Nonlinear Optical
Spectroscopy (Oxford University Press, New York, 1995)
[15] J. Yuen-Zhou and A. Aspuru-Guzik, Quantum process
tomography of excitonic dimers from two-dimensional electronic
spectroscopy. I. General theory and application to homodimers,
J. Chem. Phys.
134, 134505 (2011),
https://doi.org/10.1063/1.3569694
[16] D. Abramavicius, V. Butkus, J. Bujokas, and L. Valkunas,
Manipulation of two-dimensional spectra of excitonically coupled
molecules by narrow-bandwidth laser pulses, Chem. Phys.
372,
22–32 (2010),
https://doi.org/10.1016/j.chemphys.2010.04.015
[17] E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer,
and G.D. Scholes, Coherently wired light-harvesting in
photosynthetic marine algae at ambient temperature, Nature
463,
644–647 (2010),
https://doi.org/10.1038/nature08811
[18] E. Meneghin, A. Volpato, L. Cupellini, L. Bolzonello, S.
Jurinovich, V. Mascoli, D. Carbonera, B. Mennucci, and E.
Collini, Coherence in carotenoid-to-chlorophyll energy transfer,
Nat. Commun.
9, 3160 (2018),
https://doi.org/10.1038/s41467-018-05596-5
[19] D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas,
Quantum coherence as a witness of vibronically hot energy
transfer in bacterial reaction center, Sci. Adv.
3,
e1603141 (2017),
https://doi.org/10.1126/sciadv.1603141
[20] G.D. Scholes, G.R. Fleming, L.X. Chen, A. Aspuru-Guzik, A.
Buchleitner, D.F. Coker, G.S. Engel, R. van Grondelle, A.
Ishizaki, D.M. Jonas, et al., Using coherence to enhance
function in chemical and biophysical systems, Nature
543,
647–656 (2017),
https://doi.org/10.1038/nature21425
[21] J. Pan, A. Gelzinis, V. Chorošajev, M. Vengris, S.S.
Senlik, J.-R. Shen, L. Valkunas, D. Abramavicius, and J.P.
Ogilvie, Ultrafast energy transfer within the photosystem II
core complex, Phys. Chem. Chem. Phys.
19(23),
15356–15367 (2017),
https://doi.org/10.1039/C7CP01673E
[22] F.D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S.S. Senlik,
D.E. Wilcox, C.F. Yocum, L. Valkunas, D. Abramavicius, and J.P.
Ogilvie, Vibronic coherence in oxygenic photosynthesis, Nat.
Chem.
6, 706–711(2014),
https://doi.org/10.1038/nchem.2005
[23] J. Lim, D. Paleček, F. Caycedo-Soler, C.N. Lincoln, J.
Prior, H. von Berlepsch, S.F. Huelga, M.B. Plenio, D. Zigmantas,
and J. Hauer, Vibronic origin of long-lived coherence in an
artificial molecular light harvester, Nat. Commun.
6,
7755 (2015),
https://doi.org/10.1038/ncomms8755
[24] E. Thyrhaug, R. Tempelaar, M.J.P. Alcocer, K. Žídek, D.
Bína, J. Knoester, T.L.C. Jansen, and D. Zigmantas,
Identification and characterization of diverse coherences in the
Fenna–Matthews–Olson complex, Nat. Chem.
10, 780–786
(2018),
https://doi.org/10.1038/s41557-018-0060-5
[25] D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S.
Mukamel, and H.F. Kauffmann, Weak exciton scattering in
molecular nanotubes revealed by double-quantum two-dimensional
electronic spectroscopy, Phys. Rev. Lett.
108, 067401
(2012),
https://doi.org/10.1103/PhysRevLett.108.067401
[26] J. Kim, S. Mukamel, and G.D. Scholes, Two-dimensional
electronic double-quantum coherence spectroscopy, Acc. Chem.
Res.
42, 1375–1384 (2009),
https://doi.org/10.1021/ar9000795
[27] J. Dostál, F. Fennel, F. Koch, S. Herbst, F. Würthner, and
T. Brixner, Direct observation of exciton-exciton interactions,
Nat. Commun.
9, 2466 (2018),
https://doi.org/10.1038/s41467-018-04884-4
[28] B. Brüggemann and T. Pullerits, Nonperturbative modeling of
fifth-order coherent multidimensional spectroscopy in light
harvesting antennas, New J. Phys.
13, 025024 (2011),
https://doi.org/10.1088/1367-2630/13/2/025024
[29] V. Bubilaitis, J. Hauer, and D. Abramavicius, Simulations
of pump probe spectra of a molecular complex at high excitation
intensity, Chem. Phys.
527, 110458 (2019),
https://doi.org/10.1016/j.chemphys.2019.110458
[30] J. Süß, J. Wehner, J. Dostál, T. Brixner, and V. Engel,
Mapping of exciton-exciton annihilation in a molecular dimer via
fifth-order femtosecond two-dimensional spectroscopy, J. Chem.
Phys.
150, 104304 (2019),
https://doi.org/10.1063/1.5086151
[31] M.D. Fayer (ed.),
Ultrafast Infrared Vibrational
Spectroscopy (CRC Press, 2013),
https://doi.org/10.1201/b13972
[32] A. Remorino and R.M. Hochstrasser, Three-dimensional
structures by two-dimensional vibrational spectroscopy, Acc.
Chem. Res.
45, 1896–1905 (2012),
https://doi.org/10.1021/ar3000025
[33] A.W. Smith, J. Lessing, Z. Ganim, C.S. Peng, A. Tokmakoff,
S. Roy, T.L.C. Jansen, and J. Knoester, Melting of β-hairpin
peptide using isotope-edited 2D IR spectroscopy and simulations,
J. Phys. Chem. B
114, 10913–10924 (2010),
https://doi.org/10.1021/jp104017h
[34] J.M. Anna, C.R. Baiz, M.R. Ross, R. McCanne, and K.J.
Kubarych, Ultrafast equilibrium and non-equilibrium chemical
reaction dynamics probed with multidimensional infrared
spectroscopy, Int. Rev. Phys. Chem.
31, 367–419 (2012),
https://doi.org/10.1080/0144235X.2012.716610
[35] M.D. Fayer, D.E. Moilanen, D. Wong, D.E. Rosenfeld, E.E.
Fenn, and S. Park, Water dynamics in salt solutions studied with
ultrafast two-dimensional infrared (2D IR) vibrational echo
spectroscopy, Acc. Chem. Res.
42, 1210–1219 (2009),
https://doi.org/10.1021/ar900043h
[36] M. Ji, S. Park, and K.J. Gaffney, Dynamics of ion assembly
in solution: 2DIR spectroscopy study of LiNCS in benzonitrile,
J. Phys. Chem. Lett.
1, 1771–1775 (2010),
https://doi.org/10.1021/jz100486x
[37] G.N. Pack, M.C. Rotondaro, P.P. Shah, A. Mandal, S.
Erramilli, and L.D. Ziegler, Two-dimensional infrared
spectroscopy from the gas to liquid phase: Density dependent:
J-scrambling, vibrational relaxation, and the onset of liquid
character, Phys. Chem. Chem. Phys.
21, 21249–21261
(2019),
https://doi.org/10.1039/c9cp04101j
[38] J.D. Cyran, J.M. Nite, and A.T. Krummel, Characterizing
anharmonic vibrational modes of quinones with two-dimensional
infrared spectroscopy, J. Phys. Chem. B
119, 8917–8925
(2015),
https://doi.org/10.1021/jp506900n
[39] Q. Guo, P. Pagano, Y.L. Li, A. Kohen, and C.M. Cheatum,
Line shape analysis of two-dimensional infrared spectra, J.
Chem. Phys.
142, 212427 (2015),
https://doi.org/10.1063/1.4918350
[40] J. Laane, in:
Frontiers of Molecular Spectroscopy
(Elsevier, 2009) pp. 63–132,
https://doi.org/10.1016/B978-0-444-53175-9.00004-0
[41] J. Laane, Experimental determination of vibrational
potential energy surfaces and molecular structures in electronic
excited states, J. Phys. Chem. A
104, 7715–7733 (2000),
https://doi.org/10.1021/jp0009002
[42] J. Chen, Z. Sun, and D.H. Zhang, An accurate potential
energy surface for the F + H
2 → HF + H reaction by
the coupled-cluster method, J. Chem. Phys.
142, 024303
(2015),
https://doi.org/10.1063/1.4904546
[43] R. Knochenmuss, R.K. Sinha, and S. Leutwyler,
Intermolecular dissociation energies of dispersively bound
complexes of aromatics with noble gases and nitrogen, J. Chem.
Phys.
148, 134302 (2018),
https://doi.org/10.1063/1.5019432
[44] J. Zúñiga, J.A. Picón, A. Bastida, and A. Requena, A
spectroscopic potential energy surface for FCN, J. Quant.
Spectrosc. Radiat. Transf.
113, 1155–1169 (2012),
https://doi.org/10.1016/j.jqsrt.2012.01.023
[45] W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang, and D.H. Zhang,
Transition-state spectroscopy of partial wave resonances in the
F + HD reaction, Science
327, 1501–1502 (2010),
https://doi.org/10.1126/science.1185694
[46] Z. Yan, S.K. Gray, and N.F. Scherer, Potential energy
surfaces and reaction pathways for light-mediated
self-organization of metal nanoparticle clusters, Nat. Commun.
5
(2014),
https://doi.org/10.1038/ncomms4751
[47] E. Skúlason, V. Tripkovic, M.E. Björketun, S.
Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H.
Jónsson, and J.K. Nørskov, Modeling the electrochemical hydrogen
oxidation and evolution reactions on the basis of density
functional theory calculations, J. Phys. Chem. C
114,
18182–18197 (2010),
https://doi.org/10.1021/jp1048887
[48] P. Pechukas, Transition state theory, Annu. Rev. Phys.
Chem.
32, 159–177 (1981),
https://doi.org/10.1146/annurev.pc.32.100181.001111
[49] H. Satzger, C. Root, and M. Braun, Excited-state dynamics
of trans- and cis-azobenzene after UV excitation in the
ππ*
band, J. Phys. Chem. A
108, 6265–6271 (2004),
https://doi.org/10.1021/jp049509x
[50] P.J.M. Johnson, A. Halpin, T. Morizumi, V.I. Prokhorenko,
O.P. Ernst, and R.J.D. Miller, Local vibrational coherences
drive the primary photochemistry of vision, Nat. Chem.
7,
980–986 (2015),
https://doi.org/10.1038/nchem.2398
[51] V. Balevičius Jr., T. Wei, D. Di Tommaso, D. Abramavicius,
J. Hauer, T. Polívkae, and C.D.P. Duffy, The full dynamics of
energy relaxation in large organic molecules: From
photo-excitation to solvent heating, Chem. Sci.
10,
4792–4804 (2019),
https://doi.org/10.1039/c9sc00410f
[52] J. Hauer, M. Maiuri, D. Viola, V. Lukes, S. Henry, A.M.
Carey, R.J. Cogdell, G. Cerullo, and D. Polli, Explaining the
temperature dependence of spirilloxanthin’s S* signal by an
inhomogeneous ground state model, J. Phys. Chem. A
117,
6303–6310 (2013),
https://doi.org/10.1021/jp4011372
[53] P.G. Jambrina, L. González-Sánchez, J. Aldegunde, V.
Saéz-Rábanos, and F.J. Aoiz, Competing dynamical mechanisms in
inelastic collisions of H + HF, J. Phys. Chem. A
123,
9079–9088 (2019),
https://doi.org/10.1021/acs.jpca.9b07272
[54] V. Sáez-Rábanos, J.E. Verdasco, and V.J. Herrero, Orbiting
resonances in the F + HD (
v = 0, 1) reaction at very low
collision energies. A quantum dynamical study, Phys. Chem. Chem.
Phys.
21, 15177–15186 (2019),
https://doi.org/10.1039/c9cp02718a
[55] R.J. Le Roy, Y. Huang, and C. Jary, An accurate analytic
potential function for ground-state N
2 from a
direct-potential-fit analysis of spectroscopic data, J. Chem.
Phys.
125, 164310 (2006),
https://doi.org/10.1063/1.2354502
[56] E.F. de Lima and J.E.M. Hornos, Matrix elements for the
Morse potential under an external field, J. Phys. B At. Mol.
Opt. Phys.
38, 815–825 (2005),
https://doi.org/10.1088/0953-4075/38/7/004
[57] J.A. Borek, F. Perakis, and P. Hamm, Testing for
memory-free spectroscopic coordinates by 3D IR exchange
spectroscopy, Proc. Natl. Acad. Sci.
111, 10462–10467
(2014),
https://doi.org/10.1073/pnas.1406967111
[58] A.F. Fidler, E. Harel, and G.S. Engel, Dissecting hidden
couplings using fifth-order three-dimensional electronic
spectroscopy, J. Phys. Chem. Lett.
1, 2876–2880 (2010),
https://doi.org/10.1021/jz101064j
[59] Z. Zhang, P.H. Lambrev, K.L. Wells, G. Garab, and H.S. Tan,
Direct observation of multistep energy transfer in LHCII with
fifth-order 3D electronic spectroscopy, Nat. Commun.
6,
7914 (2015),
https://doi.org/10.1038/ncomms8914
[60] H. Li, A.D. Bristow, M.E. Siemens, G. Moody, and S.T.
Cundiff, Unraveling quantum pathways using optical 3D
Fourier-transform spectroscopy, Nat. Commun.
4, 1390
(2013),
https://doi.org/10.1038/ncomms2405
[61] S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos,
T.B. Marder, U.H.F. Bunz, A. Dreuw, C. Lambert, and T. Brixner,
Rapid multiple-quantum three-dimensional fluorescence
spectroscopy disentangles quantum pathways, Nat. Commun.
10,
4735 (2019),
https://doi.org/10.1038/s41467-019-12602-x
[62] D.B. Turner and K.A. Nelson, Coherent measurements of
high-order electronic correlations in quantum wells, Nature
466,
1089–1092 (2010),
https://doi.org/10.1038/nature09286
[63] L. Valkunas, D. Abramavicius, and T. Mancal,
Molecular
Excitation Dynamics and Relaxation: Quantum Theory and
Spectroscopy (Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany, 2013),
https://doi.org/10.1002/9783527653652
[64] Y. Tanimura, The 5th- and 7th-order 2D Raman spectroscopy
for intramolecular vibrational modes, AIP Conf. Proc.
503,
144–153 (2000),
https://doi.org/10.1063/1.1302858
[65] K.J. Kubarych, C.J. Milne, and R.J.D. Miller, Fifth-order
two-dimensional Raman spectroscopy: A new direct probe of the
liquid state, Int. Rev. Phys. Chem.
22, 497–532 (2003),
https://doi.org/10.1080/0144235031000121544
[66] B.P. Molesky, P.G. Giokas, Z. Guo, and A.M. Moran,
Multidimensional resonance Raman spectroscopy by six-wave mixing
in the deep UV, J. Chem. Phys.
141, 114202 (2014),
https://doi.org/10.1063/1.4894846
[67] B.P. Molesky, Z. Guo, and A.M. Moran, Femtosecond
stimulated Raman spectroscopy by six-wave mixing, J. Chem. Phys.
142, 212405 (2015),
https://doi.org/10.1063/1.4914095
[68] J.C. Kirkwood and A.C. Albrecht, Multi-dimensional
time-resolved coherent Raman six-wave mixing: a comparison of
the direct and cascaded processes with femtosecond excitation
and noisy light interferometry, J. Raman Spectrosc.
31,
107–124 (2000),
https://doi.org/10.1002/(SICI)1097-4555(200001/02)31:1/2<107::AIDJRS493>3.0.CO;2-E
[69] M. Cho, D.A. Blank, J. Sung, K. Park, S. Hahn, and G.R.
Fleming, Intrinsic cascading contributions to the fifth- and
seventh-order electronically off-resonant Raman spectroscopies,
J. Chem. Phys.
112, 2082–2094 (2000),
https://doi.org/10.1063/1.480777
[70] R.D. Mehlenbacher, B. Lyons, K.C. Wilson, Y. Du, and D.W.
McCamant, Theoretical analysis of anharmonic coupling and
cascading Raman signals observed with femtosecond stimulated
Raman spectroscopy, J. Chem. Phys.
131, 244512 (2009),
https://doi.org/10.1063/1.3276684
[71] A.P. Spencer, W.O. Hutson, and E. Harel, Quantum coherence
selective 2D Raman–2D electronic spectroscopy, Nat. Commun.
8,
14732 (2017),
https://doi.org/10.1038/ncomms14732