[PDF]  https://doi.org/10.3952/physics.v60i3.4302

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 154–166 (2020)
 

REVEALING A FULL QUANTUM LADDER BY NONLINEAR SPECTROSCOPY
Darius Abramavičius
  Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
Email: darius.abramavicius@ff.vu.lt

Received 16 June 2020; accepted 30 June 2020

Coherent two-dimensional spectroscopy in the IR or the visible region is very effective for studying correlations, energy relaxation/transfer pathways in complex multi-chromophore or multi-mode systems. However, it is usually restricted up to two-quanta excitations and their properties. In this paper, an arbitrary level of excitation is suggested as the utility to scan nonlinear potential surfaces of quantum systems up to a desired excitation degree. This can be achieved by a simple three-pulse laser spectroscopy approach. Accurate evaluation of high-level anharmonicities as well as transition amplitudes can be directly obtained. Additionally, questions regarding the quantum nature of the probed system can be addressed by studying absolute peak positions.
Keywords: energy level structure, multiple-quanta excitations, pulsed laser spectroscopy

NETIESINĖS SPEKTROSKOPIJOS GALIMYBĖS ATSKLEIDŽIANT INFORMACIJĄ APIE AUKŠTAI SUŽADINTAS KVANTINĖS SISTEMOS BŪSENAS
Darius Abramavičius

Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva

Koherentinė dvimatė infraraudonoji ar matomosios srities spektroskopija yra labai paplitusi tyrinėjant energijos relaksacijos bei pernašos kelius daugelio pigmentų ar modų sistemose. Bendrai tai yra koreliacinė spektroskopija, kuria matuojami sąryšiai tarp skirtingų kvantinių būsenų, apsiribojant sužadinimais tik iki dviejų kvantų. Šiame straipsnyje siūloma nagrinėti daugelio kvantų sužadintas būsenas. Taip būtų įmanoma „skenuoti“ kvantinių sistemų netiesinius potencinius paviršius iki pat pageidaujamo sužadinimo. Tą galima pasiekti taikant paprastą trijų impulsų lazerinės spektroskopijos metodą. Jis leistų tiesiogiai gauti tikslius aukštai esančių lygmenų anharmoniškumų įvertinimus ir šuolių tarp jų amplitudes.
 
References / Nuorodos

[1] D. Abramavicius, B. Palmieri, D.V. Voronine, F. Šanda, and S. Mukamel, Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives, Chem. Rev. 109, 2350–2408 (2009),
https://doi.org/10.1021/cr800268n
[2] W. Zhuang, T. Hayashi, and S. Mukamel, Coherent multidimensional vibrational spectroscopy of biomolecules: Concepts, simulations, and challenges, Angew. Chemie Int. Ed. 48, 3750–3781 (2009),
https://doi.org/10.1002/anie.200802644
[3] M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, 2009),
https://doi.org/10.1201/9781420084306
[4] P. Wen, G. Christmann, J.J. Baumberg, and K.A. Nelson, Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities, New J. Phys. 15, 025005 (2013),
https://doi.org/10.1088/1367-2630/15/2/025005
[5] G.S. Schlau-Cohen, A. Ishizaki, and G.R. Fleming, Two-dimensional electronic spectroscopy and photosynthesis: Fundamentals and applications to photosynthetic light-harvesting, Chem. Phys. 386, 1–22 (2011),
https://doi.org/10.1016/j.chemphys.2011.04.025
[6] M. Reppert and A. Tokmakoff, Computational amide I 2D IR spectroscopy as a probe of protein structure and dynamics, Annu. Rev. Phys. Chem. 67, 359–386 (2016),
https://doi.org/10.1146/annurev-physchem-040215-112055
[7] S. Hume, G. Hithell, G.M. Greetham, P.M. Donaldson, M. Towrie, A.W. Parker, M.J. Baker, and N.T. Hunt, Measuring proteins in H2O with 2D-IR spectroscopy, Chem. Sci. 10, 6448–6456 (2019),
https://doi.org/10.1039/c9sc01590f
[8] M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, and A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water, Science 350, 78–82 (2015),
https://doi.org/10.1126/science.aab3908
[9] L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, and F. Stienkemeier, Coherent multidimensional spectroscopy of dilute gas-phase nanosystems, Nat. Commun. 9, 4823 (2018),
https://arxiv.org/abs/1806.08314,
https://doi.org/10.1038/s41467-018-07292-w
[10] V. Tiwari, Y. Acosta Matutes, A.T. Gardiner, T.L.C. Jansen, R.J. Cogdell, and J.P. Ogilvie, Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria, Nat. Commun. 9, 4219 (2018),
https://arxiv.org/abs/1802.04395,
https://doi.org/10.1038/s41467-018-06619-x
[11] W.P. De Boeij, M.S. Pshenichnikov, and D.A. Wiersma, System–bath correlation function probed by conventional and time-gated stimulated photon echo, J. Phys. Chem. 100, 11806–11823 (1996),
https://doi.org/10.1021/jp961039m
[12] K.F. Everitt, E. Geva, and J.L. Skinner, Determining the solvation correlation function from three-pulse photon echoes in liquids, J. Chem. Phys. 114, 1326–1335 (2001),
https://doi.org/10.1063/1.1332811
[13] E.A. Gibson, Z. Shen, and R. Jimenez, Three-pulse photon echo peak shift spectroscopy as a probe of flexibility and conformational heterogeneity in protein folding, Chem. Phys. Lett. 473, 330–335 (2009),
https://doi.org/10.1016/j.cplett.2009.04.002
[14] S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)
[15] J. Yuen-Zhou and A. Aspuru-Guzik, Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers, J. Chem. Phys. 134, 134505 (2011),
https://doi.org/10.1063/1.3569694
[16] D. Abramavicius, V. Butkus, J. Bujokas, and L. Valkunas, Manipulation of two-dimensional spectra of excitonically coupled molecules by narrow-bandwidth laser pulses, Chem. Phys. 372, 22–32 (2010),
https://doi.org/10.1016/j.chemphys.2010.04.015
[17] E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, and G.D. Scholes, Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature, Nature 463, 644–647 (2010),
https://doi.org/10.1038/nature08811
[18] E. Meneghin, A. Volpato, L. Cupellini, L. Bolzonello, S. Jurinovich, V. Mascoli, D. Carbonera, B. Mennucci, and E. Collini, Coherence in carotenoid-to-chlorophyll energy transfer, Nat. Commun. 9, 3160 (2018),
https://doi.org/10.1038/s41467-018-05596-5
[19] D. Paleček, P. Edlund, S. Westenhoff, and D. Zigmantas, Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center, Sci. Adv. 3, e1603141 (2017),
https://doi.org/10.1126/sciadv.1603141
[20] G.D. Scholes, G.R. Fleming, L.X. Chen, A. Aspuru-Guzik, A. Buchleitner, D.F. Coker, G.S. Engel, R. van Grondelle, A. Ishizaki, D.M. Jonas, et al., Using coherence to enhance function in chemical and biophysical systems, Nature 543, 647–656 (2017),
https://doi.org/10.1038/nature21425
[21] J. Pan, A. Gelzinis, V. Chorošajev, M. Vengris, S.S. Senlik, J.-R. Shen, L. Valkunas, D. Abramavicius, and J.P. Ogilvie, Ultrafast energy transfer within the photosystem II core complex, Phys. Chem. Chem. Phys. 19(23), 15356–15367 (2017),
https://doi.org/10.1039/C7CP01673E
[22] F.D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S.S. Senlik, D.E. Wilcox, C.F. Yocum, L. Valkunas, D. Abramavicius, and J.P. Ogilvie, Vibronic coherence in oxygenic photosynthesis, Nat. Chem. 6, 706–711(2014),
https://doi.org/10.1038/nchem.2005
[23] J. Lim, D. Paleček, F. Caycedo-Soler, C.N. Lincoln, J. Prior, H. von Berlepsch, S.F. Huelga, M.B. Plenio, D. Zigmantas, and J. Hauer, Vibronic origin of long-lived coherence in an artificial molecular light harvester, Nat. Commun. 6, 7755 (2015),
https://doi.org/10.1038/ncomms8755
[24] E. Thyrhaug, R. Tempelaar, M.J.P. Alcocer, K. Žídek, D. Bína, J. Knoester, T.L.C. Jansen, and D. Zigmantas, Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex, Nat. Chem. 10, 780–786 (2018),
https://doi.org/10.1038/s41557-018-0060-5
[25] D. Abramavicius, A. Nemeth, F. Milota, J. Sperling, S. Mukamel, and H.F. Kauffmann, Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy, Phys. Rev. Lett. 108, 067401 (2012),
https://doi.org/10.1103/PhysRevLett.108.067401
[26] J. Kim, S. Mukamel, and G.D. Scholes, Two-dimensional electronic double-quantum coherence spectroscopy, Acc. Chem. Res. 42, 1375–1384 (2009),
https://doi.org/10.1021/ar9000795
[27] J. Dostál, F. Fennel, F. Koch, S. Herbst, F. Würthner, and T. Brixner, Direct observation of exciton-exciton interactions, Nat. Commun. 9, 2466 (2018),
https://doi.org/10.1038/s41467-018-04884-4
[28] B. Brüggemann and T. Pullerits, Nonperturbative modeling of fifth-order coherent multidimensional spectroscopy in light harvesting antennas, New J. Phys. 13, 025024 (2011),
https://doi.org/10.1088/1367-2630/13/2/025024
[29] V. Bubilaitis, J. Hauer, and D. Abramavicius, Simulations of pump probe spectra of a molecular complex at high excitation intensity, Chem. Phys. 527, 110458 (2019),
https://doi.org/10.1016/j.chemphys.2019.110458
[30] J. Süß, J. Wehner, J. Dostál, T. Brixner, and V. Engel, Mapping of exciton-exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy, J. Chem. Phys. 150, 104304 (2019),
https://doi.org/10.1063/1.5086151
[31] M.D. Fayer (ed.), Ultrafast Infrared Vibrational Spectroscopy (CRC Press, 2013),
https://doi.org/10.1201/b13972
[32] A. Remorino and R.M. Hochstrasser, Three-dimensional structures by two-dimensional vibrational spectroscopy, Acc. Chem. Res. 45, 1896–1905 (2012),
https://doi.org/10.1021/ar3000025
[33] A.W. Smith, J. Lessing, Z. Ganim, C.S. Peng, A. Tokmakoff, S. Roy, T.L.C. Jansen, and J. Knoester, Melting of β-hairpin peptide using isotope-edited 2D IR spectroscopy and simulations, J. Phys. Chem. B 114, 10913–10924 (2010),
https://doi.org/10.1021/jp104017h
[34] J.M. Anna, C.R. Baiz, M.R. Ross, R. McCanne, and K.J. Kubarych, Ultrafast equilibrium and non-equilibrium chemical reaction dynamics probed with multidimensional infrared spectroscopy, Int. Rev. Phys. Chem. 31, 367–419 (2012),
https://doi.org/10.1080/0144235X.2012.716610
[35] M.D. Fayer, D.E. Moilanen, D. Wong, D.E. Rosenfeld, E.E. Fenn, and S. Park, Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy, Acc. Chem. Res. 42, 1210–1219 (2009),
https://doi.org/10.1021/ar900043h
[36] M. Ji, S. Park, and K.J. Gaffney, Dynamics of ion assembly in solution: 2DIR spectroscopy study of LiNCS in benzonitrile, J. Phys. Chem. Lett. 1, 1771–1775 (2010),
https://doi.org/10.1021/jz100486x
[37] G.N. Pack, M.C. Rotondaro, P.P. Shah, A. Mandal, S. Erramilli, and L.D. Ziegler, Two-dimensional infrared spectroscopy from the gas to liquid phase: Density dependent: J-scrambling, vibrational relaxation, and the onset of liquid character, Phys. Chem. Chem. Phys. 21, 21249–21261 (2019),
https://doi.org/10.1039/c9cp04101j
[38] J.D. Cyran, J.M. Nite, and A.T. Krummel, Characterizing anharmonic vibrational modes of quinones with two-dimensional infrared spectroscopy, J. Phys. Chem. B 119, 8917–8925 (2015),
https://doi.org/10.1021/jp506900n
[39] Q. Guo, P. Pagano, Y.L. Li, A. Kohen, and C.M. Cheatum, Line shape analysis of two-dimensional infrared spectra, J. Chem. Phys. 142, 212427 (2015),
https://doi.org/10.1063/1.4918350
[40] J. Laane, in: Frontiers of Molecular Spectroscopy (Elsevier, 2009) pp. 63–132,
https://doi.org/10.1016/B978-0-444-53175-9.00004-0
[41] J. Laane, Experimental determination of vibrational potential energy surfaces and molecular structures in electronic excited states, J. Phys. Chem. A 104, 7715–7733 (2000),
https://doi.org/10.1021/jp0009002
[42] J. Chen, Z. Sun, and D.H. Zhang, An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method, J. Chem. Phys. 142, 024303 (2015),
https://doi.org/10.1063/1.4904546
[43] R. Knochenmuss, R.K. Sinha, and S. Leutwyler, Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen, J. Chem. Phys. 148, 134302 (2018),
https://doi.org/10.1063/1.5019432
[44] J. Zúñiga, J.A. Picón, A. Bastida, and A. Requena, A spectroscopic potential energy surface for FCN, J. Quant. Spectrosc. Radiat. Transf. 113, 1155–1169 (2012),
https://doi.org/10.1016/j.jqsrt.2012.01.023
[45] W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang, and D.H. Zhang, Transition-state spectroscopy of partial wave resonances in the F + HD reaction, Science 327, 1501–1502 (2010),
https://doi.org/10.1126/science.1185694
[46] Z. Yan, S.K. Gray, and N.F. Scherer, Potential energy surfaces and reaction pathways for light-mediated self-organization of metal nanoparticle clusters, Nat. Commun. 5 (2014),
https://doi.org/10.1038/ncomms4751
[47] E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson, and J.K. Nørskov, Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations, J. Phys. Chem. C 114, 18182–18197 (2010),
https://doi.org/10.1021/jp1048887
[48] P. Pechukas, Transition state theory, Annu. Rev. Phys. Chem. 32, 159–177 (1981),
https://doi.org/10.1146/annurev.pc.32.100181.001111
[49] H. Satzger, C. Root, and M. Braun, Excited-state dynamics of trans- and cis-azobenzene after UV excitation in the ππ* band, J. Phys. Chem. A 108, 6265–6271 (2004),
https://doi.org/10.1021/jp049509x
[50] P.J.M. Johnson, A. Halpin, T. Morizumi, V.I. Prokhorenko, O.P. Ernst, and R.J.D. Miller, Local vibrational coherences drive the primary photochemistry of vision, Nat. Chem. 7, 980–986 (2015),
https://doi.org/10.1038/nchem.2398
[51] V. Balevičius Jr., T. Wei, D. Di Tommaso, D. Abramavicius, J. Hauer, T. Polívkae, and C.D.P. Duffy, The full dynamics of energy relaxation in large organic molecules: From photo-excitation to solvent heating, Chem. Sci. 10, 4792–4804 (2019),
https://doi.org/10.1039/c9sc00410f
[52] J. Hauer, M. Maiuri, D. Viola, V. Lukes, S. Henry, A.M. Carey, R.J. Cogdell, G. Cerullo, and D. Polli, Explaining the temperature dependence of spirilloxanthin’s S* signal by an inhomogeneous ground state model, J. Phys. Chem. A 117, 6303–6310 (2013),
https://doi.org/10.1021/jp4011372
[53] P.G. Jambrina, L. González-Sánchez, J. Aldegunde, V. Saéz-Rábanos, and F.J. Aoiz, Competing dynamical mechanisms in inelastic collisions of H + HF, J. Phys. Chem. A 123, 9079–9088 (2019),
https://doi.org/10.1021/acs.jpca.9b07272
[54] V. Sáez-Rábanos, J.E. Verdasco, and V.J. Herrero, Orbiting resonances in the F + HD (v = 0, 1) reaction at very low collision energies. A quantum dynamical study, Phys. Chem. Chem. Phys. 21, 15177–15186 (2019),
https://doi.org/10.1039/c9cp02718a
[55] R.J. Le Roy, Y. Huang, and C. Jary, An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data, J. Chem. Phys. 125, 164310 (2006),
https://doi.org/10.1063/1.2354502
[56] E.F. de Lima and J.E.M. Hornos, Matrix elements for the Morse potential under an external field, J. Phys. B At. Mol. Opt. Phys. 38, 815–825 (2005),
https://doi.org/10.1088/0953-4075/38/7/004
[57] J.A. Borek, F. Perakis, and P. Hamm, Testing for memory-free spectroscopic coordinates by 3D IR exchange spectroscopy, Proc. Natl. Acad. Sci. 111, 10462–10467 (2014),
https://doi.org/10.1073/pnas.1406967111
[58] A.F. Fidler, E. Harel, and G.S. Engel, Dissecting hidden couplings using fifth-order three-dimensional electronic spectroscopy, J. Phys. Chem. Lett. 1, 2876–2880 (2010),
https://doi.org/10.1021/jz101064j
[59] Z. Zhang, P.H. Lambrev, K.L. Wells, G. Garab, and H.S. Tan, Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy, Nat. Commun. 6, 7914 (2015),
https://doi.org/10.1038/ncomms8914
[60] H. Li, A.D. Bristow, M.E. Siemens, G. Moody, and S.T. Cundiff, Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy, Nat. Commun. 4, 1390 (2013),
https://doi.org/10.1038/ncomms2405
[61] S. Mueller, J. Lüttig, P. Malý, L. Ji, J. Han, M. Moos, T.B. Marder, U.H.F. Bunz, A. Dreuw, C. Lambert, and T. Brixner, Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways, Nat. Commun. 10, 4735 (2019),
https://doi.org/10.1038/s41467-019-12602-x
[62] D.B. Turner and K.A. Nelson, Coherent measurements of high-order electronic correlations in quantum wells, Nature 466, 1089–1092 (2010),
https://doi.org/10.1038/nature09286
[63] L. Valkunas, D. Abramavicius, and T. Mancal, Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013),
https://doi.org/10.1002/9783527653652
[64] Y. Tanimura, The 5th- and 7th-order 2D Raman spectroscopy for intramolecular vibrational modes, AIP Conf. Proc. 503, 144–153 (2000),
https://doi.org/10.1063/1.1302858
[65] K.J. Kubarych, C.J. Milne, and R.J.D. Miller, Fifth-order two-dimensional Raman spectroscopy: A new direct probe of the liquid state, Int. Rev. Phys. Chem. 22, 497–532 (2003),
https://doi.org/10.1080/0144235031000121544
[66] B.P. Molesky, P.G. Giokas, Z. Guo, and A.M. Moran, Multidimensional resonance Raman spectroscopy by six-wave mixing in the deep UV, J. Chem. Phys. 141, 114202 (2014),
https://doi.org/10.1063/1.4894846
[67] B.P. Molesky, Z. Guo, and A.M. Moran, Femtosecond stimulated Raman spectroscopy by six-wave mixing, J. Chem. Phys. 142, 212405 (2015),
https://doi.org/10.1063/1.4914095
[68] J.C. Kirkwood and A.C. Albrecht, Multi-dimensional time-resolved coherent Raman six-wave mixing: a comparison of the direct and cascaded processes with femtosecond excitation and noisy light interferometry, J. Raman Spectrosc. 31, 107–124 (2000),
https://doi.org/10.1002/(SICI)1097-4555(200001/02)31:1/2<107::AIDJRS493>3.0.CO;2-E
[69] M. Cho, D.A. Blank, J. Sung, K. Park, S. Hahn, and G.R. Fleming, Intrinsic cascading contributions to the fifth- and seventh-order electronically off-resonant Raman spectroscopies, J. Chem. Phys. 112, 2082–2094 (2000),
https://doi.org/10.1063/1.480777
[70] R.D. Mehlenbacher, B. Lyons, K.C. Wilson, Y. Du, and D.W. McCamant, Theoretical analysis of anharmonic coupling and cascading Raman signals observed with femtosecond stimulated Raman spectroscopy, J. Chem. Phys. 131, 244512 (2009),
https://doi.org/10.1063/1.3276684
[71] A.P. Spencer, W.O. Hutson, and E. Harel, Quantum coherence selective 2D Raman–2D electronic spectroscopy, Nat. Commun. 8, 14732 (2017),
https://doi.org/10.1038/ncomms14732