Received 28 November 2019; revised 3 February 2020; accepted 17
March 2020
[1] P. Tonui, S.O. Oseni, G. Sharma, Q. Yan, and G.T. Mola,
Perovskites photovoltaic solar cells: An overview of current
status, Renew. Sustain. Energy Rev.
91, 1025–1044
(2018),
https://doi.org/10.1016/j.rser.2018.04.069
[2] Q. Van Le, H.W. Jang, and S.Y. Kim, Recent advances toward
high-efficiency halide perovskite light-emitting diodes: Review
and perspective, Small Methods
2(10), 1700419 (2018),
https://doi.org/10.1002/smtd.201700419
[3] Y. Shang, Y. Liao, Q. Wei, Z. Wang, B. Xiang, Y. Ke, W. Liu,
and Z. Ning, Highly stable hybrid perovskite light-emitting
diodes based on Dion-Jacobson structure, Sci. Adv.
5(8),
eaaw8072 (2019),
https://doi.org/10.1126/sciadv.aaw8072
[4] K. Wang, S. Wang, S. Xiao, and Q. Song, Recent advances in
perovskite micro- and nano-lasers, Adv. Opt. Mater.
6(18),
1800278 (2018),
https://doi.org/10.1002/adom.201800278
[5] M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G.
Kakavelakis, and K. Petridis, Inorganic and hybrid perovskite
based laser devices: a review, Materials
12(6), 859
(2019),
https://doi.org/10.3390/ma12060859
[6] X. Liu, D. Yu, X. Song, and H. Zeng, Metal halide
perovskites: synthesis, ion migration, and application in
field-effect transistors, Small
14(36), 1801460 (2018),
https://doi.org/10.1002/smll.201801460
[7] H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, Improved
understanding of the electronic and energetic landscapes of
perovskite solar cells: high local charge carrier mobility,
reduced recombination, and extremely shallow traps, J. Am.
Chem. Soc.
136(39), 13818–13825 (2014), pMID: 25188538,
https://doi.org/10.1021/ja506936f
[8] T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, and D. Cahen,
Hybrid organic–inorganic perovskites: low-cost semiconductors
with intriguing charge-transport properties, Nat. Rev. Mater.
1(1),
15007 (2016),
https://doi.org/10.1038/natrevmats.2015.7
[9] I.L. Braly, D.W. deQuilettes, L.M. Pazos-Outón, S. Burke,
M.E. Ziffer, D.S. Ginger, and H.W. Hillhouse, Hybrid perovskite
films approaching the radiative limit with over 90%
photoluminescence quantum efficiency, Nat. Photonics
12(6),
355–361 (2018),
https://doi.org/10.1038/s41566-018-0154-z
[10] M.A. Green, A. Ho-Baillie, and H.J. Snaith, The emergence
of perovskite solar cells, Nat. Photonics
8, 506–514
(2014),
https://doi.org/10.1038/nphoton.2014.134
[11] S.D. Stranks, Nonradiative losses in metal halide
perovskites, ACS Energy Lett.
2(7), 1515–1525 (2017),
https://doi.org/10.1021/acsenergylett.7b00239
[12] T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng,
H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A.A. Dubale, and B.-J.
Hwang, Organometal halide perovskite solar cells: degradation
and stability, Energy Environ. Sci.
9, 323–356 (2016),
https://doi.org/10.1039/C5EE02733K
[13] K.K. Bass, R.E. McAnally, S. Zhou, P.I. Djurovich, M.E.
Thompson, and B.C. Melot, Influence of moisture on the
preparation, crystal structure, and photophysical properties of
organohalide perovskites, Chem. Commun.
50, 15819–15822
(2014),
https://doi.org/10.1039/C4CC05231E
[14] P. Pistor, A. Ruiz, A. Cabot, and V. Izquierdo-Roca,
Advanced Raman spectroscopy of methylammonium lead iodide:
development of a nondestructive characterisation methodology,
Sci. Rep.
6, 35973 (2016),
https://doi.org/10.1038/srep35973
[15] S. Ruan, M.-A. Surmiak, Y. Ruan, D.P. McMeekin, H.
Ebendorff-Heidepriem, Y.-B. Cheng, J. Lu, and C.R. McNeill,
Light induced degradation in mixed-halide perovskites, J. Mater.
Chem. C
7, 9326–9334 (2019),
https://doi.org/10.1039/C9TC02635E
[16] G. Abdelmageed, L. Jewell, K. Hellier, L. Seymour, B. Luo,
F. Bridges, J.Z. Zhang, and S. Carter, Mechanisms for light
induced degradation in MAPbI
3 perovskite thin films
and solar cells, Appl. Phys. Lett.
109(23), 233905
(2016),
https://doi.org/10.1063/1.4967840
[17] D.L. Jacobs, M.A. Scarpulla, C. Wang, B.R. Bunes, and L.
Zang, Voltage-induced transients in methylammonium lead
triiodide probed by dynamic photoluminescence spectroscopy, J.
Phys. Chem. C
120(15), 7893–7902 (2016),
https://doi.org/10.1021/acs.jpcc.5b11973
[18] W. Ke, C. Xiao, C. Wang, B. Saparov, H.-S. Duan, D. Zhao,
Z. Xiao, P. Schulz, S.P. Harvey, W. Liao, W. Meng, Y. Yu, A.J.
Cimaroli, C.-S. Jiang, K. Zhu, M. Al-Jassim, G. Fang, D.B.
Mitzi, and Y. Yan, Employing lead thiocyanate additive to reduce
the hysteresis and boost the fill factor of planar perovskite
solar cells, Adv. Mater.
28(26), 5214–5221 (2016),
https://doi.org/10.1002/adma.201600594
[19] K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang, L. Li, and T. Wu,
Temperature-dependent excitonic photoluminescence of hybrid
organometal halide perovskite films, Phys. Chem. Chem. Phys.
16,
22476–22481 (2014),
https://doi.org/10.1039/C4CP03573A
[20] S. Zhuang, D. Xu, J. Xu, B. Wu, Y. Zhang, X. Dong, G. Li,
B. Zhang, and G. Du, Temperature-dependent photoluminescence on
organic inorganic metal halide perovskite CH
3NH
3PbI
3−xCl
x
prepared on ZnO/FTO substrates using a two-step method, Chin.
Phys. B
26(1), 017802 (2017),
https://doi.org/10.1088/1367-2630/19/1/017802
[21] T. Liu, K. Chen, Q. Hu, R. Zhu, and Q. Gong, Inverted
perovskite solar cells: progresses and perspectives, Adv. Energy
Mater.
6(17), 1600457 (2016),
https://doi.org/10.1002/aenm.201600457
[22] C.-Y. Chen, J.-H. Chang, K.-M. Chiang, H.-L. Lin, S.-Y.
Hsiao, and H.-W. Lin, Perovskite photovoltaics for dim-light
applications, Adv. Funct. Mater.
25(45), 7064–7070
(2015),
https://doi.org/10.1002/adfm.201503448
[23] Y.-C. Wang, X. Li, L. Zhu, X. Liu, W. Zhang, and J. Fang,
Efficient and hysteresis-free perovskite solar cells based on a
solution processable polar fullerene electron transport layer,
Adv. Energy Mater.
7(21), 1701144 (2017),
https://doi.org/10.1002/aenm.201701144
[24] A. Giuri, S. Masi, S. Colella, A. Kovtun, S. Dell’Elce, E.
Treossi, A. Liscio, C. Esposito Corcione, A. Rizzo, and A.
Listorti, Cooperative effect of GO and glucose on PEDOT:PSS for
high VOC and hysteresis-free solution-processed perovskite solar
cells, Adv. Funct. Mater.
26(38), 6985–6994 (2016),
https://doi.org/10.1002/adfm.201603023
[25] W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang,
H. Lei, B. Li, J. Wan, G. Yang, and Y. Yan, Low-temperature
solution-processed tin oxide as an alternative electron
transporting layer for efficient perovskite solar cells, J. Am.
Chem. Soc.
137(21), 6730–6733 (2015),
https://doi.org/10.1021/jacs.5b01994
[26] J.H. Lee, Y.W. Noh, I.S. Jin, S.H. Park, and J.W. Jung,
Efficient perovskite solar cells with negligible hysteresis
achieved by sol–gel-driven spinel nickel cobalt oxide thin films
as the hole transport layer, J. Mater. Chem. C
7,
7288–7298 (2019),
https://doi.org/10.1039/C9TC00902G
[27] X. Yao, W. Xu, X. Huang, J. Qi, Q. Yin, X. Jiang, F. Huang,
X. Gong, and Y. Cao, Solution-processed vanadium oxide thin film
as the hole extraction layer for efficient hysteresis-free
perovskite hybrid solar cells, Org. Electron.
47(C),
85–93 (2017),
https://doi.org/10.1016/j.orgel.2017.05.006
[28] D. Hong, J. Li, S. Wan, I.G. Scheblykin, and Y. Tian,
Red-shifted photoluminescence from crystal edges due to carrier
redistribution and reabsorption in lead triiodide perovskites,
J. Phys. Chem. C
123(19), 12521–12526 (2019),
https://doi.org/10.1021/acs.jpcc.9b03647
[29] M.A. Reshchikov, Temperature dependence of defect-related
photoluminescence in III–V and II–VI semiconductors, J. Appl.
Phys.
115(1), 012010 (2014),
https://doi.org/10.1063/1.4838038
[30] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond,
J. Massies, and P. Gibart, Temperature quenching of
photoluminescence intensities in undoped and doped GaN, J. Appl.
Phys.
86(7), 3721–3728 (1999),
https://doi.org/10.1063/1.371242
[31] F. Cheng, S. Hu, L. Chen, Y. Lee, G. Yin, K. Tiong, and J.
Shen, Time-resolved photoluminescence studies on localization
effects in orthorhombic phase of CH
3NH
3PbI
3
perovskite thin film, J. Lumin.
197, 248–251 (2018),
https://doi.org/10.1016/j.jlumin.2018.01.054
[32] F. Ruf, M.F. Aygüler, N. Giesbrecht, B. Rendenbach, A.
Magin, P. Docampo, H. Kalt, and M. Hetterich,
Temperature-dependent studies of exciton binding energy and
phase-transition suppression in (Cs, FA, MA)Pb(I, Br)
3
perovskites, APL Mater.
7(3), 031113 (2019),
https://doi.org/10.1063/1.5083792
[33] R. Mackevičiūtė, Š. Bagdzevičius, M. Ivanov, B. Fraygola,
R. Grigalaitis, N. Setter, and J. Banys, Strain engineering of
electrical conductivity in epitaxial thin Ba
0.7Sr
0.3TiO
3
film heterostructures, Lith. J. Phys.
56(3), 173–181
(2016),
https://doi.org/10.3952/physics.v56i3.3366
[34] Š. Masys and V. Jonauskas, The crystalline structure of
SrRuO
3: Application of hybrid scheme to the density
functionals revised for solids, Lith. J. Phys.
57(2),
78–87 (2017),
https://doi.org/10.3952/physics.v57i2.3514
[35] T. Schmidt, K. Lischka, and W. Zulehner, Excitation-power
dependence of the near-band-edge photoluminescence of
semiconductors, Phys. Rev. B
45, 8989–8994 (1992),
https://doi.org/10.1103/PhysRevB.45.8989
[36] H. Shibata, M. Sakai, A. Yamada, K. Matsubara, K. Sakurai,
H. Tampo, S. Ishizuka, K.-Kim, and S. Niki, Excitation-power
dependence of free exciton photoluminescence of semiconductors,
Jpn. J. Appl. Phys.
44(8), 6113–6114 (2005),
https://doi.org/10.1143/jjap.44.6113
[37] Y.-S. Yoo, T.-M. Roh, J.-H. Na, S.J. Son, and Y.-H. Cho,
Simple analysis method for determining internal quantum
efficiency and relative recombination ratios in light emitting
diodes, Appl. Phys. Lett.
102(21), 211107 (2013),
https://doi.org/10.1063/1.4807485
[38] D. Ding, S.R. Johnson, J.B. Wang, S.Q. Yu, and Y.H. Zhang,
Determination of spontaneous emission quantum efficiency in
InGaAs/GaAs quantum well structures, Proc. SPIE
6841,
68410D (2007),
https://doi.org/10.1117/12.759592
[39] S.R. Johnson, D. Ding, J.-B. Wang, S.-Q. Yu, and Y.-H.
Zhang, Excitation dependent photoluminescence measurements of
the nonradiative lifetime and quantum efficiency in GaAs, J.
Vac. Sci. Technol. B
25(3), 1077–1082 (2007),
https://doi.org/10.1116/1.2720864
[40] X. Yang, X. Yan, W. Wang, X. Zhu, H. Li, W. Ma, and C.
Sheng, Light induced metastable modification of optical
properties in CH
3NH
3PbI
3–xBr
x
perovskite films: Two-step mechanism, Org. Electron.
34,
79–83 (2016),
https://doi.org/10.1016/j.orgel.2016.04.020
[41] I. Dursun, Y. Zheng, T. Guo, M. De Bastiani, B. Turedi, L.
Sinatra, M.A. Haque, B. Sun, A.A. Zhumekenov, M.I. Saidaminov,
F.P. García de Arquer, E.H. Sargent, T. Wu, Y.N. Gartstein, O.M.
Bakr, O.F. Mohammed, and A.V. Malko, Efficient photon recycling
and radiation trapping in cesium lead halide perovskite
waveguides, ACS Energy Lett.
3(7), 1492–1498 (2018),
https://doi.org/10.1021/acsenergylett.8b00758
[42] A.J. Knight, A.D. Wright, J.B. Patel, D.P. McMeekin, H.J.
Snaith, M.B. Johnston, and M. Herz, Electronic traps and phase
segregation in lead mixed-halide perovskite, ACS Energy Lett.
4(1),
75–84 (2019),
https://doi.org/10.1021/acsenergylett.8b02002
[43] B. Zhang, F. Guo, J. Xue, L. Yang, Y. Zhao, M. Ge, Q. Cai,
B. Liu, Z. Xie, D. Chen, H. Lu, R. Zhang, and Y. Zheng,
Photoluminescence study of the photoinduced phase separation in
mixed-halide hybrid perovskite CH
3NH
3Pb(Br
xI
1–x)
3
crystals synthesized via a solvothermal method, Sci. Rep.
7(1),
17695 (2017),
https://doi.org/10.1038/s41598-017-18110-6
[44] A. Sadhanala, F. Deschler, T.H. Thomas, S.E. Dutton, K.C.
Goedel, F.C. Hanusch, M.L. Lai, U. Steiner, T. Bein, P. Docampo,
D. Cahen, and R.H. Friend, Preparation of single-phase films of
CH
3NH
3Pb(I
1–xBr
x)
3
with sharp optical band edges, J. Phys. Chem. Lett.
5(15),
2501–2505 (2014), pMID: 26277936,
https://doi.org/10.1021/jz501332v
[45] A.A. Mamun, T.T. Ava, H.J. Jeong, M.S. Jeong, and G.
Namkoong, A deconvoluted PL approach to probe the charge carrier
dynamics of the grain interior and grain boundary of a
perovskite film for perovskite solar cell applications, Phys.
Chem. Chem. Phys.
19, 9143–9148 (2017),
https://doi.org/10.1039/C7CP01140G
[46] D.W. de Quilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka,
G.E. Eperon, M.E. Ziffer, H.J. Snaith, and D.S. Ginger, Impact
of microstructure on local carrier lifetime in perovskite solar
cells, Science
348(6235), 683–686 (2015),
https://doi.org/10.1126/science.aaa5333
[47] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P.
Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A.
Abate, A. Hagfeldt, and M. Grätzel, Cesium-containing triple
cation perovskite solar cells: improved stability,
reproducibility and high efficiency, Energy Environ. Sci.
9,
1989–1997 (2016),
https://doi.org/10.1039/C5EE03874J
[48] B.-W. Park, S.M. Jain, X. Zhang, A. Hagfeldt, G. Boschloo,
and T. Edvinsson, Resonance Raman and excitation energy
dependent charge transfer mechanism in halide-substituted hybrid
perovskite solar cells, ACS Nano
9(2), 2088–2101 (2015),
pMID: 25668059,
https://doi.org/10.1021/nn507345e
[49] P. Sanguino, M. Niehus, L. Melo, R. Schwarz, A. Fedorov, J.
Martinho, M. Soares, and T. Monteiro, Photoluminescence decay in
the ps time regime and structural properties of pulsed-laser
deposited GaN, Phys. B Condens. Matter
340–342, 457–461
(2003),
https://doi.org/10.1016/j.physb.2003.09.035
[50] S. Bharill, P. Sarkar, J.D. Ballin, I. Gryczynski, G.M.
Wilson, and Z. Gryczynski, Fluorescence intensity decays of
2-aminopurine solutions: Lifetime distribution approach, Anal.
Biochem.
377(2), 141–149 (2008),
https://doi.org/10.1016/j.ab.2008.03.034
[51] J.M. Remington, A.M. Philip, M. Hariharan, and B. Kohler,
On the origin of multiexponential fluorescence decays from
2-aminopurine-labeled dinucleotides, J. Chem. Phys.
145(15),
155101 (2016),
https://doi.org/10.1063/1.4964718
[52] H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J.
Wang, J. He, X. Wang, Y. Zhang, and Z. Ye, Exciton localization
in solution-processed organolead trihalide perovskites, Nat.
Commun.
7(1), 10896 (2016),
https://doi.org/10.1038/ncomms10896
[53] M.N. Berberan-Santos, A luminescence decay function
encompassing the stretched exponential and the compressed
hyperbola, Chem. Phys. Lett.
460(1), 146–150 (2008),
https://doi.org/10.1016/j.cplett.2008.06.023
[54] A. Zatryb, G. Podhorodecki, J. Misiewicz, J. Cardin, and F.
Gourbilleau, On the nature of the stretched exponential
photoluminescence decay for silicon nanocrystals, Nanoscale Res.
Lett.
6(1), 106 (2011),
https://doi.org/10.1186/1556-276X-6-106
[55] B.J. Pernick, Luminescent processes and decay laws in
crystalline materials, Appl. Opt.
1(6), 753–758 (1962),
https://doi.org/10.1364/AO.1.000753
[56] M. Berberan-Santos, E. Bodunov, and B. Valeur, Mathematical
functions for the analysis of luminescence decays with
underlying distributions: 2. Becquerel (compressed hyperbola)
and related decay functions, Chem. Phys.
317(1), 57–62
(2005),
https://doi.org/10.1016/j.chemphys.2005.05.026
[57] L. Whitehead, R. Whitehead, B. Valeur, and M.
Berberan-Santos, A simple function for the description of
near-exponential decays: The stretched or compressed hyperbola,
Am. J. Phys.
77(2), 173–179 (2009),
https://doi.org/10.1119/1.3008007
[58] P. Strak, K. Koronski, K. Sobczak, J. Borysiuk, K.P.
Korona, K. Sakowski, A. Suchocki, E. Monroy, S. Krukowski, and
A. Kaminska, Exact method of determination of the recombination
mode from time resolved photoluminescence data,
arXiv:1709.05249v4 (2019),
https://arxiv.org/abs/1709.05249v4