Dmitri V. Khveshchenko
[1] S. Sachdev, Holographic metals and the fractionalized Fermi
liquid, Phys. Rev. Lett.
105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[2] S. Sachdev, Bekenstein-Hawking entropy and strange metals,
Phys. Rev. X
5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[3] A. Kitaev,
KITP Seminars on 12 February, 7 April and 27
May, 2015,
http://online.kitp.ucsb.edu/
[4] A. Kitaev and S.J. Suh, The soft mode in the
Sachdev-Ye-Kitaev model and its gravity dual, JHEP
2018(05),
183 (2018),
https://doi.org/10.1007/JHEP05(2018)183
[5] S. Sachdev and J. Ye., Gapless spin-fluid ground state in a
random quantum Heisenberg magnet, Phys. Rev. Lett.
70,
3339 (1993),
https://doi.org/10.1103/PhysRevLett.70.3339
[6] O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta,
Overscreened multichannel SU(
N) Kondo model: Large-
N
solution and conformal field theory, Phys. Rev. B
58,
3794 (1998),
https://doi.org/10.1103/PhysRevB.58.3794
[7] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a
doped Mott insulator, Phys. Rev. B
59, 5341 (1999),
https://doi.org/10.1103/PhysRevB.59.5341
[8] A. Georges, O. Parcollet, and S. Sachdev, Quantum
fluctuations of a nearly critical Heisenberg spin glass, Phys.
Rev. B
63, 134406 (2001),
https://doi.org/10.1103/PhysRevB.63.134406
[9] D. Ben-Zion and J. McGreevy, Strange metal from local
quantum chaos, Phys. Rev. B
97, 155117 (2018),
https://doi.org/10.1103/PhysRevB.97.155117
[10] A.A. Patel, J. McGreevy, D.P. Arovas, and S. Sachdev,
Magnetotransport in a model of a disordered strange metal, Phys.
Rev. X
8, 021049 (2018),
https://doi.org/10.1103/PhysRevX.8.021049
[11] D. Chowdhury, Y. Werman, E. Berg, and T. Senthil,
Translationally invariant non-Fermi-liquid metals with critical
Fermi surfaces: solvable models, Phys. Rev. X
8, 031024
(2018),
https://doi.org/10.1103/PhysRevX.8.031024
[12] D.V. Khveshchenko, Thickening and sickening the SYK model,
SciPost Phys.
5(1), 012 (2018),
https://doi.org/10.21468/SciPostPhys.5.1.012
[13] D.V. Khveshchenko, Seeking to develop global SYK-ness,
Condens. Matter
3(4), 40 (2018),
https://doi.org/10.3390/condmat3040040
[14] A.A. Patel and S. Sachdev, Theory of a Planckian Metal,
Phys. Rev. Lett.
123, 066601 (2019),
https://doi.org/10.1103/PhysRevLett.123.066601
[15] S. Banerjee and E. Altman, Solvable model for a dynamical
quantum phase transition from fast to slow scrambling, Phys.
Rev. B
95, 134302 (2017),
https://doi.org/10.1103/PhysRevB.95.134302
[16] Z. Bi, C.-M. Jian, Y.-Z. You, K.A. Pawlak, and C. Xu,
Instability of the non-Fermi-liquid state of the
Sachdev-Ye-Kitaev model, Phys. Rev. B
95, 205105 (2017),
https://doi.org/10.1103/PhysRevB.95.205105
[17] S.-K. Jian and H. Yao, Solvable Sachdev-Ye-Kitaev models in
higher dimensions: from diffusion to many-body localization,
Phys. Rev. Lett.
119, 206602 (2017),
https://doi.org/10.1103/PhysRevLett.119.206602
[18] A. Haldar, S. Banerjee, and V.B. Shenoy, Higher-dimensional
Sachdev-Ye-Kitaev non-Fermi liquids at Lifshitz transitions,
Phys. Rev. B
97, 241106 (2018),
https://doi.org/10.1103/PhysRevB.97.241106
[19] C.-M. Jian, Z. Bi, and C. Xu, Model for continuous thermal
metal to insulator transition, Phys. Rev. B
96, 115122
(2017),
https://doi.org/10.1103/PhysRevB.96.115122
[20] Y. Gu, A. Lucas, and X.-L. Qi, Spread of entanglement in a
Sachdev-Ye-Kitaev chain, JHEP
2017(09), 120 (2017),
https://doi.org/10.1007/JHEP09(2017)120
[21] Y. Gu, X.-L. Qi, and D. Stanford, Local criticality,
diffusion and chaos in generalized Sachdev-Ye-Kitaev models,
JHEP
2017(05), 125 (2017),
https://doi.org/10.1007/JHEP05(2017)125
[22] Y.F. Gu, A. Lucas, and X-L. Qi, Energy diffusion and the
butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains,
SciPost Phys.
2(3), 018 (2017),
https://doi.org/10.21468/SciPostPhys.2.3.018
[23] X.-Y. Song, C.-M. Jian, and L. Balents, Strongly correlated
metal built from Sachdev-Ye-Kitaev models, Phys. Rev. Lett.
119,
216601 (2017),
https://doi.org/10.1103/PhysRevLett.119.216601
[24] X. Chen, R. Fan, Y. Chen, H. Zhai, and P. Zhang,
Competition between chaotic and nonchaotic phases in a
quadratically coupled Sachdev-Ye-Kitaev model, Phys. Rev. Lett.
119, 207603 (2017),
https://doi.org/10.1103/PhysRevLett.119.207603
[25] P. Zhang, Dispersive Sachdev-Ye-Kitaev model: Band
structure and quantum chaos, Phys. Rev. B
96, 205138
(2017),
https://doi.org/10.1103/PhysRevB.96.205138
[26] W. Cai, X.-H. Ge, and G.-H. Yang, Diffusion in higher
dimensional SYK model with complex fermions, JHEP
2018(01),
076 (2018),
https://doi.org/10.1007/JHEP01(2018)076
[27] Z. Yin, Periodic Anderson model meets Sachdev-Ye-Kitaev
interaction: a solvable playground for heavy fermion physics, J.
Phys. Commun.
2(9), 095014 (2018),
https://doi.org/10.1088/2399-6528/aae06b
[28] X. Dai, S.-K. Jian, and H. Yao, Global phase diagram of the
one-dimensional SYK model at finite N, Phys. Rev. B
100,
235144 (2019),
https://arxiv.org/abs/1802.10029,
https://doi.org/10.1103/PhysRevB.100.235144
[29] P. Zhang and H. Zhai, Topological Sachdev-Ye-Kitaev model,
Phys. Rev. B
97, 201112(R) (2018),
https://doi.org/10.1103/PhysRevB.97.201112
[30] X. Wu, X. Chen, C.-M. Jian, Y.-Z. You, and C. Xu, Candidate
theory for the strange metal phase at a finite-energy window,
Phys. Rev. B
98, 165117 (2018),
https://doi.org/10.1103/PhysRevB.98.165117
[31] J. Maldacena and X.-L. Qi, Eternal traversable
wormhole,
https://arxiv.org/abs/1804.00491
[32] A.M. García-García, T. Nosaka, D. Rosa, and J.J.M.
Verbaarschot, Quantum chaos transition in a two-site
Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole,
Phys. Rev. D
100, 026002 (2019),
https://doi.org/10.1103/PhysRevD.100.026002
[33] J. Kim, I.R. Klebanov, G. Tarnopolsky, and W. Zhao,
Symmetry breaking in coupled SYK or tensor models, Phys. Rev. X
9, 021043 (2019),
https://doi.org/10.1103/PhysRevX.9.021043
[34] P. Gao and D.L. Jafferis, A Traversable wormhole
teleportation protocol in the SYK model,
https://arxiv.org/abs/1911.07416
[35] N.V. Gnezdilov, J.A. Hutasoit, and C.W.J. Beenakker,
Low-high voltage duality in tunneling spectroscopy of the
Sachdev-Ye-Kitaev model, Phys. Rev. B
98, 081413 (2018),
https://doi.org/10.1103/PhysRevB.98.081413
[36] O. Can, E.M. Nica, and M. Franz, Charge transport in
graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev
models, Phys. Rev. B
99, 045419 (2019),
https://doi.org/10.1103/PhysRevB.99.045419
[37] A. Altland, D. Bagrets, and A. Kamenev, Sachdev-Ye-Kitaev
non-Fermi-liquid correlations in nanoscopic quantum transport,
Phys. Rev. Lett.
123, 226801 (2019),
https://doi.org/10.1103/PhysRevLett.123.226801
[38] D.I. Pikulin and M. Franz, Black hole on a chip: proposal
for a physical realization of the Sachdev-Ye-Kitaev model in a
solid-state system, Phys. Rev. X
7, 031006 (2017),
https://doi.org/10.1103/PhysRevX.7.031006
[39] A. Chew, A. Essin, and J. Alicea, Approximating the
Sachdev-Ye-Kitaev model with Majorana wires, Phys. Rev. B
96,
121119(R) (2017),
https://doi.org/10.1103/PhysRevB.96.121119
[40] A. Chen, R. Ilan, F. De Juan, D.I. Pikulin, and M. Franz,
Quantum holography in a graphene flake with an irregular
boundary, Phys. Rev. Lett.
121, 036403 (2018),
https://doi.org/10.1103/PhysRevLett.121.036403
[41] É. Lantagne-Hurtubise, C. Li, and M. Franz, Family of
Sachdev-Ye-Kitaev models motivated by experimental
considerations, Phys. Rev. B
97, 235124 (2018),
https://doi.org/10.1103/PhysRevB.97.235124
[42] M. Franz and M. Rozali, Mimicking black hole event horizons
in atomic and solid-state systems,
https://arxiv.org/abs/1808.00541
[43] A.V. Lunkin, K.S.
Tikhonov,https://doi.org/10.1103/PhysRevB.68.165345 and M.V.
Feigel'man, Sachdev-Ye-Kitaev model with quadratic
perturbations: the route to a non-Fermi liquid, Phys. Rev. Lett.
121, 236601 (2018),
https://doi.org/10.1103/PhysRevLett.121.236601
[44] A. Altland, D. Bagrets, and A. Kamenev, Quantum criticality
of granular Sachdev-Ye-Kitaev matter, Phys. Rev. Lett.
123,
106601 (2019),
https://doi.org/10.1103/PhysRevLett.123.106601
[45] S. Florens and A. Georges, Quantum impurity solvers using a
slave rotor representation, Phys. Rev. B
66, 165111
(2002),
https://doi.org/10.1103/PhysRevB.66.165111
[46] S. Florens, P. San José, F. Guinea, and A. Georges,
Coherence and Coulomb blockade in single-electron devices: A
unified treatment of interaction effects, Phys. Rev. B
68,
245311 (2003),
https://doi.org/10.1103/PhysRevB.68.245311
[47] S. Florens and A. Rosch, Climbing the entropy barrier:
driving the single-towards the multichannel Kondo effect by a
weak Coulomb blockade of the leads, Phys. Rev. Lett.
92,
216601 (2004),
https://doi.org/10.1103/PhysRevLett.92.216601
[48] D. Bagrets, A. Altland, and A. Kamenev, Sachdev-Ye-Kitaev
model as Liouville quantum mechanics, Nucl. Phys. B
911,
191 (2016),
https://doi.org/10.1016/j.nuclphysb.2016.08.002
[49] D. Bagrets, A. Altland, and A. Kamenev, Power-law out of
time order correlation functions in the SYK model, Nucl. Phys. B
921, 727 (2017),
https://doi.org/10.1016/j.nuclphysb.2017.06.012
[50] T. Strohm and F. Guinea, Phase diagram of quantum
dissipative junctions,
https://arxiv.org/abs/cond-mat/9510136
[51] E. Bascones, C.P. Herrero, F. Guinea, and G. Schön,
Nonequilibrium effects in transport through quantum dots, Phys.
Rev B
61, 16778 (2000),
https://doi.org/10.1103/PhysRevB.61.16778
[52] D. P. Arovas, F. Guinea, C.P. Herrero, and P. San José,
Granular systems in the Coulomb blockade regime, Phys. Rev. B
68,
085306 (2003),
https://doi.org/10.1103/PhysRevB.68.085306
[53] S. Drewes, D.P. Arovas, and S. Renn, Quantum phase
transitions in dissipative tunnel junctions, Phys. Rev. B
68,
165345 (2003),
https://doi.org/10.1103/PhysRevB.68.165345
[54] P. San-Jose, C.P. Herrero, F. Guinea, and D.P. Arovas,
Interplay between exchange interactions and charging effects in
metallic grains,
https://arxiv.org/abs/cond-mat/0401557
[55] M. Al-Ali and T. Vojta, Quantum phase transition of the
sub-Ohmic rotor model, Phys. Rev. B
84, 195136 (2011),
https://doi.org/10.1103/PhysRevB.84.195136
[56] R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S.
Sachdev, Thermoelectric transport in disordered metals without
quasiparticles: The Sachdev-Ye-Kitaev models and holography,
Phys. Rev. B
95, 155131 (2017),
https://doi.org/10.1103/PhysRevB.95.155131
[57] Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, Notes on
the complex Sachdev-Ye-Kitaev model, JHEP
2020, 157
(2020),
https://arxiv.org/abs/1910.14099,
https://doi.org/10.1007/JHEP02(2020)157
[58] W. Hofstetter and W. Zwerger, Single-electron box and the
helicity modulus of an inverse square XY model, Phys. Rev. Lett.
78, 3737 (1997),
https://doi.org/10.1103/PhysRevLett.78.3737
[59] I.S. Burmistrov and A.M.M. Pruisken, Coulomb blockade and
superuniversality of the θ angle, Phys. Rev. Lett.
101,
056801 (2008),
https://doi.org/10.1103/PhysRevLett.101.056801
[60] D.V. Averin and Yu.V. Nazarov, Virtual electron diffusion
during quantum tunneling of the electric charge, Phys. Rev.
Lett.
65, 2446 (1990),
https://doi.org/10.1103/PhysRevLett.65.2446