[PDF]  https://doi.org/10.3952/physics.v60i3.4305

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 185–193 (2020)


ONE SYK SINGLE ELECTRON TRANSISTOR
Dmitri V. Khveshchenko
  Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, U.S.A.
Email: khvesh@physics.unc.edu

Received 14 January 2020; accepted 28 May 2020

We study the behaviour of a single electron transistor (SET) represented by a dissipative tunnel junction between a pair of quantum dots described by two (possibly, different) Sachdev–Ye–Kitaev (SYK) models. A combined influence of the soft collective charge and energy modes on charge transport is discussed, alongside the competing effects of the Coulomb blockade and emergent Kondo resonances which might all conspire to result in a non-monotonic behaviour of the system’s conductance.
Keywords: single electron transistor, SYK model, soft collective modes

VADINAMASIS SYK VIENO ELEKTRONO TRANZISTORIUS
Dmitri V. Khveshchenko

Šiaurės Karolinos universitetas, Čepel Hilas, JAV


References / Nuorodos

[1] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[2] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[3] A. Kitaev, KITP Seminars on 12 February, 7 April and 27 May, 2015,
http://online.kitp.ucsb.edu/
[4] A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 2018(05), 183 (2018),
https://doi.org/10.1007/JHEP05(2018)183
[5] S. Sachdev and J. Ye., Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993),
https://doi.org/10.1103/PhysRevLett.70.3339
[6] O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta, Overscreened multichannel SU(N) Kondo model: Large-N solution and conformal field theory, Phys. Rev. B 58, 3794 (1998),
https://doi.org/10.1103/PhysRevB.58.3794
[7] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59, 5341 (1999),
https://doi.org/10.1103/PhysRevB.59.5341
[8] A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63, 134406 (2001),
https://doi.org/10.1103/PhysRevB.63.134406
[9] D. Ben-Zion and J. McGreevy, Strange metal from local quantum chaos, Phys. Rev. B 97, 155117 (2018),
https://doi.org/10.1103/PhysRevB.97.155117
[10] A.A. Patel, J. McGreevy, D.P. Arovas, and S. Sachdev, Magnetotransport in a model of a disordered strange metal, Phys. Rev. X 8, 021049 (2018),
https://doi.org/10.1103/PhysRevX.8.021049
[11] D. Chowdhury, Y. Werman, E. Berg, and T. Senthil, Translationally invariant non-Fermi-liquid metals with critical Fermi surfaces: solvable models, Phys. Rev. X 8, 031024 (2018),
https://doi.org/10.1103/PhysRevX.8.031024
[12] D.V. Khveshchenko, Thickening and sickening the SYK model, SciPost Phys. 5(1), 012 (2018),
https://doi.org/10.21468/SciPostPhys.5.1.012
[13] D.V. Khveshchenko, Seeking to develop global SYK-ness, Condens. Matter 3(4), 40 (2018),
https://doi.org/10.3390/condmat3040040
[14] A.A. Patel and S. Sachdev, Theory of a Planckian Metal, Phys. Rev. Lett. 123, 066601 (2019),
https://doi.org/10.1103/PhysRevLett.123.066601
[15] S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95, 134302 (2017),
https://doi.org/10.1103/PhysRevB.95.134302
[16] Z. Bi, C.-M. Jian, Y.-Z. You, K.A. Pawlak, and C. Xu, Instability of the non-Fermi-liquid state of the Sachdev-Ye-Kitaev model, Phys. Rev. B 95, 205105 (2017),
https://doi.org/10.1103/PhysRevB.95.205105
[17] S.-K. Jian and H. Yao, Solvable Sachdev-Ye-Kitaev models in higher dimensions: from diffusion to many-body localization, Phys. Rev. Lett. 119, 206602 (2017),
https://doi.org/10.1103/PhysRevLett.119.206602
[18] A. Haldar, S. Banerjee, and V.B. Shenoy, Higher-dimensional Sachdev-Ye-Kitaev non-Fermi liquids at Lifshitz transitions, Phys. Rev. B 97, 241106 (2018),
https://doi.org/10.1103/PhysRevB.97.241106
[19] C.-M. Jian, Z. Bi, and C. Xu, Model for continuous thermal metal to insulator transition, Phys. Rev. B 96, 115122 (2017),
https://doi.org/10.1103/PhysRevB.96.115122
[20] Y. Gu, A. Lucas, and X.-L. Qi, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP 2017(09), 120 (2017),
https://doi.org/10.1007/JHEP09(2017)120
[21] Y. Gu, X.-L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 2017(05), 125 (2017),
https://doi.org/10.1007/JHEP05(2017)125
[22] Y.F. Gu, A. Lucas, and X-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys. 2(3), 018 (2017),
https://doi.org/10.21468/SciPostPhys.2.3.018
[23] X.-Y. Song, C.-M. Jian, and L. Balents, Strongly correlated metal built from Sachdev-Ye-Kitaev models, Phys. Rev. Lett. 119, 216601 (2017),
https://doi.org/10.1103/PhysRevLett.119.216601
[24] X. Chen, R. Fan, Y. Chen, H. Zhai, and P. Zhang, Competition between chaotic and nonchaotic phases in a quadratically coupled Sachdev-Ye-Kitaev model, Phys. Rev. Lett. 119, 207603 (2017),
https://doi.org/10.1103/PhysRevLett.119.207603
[25] P. Zhang, Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos, Phys. Rev. B 96, 205138 (2017),
https://doi.org/10.1103/PhysRevB.96.205138
[26] W. Cai, X.-H. Ge, and G.-H. Yang, Diffusion in higher dimensional SYK model with complex fermions, JHEP 2018(01), 076 (2018),
https://doi.org/10.1007/JHEP01(2018)076
[27] Z. Yin, Periodic Anderson model meets Sachdev-Ye-Kitaev interaction: a solvable playground for heavy fermion physics, J. Phys. Commun. 2(9), 095014 (2018),
https://doi.org/10.1088/2399-6528/aae06b
[28] X. Dai, S.-K. Jian, and H. Yao, Global phase diagram of the one-dimensional SYK model at finite N, Phys. Rev. B 100, 235144 (2019),
https://arxiv.org/abs/1802.10029,
https://doi.org/10.1103/PhysRevB.100.235144
[29] P. Zhang and H. Zhai, Topological Sachdev-Ye-Kitaev model, Phys. Rev. B 97, 201112(R) (2018),
https://doi.org/10.1103/PhysRevB.97.201112
[30] X. Wu, X. Chen, C.-M. Jian, Y.-Z. You, and C. Xu, Candidate theory for the strange metal phase at a finite-energy window, Phys. Rev. B 98, 165117 (2018),
https://doi.org/10.1103/PhysRevB.98.165117
[31] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, 
https://arxiv.org/abs/1804.00491
[32] A.M. García-García, T. Nosaka, D. Rosa, and J.J.M. Verbaarschot, Quantum chaos transition in a two-site Sachdev-Ye-Kitaev model dual to an eternal traversable wormhole, Phys. Rev. D 100, 026002 (2019),
https://doi.org/10.1103/PhysRevD.100.026002
[33] J. Kim, I.R. Klebanov, G. Tarnopolsky, and W. Zhao, Symmetry breaking in coupled SYK or tensor models, Phys. Rev. X 9, 021043 (2019),
https://doi.org/10.1103/PhysRevX.9.021043
[34] P. Gao and D.L. Jafferis, A Traversable wormhole teleportation protocol in the SYK model, 
https://arxiv.org/abs/1911.07416
[35] N.V. Gnezdilov, J.A. Hutasoit, and C.W.J. Beenakker, Low-high voltage duality in tunneling spectroscopy of the Sachdev-Ye-Kitaev model, Phys. Rev. B 98, 081413 (2018),
https://doi.org/10.1103/PhysRevB.98.081413
[36] O. Can, E.M. Nica, and M. Franz, Charge transport in graphene-based mesoscopic realizations of Sachdev-Ye-Kitaev models, Phys. Rev. B 99, 045419 (2019),
https://doi.org/10.1103/PhysRevB.99.045419
[37] A. Altland, D. Bagrets, and A. Kamenev, Sachdev-Ye-Kitaev non-Fermi-liquid correlations in nanoscopic quantum transport, Phys. Rev. Lett. 123, 226801 (2019),
https://doi.org/10.1103/PhysRevLett.123.226801
[38] D.I. Pikulin and M. Franz, Black hole on a chip: proposal for a physical realization of the Sachdev-Ye-Kitaev model in a solid-state system, Phys. Rev. X 7, 031006 (2017),
https://doi.org/10.1103/PhysRevX.7.031006
[39] A. Chew, A. Essin, and J. Alicea, Approximating the Sachdev-Ye-Kitaev model with Majorana wires, Phys. Rev. B 96, 121119(R) (2017),
https://doi.org/10.1103/PhysRevB.96.121119
[40] A. Chen, R. Ilan, F. De Juan, D.I. Pikulin, and M. Franz, Quantum holography in a graphene flake with an irregular boundary, Phys. Rev. Lett. 121, 036403 (2018),
https://doi.org/10.1103/PhysRevLett.121.036403
[41] É. Lantagne-Hurtubise, C. Li, and M. Franz, Family of Sachdev-Ye-Kitaev models motivated by experimental considerations, Phys. Rev. B 97, 235124 (2018),
https://doi.org/10.1103/PhysRevB.97.235124
[42] M. Franz and M. Rozali, Mimicking black hole event horizons in atomic and solid-state systems, 
https://arxiv.org/abs/1808.00541
[43] A.V. Lunkin, K.S. Tikhonov,https://doi.org/10.1103/PhysRevB.68.165345 and M.V. Feigel'man, Sachdev-Ye-Kitaev model with quadratic perturbations: the route to a non-Fermi liquid, Phys. Rev. Lett. 121, 236601 (2018),
https://doi.org/10.1103/PhysRevLett.121.236601
[44] A. Altland, D. Bagrets, and A. Kamenev, Quantum criticality of granular Sachdev-Ye-Kitaev matter, Phys. Rev. Lett. 123, 106601 (2019),
https://doi.org/10.1103/PhysRevLett.123.106601
[45] S. Florens and A. Georges, Quantum impurity solvers using a slave rotor representation, Phys. Rev. B 66, 165111 (2002),
https://doi.org/10.1103/PhysRevB.66.165111
[46] S. Florens, P. San José, F. Guinea, and A. Georges, Coherence and Coulomb blockade in single-electron devices: A unified treatment of interaction effects, Phys. Rev. B 68, 245311 (2003),
https://doi.org/10.1103/PhysRevB.68.245311
[47] S. Florens and A. Rosch, Climbing the entropy barrier: driving the single-towards the multichannel Kondo effect by a weak Coulomb blockade of the leads, Phys. Rev. Lett. 92, 216601 (2004),
https://doi.org/10.1103/PhysRevLett.92.216601
[48] D. Bagrets, A. Altland, and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911, 191 (2016),
https://doi.org/10.1016/j.nuclphysb.2016.08.002
[49] D. Bagrets, A. Altland, and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921, 727 (2017),
https://doi.org/10.1016/j.nuclphysb.2017.06.012
[50] T. Strohm and F. Guinea, Phase diagram of quantum dissipative junctions, 
https://arxiv.org/abs/cond-mat/9510136
[51] E. Bascones, C.P. Herrero, F. Guinea, and G. Schön, Nonequilibrium effects in transport through quantum dots, Phys. Rev B 61, 16778 (2000),
https://doi.org/10.1103/PhysRevB.61.16778
[52] D. P. Arovas, F. Guinea, C.P. Herrero, and P. San José, Granular systems in the Coulomb blockade regime, Phys. Rev. B 68, 085306 (2003),
https://doi.org/10.1103/PhysRevB.68.085306
[53] S. Drewes, D.P. Arovas, and S. Renn, Quantum phase transitions in dissipative tunnel junctions, Phys. Rev. B 68, 165345 (2003),
https://doi.org/10.1103/PhysRevB.68.165345
[54] P. San-Jose, C.P. Herrero, F. Guinea, and D.P. Arovas, Interplay between exchange interactions and charging effects in metallic grains, 
https://arxiv.org/abs/cond-mat/0401557
[55] M. Al-Ali and T. Vojta, Quantum phase transition of the sub-Ohmic rotor model, Phys. Rev. B 84, 195136 (2011),
https://doi.org/10.1103/PhysRevB.84.195136
[56] R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95, 155131 (2017),
https://doi.org/10.1103/PhysRevB.95.155131
[57] Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, Notes on the complex Sachdev-Ye-Kitaev model, JHEP 2020, 157 (2020),
https://arxiv.org/abs/1910.14099,
https://doi.org/10.1007/JHEP02(2020)157
[58] W. Hofstetter and W. Zwerger, Single-electron box and the helicity modulus of an inverse square XY model, Phys. Rev. Lett. 78, 3737 (1997),
https://doi.org/10.1103/PhysRevLett.78.3737
[59] I.S. Burmistrov and A.M.M. Pruisken, Coulomb blockade and superuniversality of the θ angle, Phys. Rev. Lett. 101, 056801 (2008),
https://doi.org/10.1103/PhysRevLett.101.056801
[60] D.V. Averin and Yu.V. Nazarov, Virtual electron diffusion during quantum tunneling of the electric charge, Phys. Rev. Lett. 65, 2446 (1990),
https://doi.org/10.1103/PhysRevLett.65.2446