[PDF]  https://doi.org/10.3952/physics.v60i4.4356

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 205–216 (2020)
 

NEGATIVE FLOW OF ENERGY IN A MECHANICAL WAVE
Algirdas Matulisa and Artūras Acusb
  a Semiconductor Physics Institute, Center for Physical Sciences and Technology, Saulėtekio 3, 10222 Vilnius, Lithuania
b Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, 10222 Vilnius, Lithuania
Email: matulisalg@gmail.com; arturas.acus@tfai.vu.lt

Received 30 October 2020; accepted 6 November 2020

A classical system, which is analogous to the quantum one with a backflow of probability, is proposed. The system consists of a chain of masses interconnected by springs and attached by other springs to fixed supports. Thanks to the last springs the cutoff frequency and dispersion appears in the spectrum of waves propagating along the chain. It is shown that this dispersion contributes to the appearance of a backflow of energy. In the case of the interference of two waves, the magnitude of this backflow is an order of magnitude higher than the value of probability backflow in the mentioned quantum problem. The equation of Green’s function is considered and it is shown that the backflow of energy is also possible when the system is excited by two consecutive short pulses. This classical backflow phenomenon is explained by the branching of energy flow to local modes that is confirmed by the results for the forced damped oscillator. It is shown that even in such a simple system the backflow of energy takes place (both instantaneous and average).
Keywords: wave, dispersion, energy, backflow, 1D lattice, oscillator

NEIGIAMAS MECHANINĖS BANGOS ENERGIJOS SRAUTAS
Algirdas Matulisa, Artūras Acusb

a Fizinių ir technologijų mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva
b Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Aprašoma klasikinė sistema, kuri yra kvantinės sistemos, pasižyminčios neigiamu tikimybės srautu, analogas. Sistemą sudaro tarpusavyje spyruoklėmis sujungtų rutuliukų grandinėlė, kurioje kiekvienas rutuliukas papildoma spyruokle dar yra prijungtas prie fiksuotų atramų. Dėl papildomai prijungtų spyruoklių atsiranda plintančių išilgai grandinėlės bangų spektre draustinis dažnių ruožas ir dispersija. Parodyta, kad tai lemia neigiamo bangos energijos srauto atsiradimą. Dviejų interferuojančių bangų atveju šio neigiamo srauto dydis visa eile viršija neigamo tikimybės srauto dydį minėtame kvantiniame uždavinyje. Apskaičiuota klasikinę sistemą aprašančių lygčių Gryno funkcija ir parodyta, kad neigiamo energijos srauto atsiradimas įmanomas ir tada, kai sistema žadinama dviem trumpais nuosekliais impulsais. Ištirtoje klasikinėje sistemoje atsirandantis neigiamo energijos srauto reiškinys aiškinamas energijos išsišakojimu į lokalines modas. Tai patvirtina gauti žadinamo išorine jėga disipacinio osciliatoriaus rezultatai. Parodyta, kad net tokioje paprastoje sistemoje įmanomas atbulinis (tiek momentinis, tiek ir vidutinis) energijos srautas.
 
References / Nuorodos

[1] G.R. Allcock, The time of arrival in quantum mechanics III. The measurement ensemble, Ann. Phys. 53, 311–348 (1969),
https://doi.org/10.1016/0003-4916(69)90253-X
[2] A.J. Bracken and G.F. Melloy, Probability backflow and a new dimensionless quantum number, J. Phys. A 27, 2197–2211 (1994),
https://doi.org/10.1088/0305-4470/27/6/040
[3] J.M. Yearsley, J.J. Halliwell, R. Hartshorn, and A. Whitby, Analytical examples, measurement models, and classical limit of quantum backflow, Phys. Rev. A 86, 042116-1–13 (2012),
https://doi.org/10.1103/PhysRevA.86.042116
[4] A. Goussev, Probability backflow for correlated quantum states, Phys. Rev. Res. 2, 033206 (2020),
https://doi.org/10.1103/PhysRevResearch.2.033206
[5] A. Goussev, Quantum backflow in a ring,
arXiv:quant-ph/2008.08022v1
[6] M.V. Berry, Quantum backflow, negative kinetic energy, and optical retro-propagation, J. Phys. A 43, 415302 (2010)
https://doi.org/10.1088/1751-8113/43/41/415302
[7] A.A.D. Villanueva, The negative flow of probability, Am. J. Phys. 88, 325–333 (2020),
https://doi.org/10.1119/10.0000856
[8] A. Goussev, Comment on 'The negative flow of probability', Am. J. Phys. 88, 1023 (2020),
https://doi.org/10.1119/10.0001773
[9] A. Matulis and A. Acus, Classical analog to the Airy wave packet, Lith. J. Phys. 59, 121–129 (2019),
https://doi.org/10.3952/physics.v59i3.4078
[10] Ph.M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1, Sec. 2.1 (McGraw-Hill Book Company, Inc., New York, 1953)
[11] A. Matulis, Decay of a quasi-stationary state, Lith. J. Phys. 39, 435 (1999)
[12] V.G. Veselago, Properties of materials having simultaneously negative values of the dielectric and magnetic susceptibilities, Usp. Fiz. Nauk 92, 517–526 (1964),
https://doi.org/10.3367/UFNr.0092.196707d.0517
[13] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Elsevier Academic Press, Amsterdam, New York, 2007) p. 482, 3.876 1
https://www.elsevier.com/books/table-of-integrals-series-and-products/jeffrey/978-0-08-047111-2
[14] R. Süsstrunk and S.D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Science 349, 47 (2015),
https://doi.org/10.1126/science.aab0239