[PDF]  https://doi.org/10.3952/physics.v60i4.4357

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 217–224 (2020)
 

LiSAF: AN EFFICIENT AND DURABLE NONLINEAR MATERIAL FOR SUPERCONTINUUM GENERATION IN THE ULTRAVIOLET
Agnė Šuminienė, Vytautas Jukna, Rosvaldas Šuminas, Gintaras Tamošauskas, Mikas Vengris, and Audrius Dubietis
  Laser Research Center, Vilnius University, Saulėtekio 10, 10223 Vilnius, Lithuania
Email: audrius.dubietis@ff.vu.lt

Received 9 September 2020; accepted 11 September 2020

We have experimentally studied supercontinuum generation in an undoped LiSAF crystal using ultraviolet, visible and near infrared pump pulses provided by fundamental and second harmonics of amplified femtosecond Ti:sapphire and Yb:KGW lasers. We have found that the optical degradation of the crystal, manifested by gradual narrowing of the supercontinuum spectrum, starts much faster using infrared pump pulses. This is attributed to the role of impact ionization, which increases with increasing the pump wavelength. The most reliable operation is achieved with the shortest pump wavelength of 400 nm (the second harmonic of a Ti:sapphire laser), where LiSAF produces a stable, almost 1.3 octave-spanning supercontinuum spectrum with a short-wavelength cut-off at 252 nm and shows no apparent optical degradation for one hour of continuous operation at 500 Hz repetition rate without crystal translation.
Keywords: supercontinuum generation, femtosecond filamentation, ultraviolet
PACS: 42.65.Re, 42.65.Jx, 42.70.-a

LiSAF: EFEKTYVI IR PATVARI MEDŽIAGA SUPERKONTINUUMUI GENERUOTI ULTRAVIOLETINĖJE SPEKTRO SRITYJE
Agnė Šuminienė, Vytautas Jukna, Rosvaldas Šuminas, Gintaras Tamošauskas, Mikas Vengris, Audrius Dubietis

Vilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva

Eksperimentiškai ištirtas superkontinuumo generavimas nelegiruotame LiSAF kristale žadinant ultravioletiniais, regimaisiais ir infraraudonaisiais femtosekundiniais pirmosios ir antrosios Ti:safyro ir Yb:KGW lazerių harmonikų impulsais. Parodyta, kad naudojant infraraudonuosius žadinimo impulsus kristalo optinė degradacija, pasireiškianti kaip laipsniškas superkontinuumo spektro siaurėjimas, prasideda daug sparčiau. Tai vyksta dėl smūginės jonizacijos, kuri didėja didėjant žadinimo bangos ilgiui. Patikimiausias veikimas stebėtas naudojant trumpiausio bangos ilgio (400 nm) žadinimo impulsus (antroji Ti:safyro lazerio harmonika), kai LiSAF kristale generuojamas stabilus, beveik 1,3 optinės oktavos pločio superkontinuumo spektras su trumpabangiu nukirtimu ties 252 nm, o netransliuojamas kristalas optiškai nedegraduoja vieną valandą esant 500 Hz impulsų pasikartojimo dažniui.
 
References / Nuorodos

[1] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer, and E. Riedle, Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground, Appl. Phys. B 96, 215–231 (2009),
https://doi.org/10.1007/s00340-009-3610-0
[2] E. Riedle, M. Bradler, M. Wenninger, C.F. Sailer, and I. Pugliesi, Electronic transient spectroscopy from the deep UV to the NIR: unambiguous disentanglement of complex processes, Faraday Discuss. 163, 139–158 (2013),
https://doi.org/10.1039/c3fd00010a
[3] N. Krebs, I. Pugliesi, J. Hauer, and E. Riedle, Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm super-continuum probe, New J. Phys. 15, 085016 (2013),
https://doi.org/10.1088/1367-2630/15/8/085016
[4] S. Schenkl, F. van Mourik, G. van der Zwan, S. Haacke, and M. Chergui, Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin, Science 309, 917–920 (2005),
https://doi.org/10.1126/science.1111482
[5] T. Fiebig, M. Chachisvilis, M. Manger, A.H. Zewail, A. Douhal, I. Garcia-Ochoa, and A.D.H. Ayuso, Femtosecond dynamics of double proton transfer in a model DNA base pair: 7-azaindole dimers in the condensed phase, J. Phys. Chem. A 103, 7419–7431 (1999),
https://doi.org/10.1021/jp991822p
[6] A. Shikanai, T. Deguchi, T. Sota, T. Kuroda, A. Tackeuchi, S. Chichibu, and S. Nakamura, A pump and probe study of photoinduced internal field screening dynamics in an AlGaN/GaN single-quantum-well structure, Appl. Phys. Lett. 76, 454–456 (2000),
https://doi.org/10.1063/1.125785
[7] A. Dubietis, G. Tamošauskas, R. Šuminas, V. Jukna, and A. Couairon, Ultrafast supercontinuum generation in bulk condensed media, Lith. J. Phys. 57, 113–157 (2017),
https://doi.org/10.3952/physics.v57i3.3541
[8] A. Dubietis and A. Couairon, Ultrafast Supercontinuum Generation in Transparent Solid State Media (Springer Nature, Cham, Switzerland, 2019),
https://doi.org/10.1007/978-3-030-14995-6
[9] A. Brodeur and S.L. Chin, Band-gap dependence of the ultrafast white-light continuum, Phys. Rev. Lett. 80, 4406–4409 (1998),
https://doi.org/10.1103/PhysRevLett.80.4406
[10] M. Kolesik, G. Katona, J.V. Moloney, and E.M. Wright, Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation, Phys. Rev. Lett. 91, 043905 (2003),
https://doi.org/10.1103/PhysRevLett.91.043905
[11] C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, Generation and characterization of ultrafast white-light continuum in condensed media, Appl. Opt. 41, 3735–3742 (2002),
https://doi.org/10.1364/AO.41.003735
[12] R. Huber, H. Satzger, W. Zinth, and J. Wachtveitl, Non-collinear optical parametric amplifiers with output parameters improved by the applications of a white light continuum generated in CaF2, Opt. Commun. 194, 443–448 (2001),
https://doi.org/10.1016/S0030-4018(01)01324-4
[13] P. Tzankov, I. Buchvarov, and T. Fiebig, Broadband optical parametric amplification in the near UVVIS, Opt. Commun. 203, 107–113 (2002),
https://doi.org/10.1016/S0030-4018(02)01107-0
[14] A.K. Dharmadhikari, F.A. Rajgara, N.C.S. Reddy, A.S. Sandhu, and D. Mathur, Highly efficient white light generation from barium fluoride, Opt. Express 12, 695–700 (2004),
https://doi.org/10.1364/OPEX.12.000695
[15] S.V. Chekalin, A.E. Dormidonov, V.O. Kompanets, E.D. Zaloznaya, and V.P. Kandidov, Light bullet super-continuum, J. Opt. Soc. Am. B 36, A43–A53 (2019),
https://doi.org/10.1364/JOSAB.36.000A43
[16] M. Bradler, P. Baum, and E. Riedle, Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses, Appl. Phys. B 97, 561–574 (2009),
https://doi.org/10.1007/s00340-009-3699-1
[17] M. Bradler and E. Riedle, Sub-20 fs μJ-energy pulses tunable down to the near-UV from a 1 MHz Yb-fiber laser system, Opt. Lett. 39, 2588–2591 (2014),
https://doi.org/10.1364/OL.39.002588
[18] R. Grigutis, G. Tamošauskas, V. Jukna, A. Risos, and A. Dubietis, Supercontinuum generation and optical damage of sapphire and YAG at high repetition rates, Opt. Lett. 45, 4507–4510 (2020),
https://doi.org/10.1364/OL.397481
[19] J. Kohl-Landgraf, J.-E. Nimsch, and J. Wachtveitl, LiF, an underestimated supercontinuum source in femtosecond transient absorption spectroscopy, Opt. Express 21, 17060–17065 (2013),
https://doi.org/10.1364/OE.21.017060
[20] N. Garejev, G. Tamošauskas, and A. Dubietis, Comparative study of multioctave supercontinuum generation in fused silica, YAG, and LiF in the range of anomalous group velocity dispersion, J. Opt. Soc. Am. B 34, 88–94 (2017),
https://doi.org/10.1364/JOSAB.34.000088
[21] J. Wang, Y. Zhang, H. Shen, Y. Jiang, and Z. Wang, Spectral stability of supercontinuum generation in condensed mediums, Opt. Eng. 56, 076107 (2017),
https://doi.org/10.1117/1.OE.56.7.076107
[22] S.A. Payne, L.K. Smith, R.J. Beach, B.H.T. Chai, J.H. Tassano, L.D. DeLoach, W.L. Kway, R.W. Solarz, and W.F. Krupke, Properties of Cr:LiSrAIF6 crystals for laser operation, Appl. Opt. 33, 5526–5536 (1994),
https://doi.org/10.1364/AO.33.005526
[23] D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, Broadly tunable femtosecond Cr:LiSAF laser, Opt. Lett. 22, 621–623 (1997),
https://doi.org/10.1364/OL.22.000621
[24] C.D. Marshall, J.A. Speth, S.A. Payne, W.F. Krupke, G.J. Quarles, V. Castillo, and B.H.T. Chai, Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6, J. Opt. Soc. Am. B 11, 2054–2065 (1994),
https://doi.org/10.1364/JOSAB.11.002054
[25] M.V. Luong, M.J.F. Empizo, M. Cadatal-Raduban, R. Arita, Y. Minami, T. Shimizu, N. Sarukura, H. Azechi, M.H. Pham, H.D. Nguyen, Y. Kawazoe, K.G. Steenbergen, and P. Schwerdtferger, First-principles calculations of electronic and optical properties of LiCaAlF6 and LiSrAlF6 crystals as VUV to UV solid-state laser materials, Opt. Mater. 65, 15–20 (2017),
https://doi.org/10.1016/j.optmat.2016.09.062
[26] K. Shimamura, S.L. Baldochi, N. Mujilatu, K. Nakano, Z. Liu, N. Sarukura, and T. Fukuda, Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere, J. Cryst. Gowth 211, 302–307 (2000),
https://doi.org/10.1016/S0022-0248(99)00789-7
[27] M. Richardson, M.J. Soileau, P. Beaud, R. DeSalvo, S. Garnov, D.J. Hagan, S. Klimentov, K. Richardson, M. Sheik-Bahae, A.A. Said, E. Van Stryland, and B.H.T. Chai, Self-focusing and optical damage in Cr:LiSAF and Cr:LiCAF, Proc. SPIE 1848, 392–402 (1993),
https://doi.org/10.1117/12.147432
[28] N.S. Shcheblanov, M.E. Povarnitsyn, P.N. Terekhin, S. Guizard, and A. Couairon, Nonlinear photoionization of transparent solids: A nonperturbative theory obeying selection rules, Phys. Rev. A 96, 063410 (2017),
https://doi.org/10.1103/PhysRevA.96.063410
[29] A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses, Phys. Rev. B 61, 11437–11450 (2000),
https://doi.org/10.1103/PhysRevB.61.11437
[30] E. Migal, E. Mareev, E. Smetanina, G. Duchateau, and F. Potemkin, Role of wavelength in photocarrier absorption and plasma formation threshold under excitation of dielectrics by high-intensity laser field tunable from visible to mid-IR, Sci. Rep. 10, 14007 (2020),
https://doi.org/10.1038/s41598-020-70862-w