Received 3 September 2020; revised 27 October 2020; accepted 27
October 2020
[1] D. Berlincourt, C. Cmolik, and H. Jaffe, Piezoelectric
properties of polycrystalline lead titanate zirconate
compositions, Proc. IRE
48(2), 220–229 (1960),
https://doi.org/10.1109/JRPROC.1960.287467
[2] G. Ngueta and A.P. Kengne, Low-level environmental lead
exposure and dysglycemia in adult individuals: Results from the
Canadian health and measure survey 2007–2011, Biol. Trace Elem.
Res.
175(2), 278–286 (2017),
https://doi.org/10.1007/s12011-016-0786-0
[3] S. Tong, Y.E. von Schirnding, and T. Prapamontol,
Environmental lead exposure: a public health problem of global
dimensions, Bull. World Health Organ.
78(9), 1068–1077
(2000),
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2560844/
[4] M.D. Sanborn, A. Abelsohn, M. Campbell, and E. Weir,
Identifying and managing adverse environmental health effects:
3. Lead exposure, Can. Med. Assoc. J.
166(10), 1287–1292
(2002),
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC111081/
[5] E.U. Council,
Directive 2002/95/EC of the European
Parliament and of the Council (2003),
https://eur-lex.europa.eu
[6] U.S. EPA,
Summary of the Toxic Substances Control Act
(1976),
https://www.epa.gov
[7] Y. Qin, S. Zhang, Y. Wu, C. Lu, and J. Zhang, Impacts of
acceptor doping on the piezoelectric properties and domain
structure in NBT-based lead-free ceramics, J. Eur. Ceram. Soc.
37(11),
3493–3500 (2017),
https://doi.org/10.1016/j.jeurceramsoc.2017.04.047
[8] T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T.-L. Men, C. Zhao,
D. Xiao, J. Wu, K. Wang, et al., The structural origin of
enhanced piezoelectric performance and stability in lead free
ceramics, Energy Environ. Sci.
10(2), 528–537 (2017),
https://doi.org/10.1039/C6EE03597C
[9] G. Viola, R. McKinnon, V. Koval, A. Adomkevicius, S. Dunn,
and H. Yan, Lithium-induced phase transitions in lead-free Bi
0.5Na
0.5TiO
3
based ceramics, J. Phys. Chem. C
118(16), 8564–8570
(2014),
https://doi.org/10.1021/jp500609h
[10] W. Bai, P. Li, L. Li, J. Zhang, B. Shen, and J. Zhai,
Structure evolution and large strain response in BNT–BT
lead-free piezoceramics modified with Bi(Ni
0.5Ti
0.5)O
3,
J. Alloys Compd.
649 (Supplement C), 772–781 (2015),
https://doi.org/10.1016/j.jallcom.2015.07.178
[11] P. Berik, W.-Y. Chang, and X. Jiang, Piezoelectric d36
in-plane shear-mode of lead-free BZTBCT single crystals for
torsion actuation, Appl. Phys. Lett.
110(5), 052902
(2017),
https://doi.org/10.1063/1.4975587
[12] B. Jaffe,
Piezoelectric Ceramics (Elsevier, 2012),
https://www.elsevier.com/books/piezoelectric-ceramics/jaffe/978-0-12-379550-2
[13] R. Guo, L. Cross, S. Park, B. Noheda, D. Cox, and G.
Shirane, Origin of the high piezoelectric response in PbZr
1–xTi
xO
3,
Phys. Rev. Lett.
84(23), 5423 (2000),
https://doi.org/10.1103/PhysRevLett.84.5423
[14] S. Wada, S. Shimizu, K. Yamashita, I. Fujii, K. Nakashima,
N. Kumada, Y. Kuroiwa, Y. Fujikawa, D. Tanaka, and M. Furukawa,
Preparation of barium titanate–potassium niobate nanostructured
ceramics with artificial morphotropic phase boundary structure
by solvothermal method, Jpn. J. Appl. Phys.
50(9S2),
09NC08 (2011),
https://doi.org/10.7567/JJAP.50.09NC08
[15] I. Fujii, S. Shimizu, K. Yamashita, K. Nakashima, N.
Kumada, C. Moriyoshi, Y. Kuroiwa, Y. Fujikawa, D. Tanaka, M.
Furukawa, and S. Wada, Enhanced piezoelectric response of BaTiO
3–KNbO
3
composites, Appl. Phys. Lett.
99(20), 202902 (2011),
https://doi.org/10.1063/1.3662397
[16] G.K.L. Goh, C.G. Levi, J.H. Choi, and F.F. Lange,
Hydrothermal epitaxy of KNbO3 thin films and nanostructures, J.
Cryst. Growth
286(2), 457–464 (2006),
https://doi.org/10.1016/j.jcrysgro.2005.10.021
[17] A. von Hippel, Ferroelectricity, domain structure, and
phase transitions of barium titanate, Rev. Mod. Phys.
22(3),
221 (1950),
https://doi.org/10.1103/RevModPhys.22.221
[18] Y. Hirose, S. Ueno, K. Nakashima, and S. Wada, Preparation
of BaTiO
3 nano-structured ceramics by solvothermal
solidification method, Trans. Mater. Res. Soc. Jpn.
40(3),
239–242 (2015),
https://doi.org/10.14723/tmrsj.40.239
[19] Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L.
Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni,
Grain-size effects on the ferroelectric behavior of dense
nanocrystalline BaTiO
3 ceramics, Phys. Rev. B
70(2),
024107 (2004),
https://doi.org/10.1103/PhysRevB.70.024107
[20] K.S. Cole and R.H. Cole, Dispersion and absorption in
dielectrics I. Alternating current characteristics, J. Chem.
Phys.
9(4), 341–351 (1941),
https://doi.org/10.1063/1.1750906
[21] R. Newton, A. Ahearn, and K. McKay, Observation of the
ferro-electric Barkhausen effect in barium titanate, Phys. Rev.
75(1), 103 (1949),
https://doi.org/10.1103/PhysRev.75.103
[22] H.B. Huntington and R.D. Southwick, Ultrasonic velocities
in polarized barium titanate ceramics, J. Acoust. Soc. Am.
27(4),
677–679 (1955),
https://doi.org/10.1121/1.1907991
[23] S. Kashida, I. Hatta, A. Ikushima, and Y. Yamada,
Ultrasonic velocities in BaTiO
3, J. Phys. Soc. Jpn.
34(4),
997–1001 (1973),
https://doi.org/10.1143/JPSJ.34.997
[24] K. Lichtenecker, Dielectric constant of natural and
synthetic mixtures, Phys. Z.
27, 115 (1926)
[25] A. Goncharenko, V. Lozovski, and E. Venger, Lichtenecker's
equation: applicability and limitations, Opt. Commun.
174(1),
19–32 (2000),
https://doi.org/10.1016/S0030-4018(99)00695-1
[26] G. Arlt, U. Böttger, and S. Witte, Dielectric dispersion of
ferroelectric ceramics and single crystals at microwave
frequencies, Ann. Phys.
506(7–8), 578–588 (1994),
https://doi.org/10.1002/andp.19945060703
[27] D. Nuzhnyy, E. Buixaderas, I. Rychetsky, C. Kadle, J.
Petzelt, H. Uršič, and B. Malič, Percolation in the dielectric
function of Pb(Zr, Ti)O
3 – Pb
2 Ru
2O
6.5
ferroelectric – metal composites, J. Phys. Appl. Phys.
47(49),
495301 (2014),
https://doi.org/10.1088/0022-3727/47/49/495301
[28] B.L. Cheng, M. Gabbay, W. Duffy, and G. Fantozzi,
Mechanical loss and Young's modulus associated with phase
transitions in barium titanate based ceramics, J. Mater. Sci.
31(18),
4951–4955 (1996),
https://doi.org/10.1007/BF00355886
[29] J.J. Wang, F.Y. Meng, X.Q. Ma, M.X. Xu, and L.Q. Chen,
Lattice, elastic, polarization, and electrostrictive properties
of BaTiO
3 from first-principles, J. Appl. Phys.
108(3),
034107 (2010),
https://doi.org/10.1063/1.3462441
[30] A.J. Bell, Phenomenologically derived electric
field-temperature phase diagrams and piezoelectric coefficients
for single crystal barium titanate under fields along different
axes, J. Appl. Phys.
89(7), 3907–3914 (2001),
https://doi.org/10.1063/1.1352682
[31] H.F. Kay and P. Vousden, XCV. Symmetry changes in barium
titanate at low temperatures and their relation to its
ferroelectric properties, Lond. Edinb. Dublin Philos. Mag. J.
Sci.
40(309), 1019–1040 (1949),
https://doi.org/10.1080/14786444908561371
[32] J. Shieh, J.H. Yeh, Y.C. Shu, and J.H. Yen, Hysteresis
behaviors of barium titanate single crystals based on the
operation of multiple 90° switching systems, Mater. Sci. Eng. B
161(1), 50–54 (2009),
https://doi.org/10.1016/j.mseb.2008.11.046
[33] H.H. Wieder, Electrical behavior of barium titanate single
crystals at low temperatures, Phys. Rev.
99(4),
1161–1165 (1955),
https://doi.org/10.1103/PhysRev.99.1161
[34] T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S.
Starschich, U. Böttger, and T. Mikolajick, About the deformation
of ferroelectric hystereses, Appl. Phys. Rev.
1(4),
041103 (2014),
https://doi.org/10.1063/1.4902396
[35] L. Jin, F. Li, and S. Zhang, Decoding the fingerprint of
ferroelectric loops: comprehension of the material properties
and structures, J. Am. Ceram. Soc.
97(1), 1–27 (2014),
https://doi.org/10.1111/jace.12773
[36] N.H. Khansur, H. Kawashima, S. Wada, J.M. Hudspeth, and J.
Daniels, Enhanced extrinsic domain switching strain in
core–shell structured BaTiO
3–KNbO
3
ceramics, Acta Mater.
98(Supplement C), 182–189 (2015),
https://doi.org/10.1016/j.actamat.2015.07.034
[37] T. Ostapchuk, J. Petzelt, M. Savinov, V. Buscaglia, and L.
Mitoseriu, Grain-size effect in BaTiO
3 ceramics:
study by far infrared spectroscopy, Phase Transit.
79(6–7),
361–373 (2006),
https://doi.org/10.1080/01411590600892047
[38] M.D. Fontana, G. Metrat, J.L. Servoin, and F. Gervais,
Infrared spectroscopy in KNbO
3 through the successive
ferroelectric phase transitions, J. Phys. C
17(3), 483
(1984),
https://doi.org/10.1088/0022-3719/17/3/020