[PDF]  https://doi.org/10.3952/physics.v60i4.4358

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 225–234 (2020)
 

IN SEARCH OF AN ARTIFICIAL MORPHOTROPIC PHASE BOUNDARY: LEAD FREE BARIUM TITANATE BASED COMPOSITES
Sergejus Balčiūnasa, Maksim Ivanova, Jūras Banysa, Shintaro Uenob, and Satoshi Wadab
a Faculty of Physics, Vilnius University, Saulėtekio 9-III, 10222 Vilnius, Lithuania
b Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
Email: sergejus.balciunas@ff.vu.lt

Received 3 September 2020; revised 27 October 2020; accepted 27 October 2020

Broadband dielectric spectroscopy was used to study potassium niobate (KN) and barium titanate (BT) core–shell-like composites. KN shell was obtained using a solvothermal reaction method. High frequency results show a huge anomaly that is associated with electro-mechanical coupling. We tried to extract spontaneous polarization values using a theoretical model. We also observed little or no evidence of KN-related phase transitions in the dielectric spectra, although infrared measurements showed typical KN spectral features. Furthermore, we show that a small change in the sintering process allows tuning of dielectric permittivity by an order of magnitude.
Keywords: ferroelectricity, barium titanate, core–shell, composites, dielectric measurements, electromechanical resonance

DIRBTINĖS MORFOTROPINĖS FAZIŲ SANDŪROS BEIEŠKANT: BEŠVINIAI KOMPOZITAI BARIO TITANATO PAGRINDU
Sergejus Balčiūnasa, Maksim Ivanova, Jūras Banysa, Shintaro Uenob, Satoshi Wadab

a Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
b Yamanashi universiteto Tarpdisciplininė medicinos ir inžinerijos aukštoji mokykla, Kofu, Japonija

Naudojant plačiajuostės dielektrinės spektroskopijos metodikas buvo ištirti kalio niobato (KN), bario titanato (BT) kevalo ir branduolio kompozitai. Šie kompozitai buvo susintetinti solvoterminės reakcijos metodu. Dielektriniame spektre, esant aukštiems dažniams (108–1011 Hz), stebima didžiulė anomalija, kuri siejama su elektromechaniniu rezonansu. Nedidelis sintezės proceso pokytis gali daryti įtaką dielektriniams spektrams, jis leidžia derinti dielektrinės skvarbos vertes. Taip pat buvo tyrinėjamos spontaninės poliarizacijos vertės naudojant teorinius modelius. Galiausiai parodoma, kad kevalo ir branduolio kompozitai turi aukštesnes spontaninės poliarizacijos vertes.
 
References / Nuorodos

[1] D. Berlincourt, C. Cmolik, and H. Jaffe, Piezoelectric properties of polycrystalline lead titanate zirconate compositions, Proc. IRE 48(2), 220–229 (1960),
https://doi.org/10.1109/JRPROC.1960.287467
[2] G. Ngueta and A.P. Kengne, Low-level environmental lead exposure and dysglycemia in adult individuals: Results from the Canadian health and measure survey 2007–2011, Biol. Trace Elem. Res. 175(2), 278–286 (2017),
https://doi.org/10.1007/s12011-016-0786-0
[3] S. Tong, Y.E. von Schirnding, and T. Prapamontol, Environmental lead exposure: a public health problem of global dimensions, Bull. World Health Organ. 78(9), 1068–1077 (2000),
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2560844/
[4] M.D. Sanborn, A. Abelsohn, M. Campbell, and E. Weir, Identifying and managing adverse environmental health effects: 3. Lead exposure, Can. Med. Assoc. J. 166(10), 1287–1292 (2002),
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC111081/
[5] E.U. Council, Directive 2002/95/EC of the European Parliament and of the Council (2003),
https://eur-lex.europa.eu
[6] U.S. EPA, Summary of the Toxic Substances Control Act (1976),
https://www.epa.gov
[7] Y. Qin, S. Zhang, Y. Wu, C. Lu, and J. Zhang, Impacts of acceptor doping on the piezoelectric properties and domain structure in NBT-based lead-free ceramics, J. Eur. Ceram. Soc. 37(11), 3493–3500 (2017),
https://doi.org/10.1016/j.jeurceramsoc.2017.04.047
[8] T. Zheng, H. Wu, Y. Yuan, X. Lv, Q. Li, T.-L. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, et al., The structural origin of enhanced piezoelectric performance and stability in lead free ceramics, Energy Environ. Sci. 10(2), 528–537 (2017),
https://doi.org/10.1039/C6EE03597C
[9] G. Viola, R. McKinnon, V. Koval, A. Adomkevicius, S. Dunn, and H. Yan, Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics, J. Phys. Chem. C 118(16), 8564–8570 (2014),
https://doi.org/10.1021/jp500609h
[10] W. Bai, P. Li, L. Li, J. Zhang, B. Shen, and J. Zhai, Structure evolution and large strain response in BNT–BT lead-free piezoceramics modified with Bi(Ni0.5Ti0.5)O3, J. Alloys Compd. 649 (Supplement C), 772–781 (2015),
https://doi.org/10.1016/j.jallcom.2015.07.178
[11] P. Berik, W.-Y. Chang, and X. Jiang, Piezoelectric d36 in-plane shear-mode of lead-free BZTBCT single crystals for torsion actuation, Appl. Phys. Lett. 110(5), 052902 (2017),
https://doi.org/10.1063/1.4975587
[12] B. Jaffe, Piezoelectric Ceramics (Elsevier, 2012),
https://www.elsevier.com/books/piezoelectric-ceramics/jaffe/978-0-12-379550-2
[13] R. Guo, L. Cross, S. Park, B. Noheda, D. Cox, and G. Shirane, Origin of the high piezoelectric response in PbZr1–xTixO3, Phys. Rev. Lett. 84(23), 5423 (2000),
https://doi.org/10.1103/PhysRevLett.84.5423
[14] S. Wada, S. Shimizu, K. Yamashita, I. Fujii, K. Nakashima, N. Kumada, Y. Kuroiwa, Y. Fujikawa, D. Tanaka, and M. Furukawa, Preparation of barium titanate–potassium niobate nanostructured ceramics with artificial morphotropic phase boundary structure by solvothermal method, Jpn. J. Appl. Phys. 50(9S2), 09NC08 (2011),
https://doi.org/10.7567/JJAP.50.09NC08
[15] I. Fujii, S. Shimizu, K. Yamashita, K. Nakashima, N. Kumada, C. Moriyoshi, Y. Kuroiwa, Y. Fujikawa, D. Tanaka, M. Furukawa, and S. Wada, Enhanced piezoelectric response of BaTiO3–KNbO3 composites, Appl. Phys. Lett. 99(20), 202902 (2011),
https://doi.org/10.1063/1.3662397
[16] G.K.L. Goh, C.G. Levi, J.H. Choi, and F.F. Lange, Hydrothermal epitaxy of KNbO3 thin films and nanostructures, J. Cryst. Growth 286(2), 457–464 (2006),
https://doi.org/10.1016/j.jcrysgro.2005.10.021
[17] A. von Hippel, Ferroelectricity, domain structure, and phase transitions of barium titanate, Rev. Mod. Phys. 22(3), 221 (1950),
https://doi.org/10.1103/RevModPhys.22.221
[18] Y. Hirose, S. Ueno, K. Nakashima, and S. Wada, Preparation of BaTiO3 nano-structured ceramics by solvothermal solidification method, Trans. Mater. Res. Soc. Jpn. 40(3), 239–242 (2015),
https://doi.org/10.14723/tmrsj.40.239
[19] Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics, Phys. Rev. B 70(2), 024107 (2004),
https://doi.org/10.1103/PhysRevB.70.024107
[20] K.S. Cole and R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics, J. Chem. Phys. 9(4), 341–351 (1941),
https://doi.org/10.1063/1.1750906
[21] R. Newton, A. Ahearn, and K. McKay, Observation of the ferro-electric Barkhausen effect in barium titanate, Phys. Rev. 75(1), 103 (1949),
https://doi.org/10.1103/PhysRev.75.103
[22] H.B. Huntington and R.D. Southwick, Ultrasonic velocities in polarized barium titanate ceramics, J. Acoust. Soc. Am. 27(4), 677–679 (1955),
https://doi.org/10.1121/1.1907991
[23] S. Kashida, I. Hatta, A. Ikushima, and Y. Yamada, Ultrasonic velocities in BaTiO3, J. Phys. Soc. Jpn. 34(4), 997–1001 (1973),
https://doi.org/10.1143/JPSJ.34.997
[24] K. Lichtenecker, Dielectric constant of natural and synthetic mixtures, Phys. Z. 27, 115 (1926)
[25] A. Goncharenko, V. Lozovski, and E. Venger, Lichtenecker's equation: applicability and limitations, Opt. Commun. 174(1), 19–32 (2000),
https://doi.org/10.1016/S0030-4018(99)00695-1
[26] G. Arlt, U. Böttger, and S. Witte, Dielectric dispersion of ferroelectric ceramics and single crystals at microwave frequencies, Ann. Phys. 506(7–8), 578–588 (1994),
https://doi.org/10.1002/andp.19945060703
[27] D. Nuzhnyy, E. Buixaderas, I. Rychetsky, C. Kadle, J. Petzelt, H. Uršič, and B. Malič, Percolation in the dielectric function of Pb(Zr, Ti)O3 – Pb2 Ru2O6.5 ferroelectric – metal composites, J. Phys. Appl. Phys. 47(49), 495301 (2014),
https://doi.org/10.1088/0022-3727/47/49/495301
[28] B.L. Cheng, M. Gabbay, W. Duffy, and G. Fantozzi, Mechanical loss and Young's modulus associated with phase transitions in barium titanate based ceramics, J. Mater. Sci. 31(18), 4951–4955 (1996),
https://doi.org/10.1007/BF00355886
[29] J.J. Wang, F.Y. Meng, X.Q. Ma, M.X. Xu, and L.Q. Chen, Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles, J. Appl. Phys. 108(3), 034107 (2010),
https://doi.org/10.1063/1.3462441
[30] A.J. Bell, Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes, J. Appl. Phys. 89(7), 3907–3914 (2001),
https://doi.org/10.1063/1.1352682
[31] H.F. Kay and P. Vousden, XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties, Lond. Edinb. Dublin Philos. Mag. J. Sci. 40(309), 1019–1040 (1949),
https://doi.org/10.1080/14786444908561371
[32] J. Shieh, J.H. Yeh, Y.C. Shu, and J.H. Yen, Hysteresis behaviors of barium titanate single crystals based on the operation of multiple 90° switching systems, Mater. Sci. Eng. B 161(1), 50–54 (2009),
https://doi.org/10.1016/j.mseb.2008.11.046
[33] H.H. Wieder, Electrical behavior of barium titanate single crystals at low temperatures, Phys. Rev. 99(4), 1161–1165 (1955),
https://doi.org/10.1103/PhysRev.99.1161
[34] T. Schenk, E. Yurchuk, S. Mueller, U. Schroeder, S. Starschich, U. Böttger, and T. Mikolajick, About the deformation of ferroelectric hystereses, Appl. Phys. Rev. 1(4), 041103 (2014),
https://doi.org/10.1063/1.4902396
[35] L. Jin, F. Li, and S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc. 97(1), 1–27 (2014),
https://doi.org/10.1111/jace.12773
[36] N.H. Khansur, H. Kawashima, S. Wada, J.M. Hudspeth, and J. Daniels, Enhanced extrinsic domain switching strain in core–shell structured BaTiO3–KNbO3 ceramics, Acta Mater. 98(Supplement C), 182–189 (2015),
https://doi.org/10.1016/j.actamat.2015.07.034
[37] T. Ostapchuk, J. Petzelt, M. Savinov, V. Buscaglia, and L. Mitoseriu, Grain-size effect in BaTiO3 ceramics: study by far infrared spectroscopy, Phase Transit. 79(6–7), 361–373 (2006),
https://doi.org/10.1080/01411590600892047
[38] M.D. Fontana, G. Metrat, J.L. Servoin, and F. Gervais, Infrared spectroscopy in KNbO3 through the successive ferroelectric phase transitions, J. Phys. C 17(3), 483 (1984),
https://doi.org/10.1088/0022-3719/17/3/020