Andrius Sakavičius, Vladimir Agafonov, Virginijus Bukauskas,
Tomas Daugalas, Mindaugas Kamarauskas, Algimantas Lukša, Viktorija
Nargelienė, Gediminas Niaura, Marius Treideris, and Arūnas Šetkus
Received 3 May 2020; revised 3 July 2020; accepted 1 September
2020
[1] X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K.
Shepard, J. Hone, S. Assefa, and D. Englund, Chip-integrated
ultrafast graphene photodetector with high responsivity, Nat.
Photonics
7, 883–887 (2013),
https://doi.org/10.1038/nphoton.2013.253
[2] A.D. Smith, S. Vaziri, S. Rodriguez, M. Östling, and M.C.
Lemme, Large scale integration of graphene transistors for
potential applications in the back end of the line, Solid State
Electron.
108, 61–66 (2015),
https://doi.org/10.1016/j.sse.2014.12.014
[3] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju,
F. Wang, and X. Zhang, A graphene-based broadband optical
modulator, Nature
474(7349), 64–67 (2011),
https://doi.org/10.1038/nature10067
[4] A.D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.C. Fischer,
M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M.
Östling, and M.C. Lemme, Electromechanical piezoresistive
sensing in suspended graphene membranes, Nano Lett.
13(7),
3237–3242 (2013),
https://doi.org/10.1021/nl401352k
[5] A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer,
S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist,
S. Schröder, S. Kataria, M. Östling, and S. Schröder, Resistive
graphene humidity sensors with rapid and direct electrical
readout, Nanoscale
7(45), 19099–19109 (2015),
https://doi.org/10.1039/C5NR06038A
[6] A. Gahoi, S. Wagner, A. Bablich, S. Kataria, V. Passi, and
M.C. Lemme, Contact resistance study of various metal electrodes
with CVD graphene, Solid State Electron.
125, 234–239
(2016),
https://doi.org/10.1016/j.sse.2016.07.008
[7] J.W. Suk, W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D.
Akinwande, and R.S. Ruoff, Enhancement of the electrical
properties of graphene grown by chemical vapor deposition via
controlling the effects of polymer residue, Nano Lett.
13(4),
1462–1467 (2013),
https://doi.org/10.1021/nl304420b
[8] A. Avsar, I.J. Vera-Marun, J.Y. Tan, K. Watanabe, T.
Taniguchi, A.H. Castro Neto, and B. Ozyilmaz, Air-stable
transport in graphene-contacted, fully encapsulated ultrathin
black phosphorus-based field-effect transistors, ACS Nano
9(4),
4138–4145 (2015),
https://doi.org/10.1021/acsnano.5b00289
[9] U. Lee, Y. Han, S. Lee, J.S. Kim, Y.H. Lee, U.J. Kim, and H.
Son, Time evolutional studies on strain and doping of graphene
grown on a copper substrate using Raman spectroscopy, ACS Nano
14(1),
919–926 (2020),
https://doi.org/10.1021/acsnano.9b08205
[10] S. Ryu, L. Liu, S. Berciaud, Y.J. Yu, H. Liu, P. Kim, G.W.
Flynn, and E.B. Louis, Atmospheric oxygen binding and hole
doping in deformed graphene on a SiO
2 substrate, Nano
Lett.
10(12), 4944–4951 (2010),
https://doi.org/10.1021/nl1029607
[11] A. Piazza, F. Giannazzo, G. Buscarino, G. Fisichella, A. La
Magna, F. Roccaforte, M. Cannas, F.M. Gelardi, B. Pignataro, M.
Scopelliti, and S. Agnello, Substrate and atmosphere influence
on oxygen p-doped graphene, Carbon
107, 696–704 (2016),
https://doi.org/10.1016/j.carbon.2016.06.077
[12] A. Quellmalz, A.D. Smith, K. Elgamma, X. Fan, A. Delin, M.
Östling. M. Lemme, K.B. Gylfason, and F. Niklaus, Influence of
humidity on contact resistance in graphene devices, ACS Appl.
Mater. Interfaces
10(48), 41738–41746 (2018),
https://doi.org/10.1021/acsami.8b10033
[13] J. Kang, D. Shin, S. Bae, and B.H. Hong, Graphene transfer:
key for applications, Nanoscale
4(18), 5527–5537 (2012),
https://doi.org/10.1039/C2NR31317K
[14] A. Sakavičius, G. Astromskas, A. Lukša, V. Bukauskas, V.
Nargelienė, I. Matulaitienė, and A. Šetkus, Annealing time
effect on metal graphene contact properties, ECS J. Solid State
Sci. Technol.
7(5), M77–M81 (2018),
https://doi.org/10.1149/2.0201805jss
[15] A. Sakavičius, G. Astromskas, V. Bukauskas, M. Kamarauskas,
A. Lukša, V. Nargelienė, G. Niaura, I. Ignatjev, M. Treideris,
and A. Šetkus, Long distance distortions in the graphene near
the edge of planar metal contacts, Thin Solid Films
698,
137850 (2020),
https://doi.org/10.1016/j.tsf.2020.137850
[16] J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, and S. Ryu, Optical
separation of mechanical strain from charge doping in graphene,
Nat. Commun.
3, 1024 (2012),
https://doi.org/10.1038/ncomms2022
[17] A. Armano, C. Buscarino, M. Cannas, F.M. Gelardi, F.
Giannazzo, E. Schilirò, and S. Agnello, Monolayer graphene
doping and strain dynamics induced by thermal treatments in
controlled atmosphere, Carbon
127, 270–279 (2018),
https://doi.org/10.1016/j.carbon.2017.11.008
[18] J.H. Lee, A. Avsar, J. Jung, J.Y. Tan, K. Watanabe, T.
Taniguchi, S. Natarajan, G. Eda, S. Adam, A.H. Castro Neto, and
B. Özyilmaz, Van der Waals force: a dominant factor for
reactivity of graphene, Nano Lett.
15(1), 319–325
(2015),
https://doi.org/10.1021/nl5036012
[19] S. Schumacher, T.O. Wehling, P. Lazic, S. Runte, D.F.
Förster, C. Busse, M. Petrović, M. Kralj, S. Blügel, N.
Atodiresei, V. Caciuc, and T. Michely, The backside of graphene:
manipulating adsorption by intercalation, Nano Lett.
13(11),
5013–5019 (2013),
https://doi.org/10.1021/nl402797j
[20] P.L. Levesque, S.S. Sabri, C.M. Aguirre, J. Guillemette, M.
Siaj, P. Desjardins, T. Szkopek, and R. Martel, Probing charge
transfer at surfaces using graphene transistors, Nano Lett.
11(1),
132–137 (2011),
https://doi.org/10.1021/nl103015w
[21] M.M. Giangregorio, W. Jiao, G.V. Bianco, P. Capezzuto, A.S.
Brown, G. Bruno, and M. Losurdo, Insights into the effects of
metal nanostructuring and oxidation on the work function and
charge transfer of metal/graphene hybrids, Nanoscale
7(30),
12868–12877 (2015),
https://doi.org/10.1039/c5nr02610e