[PDF]  https://doi.org/10.3952/physics.v60i4.4359

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 235–246 (2020)
 

LONG-TIME DRIFT INDUCED CHANGES IN ELECTRICAL CHARACTERISTICS OF GRAPHENE–METAL CONTACTS
Andrius Sakavičius, Vladimir Agafonov, Virginijus Bukauskas, Tomas Daugalas, Mindaugas Kamarauskas, Algimantas Lukša, Viktorija Nargelienė, Gediminas Niaura, Marius Treideris, and Arūnas Šetkus
  State Research Institute Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
Email: andrius.sakavicius@ftmc.lt

Received 3 May 2020; revised 3 July 2020; accepted 1 September 2020

Chemical vapour deposition (CVD) graphene is commonly recognized as promising 2D material for development of electronic devices. However, the long-term drift of electrical parameters still requires deeper understanding before the technological means can be selected for an individual type of the devices. In this work, the changes in the electrical resistance were investigated over long time in the planar samples based on the CVD graphene with Au and Ni contacts. The samples were arranged as arrays of the resistors on a silicon substrate covered with a 250 nm layer of thermally grown silicon dioxide. The annealing in pure argon gas flow at 573 K was used to return the electrical properties of samples to the initial state. The effects of drift and annealing were compared for the three parts of structures, namely the electrical contact, the graphene sheet and the edge of the metal film with a hanging graphene sheet. For these parts, the resistance changes were related to the strain and doping of supported and hanged parts of the graphene sheet. Raman spectroscopy and Kelvin force probe microscopy were used to characterize charge doping, strain and work function in the graphene. The drift was explained in terms of the most prominent changes in the doping, strain and work function detected within the edge zone of the contact. It was proved that the annealing significantly changed the p-type doping and work function in the graphene layer in this edge zone. The properties were almost independent of test conditions in the SiO2 supported graphene. The changes in the contact parameters produced by drift mechanisms were proved being reversible under proper annealing conditions.
Keywords: long-time drift, graphene, graphene–metal contacts, Raman spectroscopy, scanning probe microscopy, strain and doping in CVD graphene
PACS: 72.80.Vp, 68.65.Pq

GRAFENO IR METALO KONTAKTŲ ELEKTRINIŲ CHARAKTERISTIKŲ KITIMAS DĖL ILGALAIKIO DREIFO
Andrius Sakavičius, Vladimir Agafonov, Virginijus Bukauskas, Tomas Daugalas, Mindaugas Kamarauskas, Algimantas Lukša, Viktorija Nargelienė, Gediminas Niaura, Marius Treideris, Arūnas Šetkus

Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Darbe pristatomas tyrimas, kuriame buvo analizuotos CVD (cheminio garų nusodinimo) grafeno pagrindu pagamintų Au ir Ni CTLM (apskritiminės perdavimo linijos metodo) varžinių darinių elektrinių charakteristikų ilgalaikio stabilumo priežastys. Kontaktų iškaitinimas buvo naudojamas elektrines varžas atstatant į pradines vertes, būdingas tik ką pagamintiems grafeno bandiniams. Iškaitinimas buvo atliekamas Ar sraute, 573 K temperatūroje. Dėl parametrų kitimo bėgant laikui pasikeitusi grafeno bandinių elektrinė varža, kontaktinės ir sluoksnio varžos buvo atstatytos į pradines vertes.
Ramano spektroskopija buvo tirtas grafeno, esančio ant bandinių paviršiaus, legiravimo ir įtempimų kitimas bėgant laikui ir atstatymo metu. Analizuotos trys grafeno CTLM bandinių sritys: grafenas, esantis ant metalinių kontaktų, grafenas, esantis ant kontaktinio laiptelio srities, ir grafenas, esantis ant SiO2 padėklo. Nustatyta, kad dėl bandinių kitimo bėgant laikui ir atstatymo didžiausi legiravimo kitimai įvyko grafeno sluoksnyje, esančiame ant kontaktinio laiptelio srities, o didžiausi įtempimų pokyčiai – grafeno sluoksnyje, esančiame ant metalinių kontaktų.
Kelvino jėgos spektroskopijos mikroskopija išmatuotos grafeno išlaisvinimo darbo vertės prieš CTLM bandinių iškaitinimą ir po. Nustatyta, kad išlaisvinimo darbo vertė sumažėjo grafeno sluoksnyje, esančiame ant Au kontaktų; po iškaitinimo ji padidėjo grafeno sluoksnyje, esančiame ant Ni kontaktų, ir WGr sumažėjo grafeno sluoksnyje, esančiame ant kontaktinio laiptelio srities bei SiO2 padėklo. Išlaisvinimo darbo pokytis grafeno sluoksnyje, esančiame ant metalinių kontaktų, buvo didžiausias Au CTLM bandiniams, o WGr pokytis grafeno sluoksnyje, esančiame ant kontaktinio laiptelio srities, – Ni CTLM bandiniams.
 
References / Nuorodos

[1] X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity, Nat. Photonics 7, 883–887 (2013),
https://doi.org/10.1038/nphoton.2013.253
[2] A.D. Smith, S. Vaziri, S. Rodriguez, M. Östling, and M.C. Lemme, Large scale integration of graphene transistors for potential applications in the back end of the line, Solid State Electron. 108, 61–66 (2015),
https://doi.org/10.1016/j.sse.2014.12.014
[3] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, A graphene-based broadband optical modulator, Nature 474(7349), 64–67 (2011),
https://doi.org/10.1038/nature10067
[4] A.D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Östling, and M.C. Lemme, Electromechanical piezoresistive sensing in suspended graphene membranes, Nano Lett. 13(7), 3237–3242 (2013),
https://doi.org/10.1021/nl401352k
[5] A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, S. Schröder, S. Kataria, M. Östling, and S. Schröder, Resistive graphene humidity sensors with rapid and direct electrical readout, Nanoscale 7(45), 19099–19109 (2015),
https://doi.org/10.1039/C5NR06038A
[6] A. Gahoi, S. Wagner, A. Bablich, S. Kataria, V. Passi, and M.C. Lemme, Contact resistance study of various metal electrodes with CVD graphene, Solid State Electron. 125, 234–239 (2016),
https://doi.org/10.1016/j.sse.2016.07.008
[7] J.W. Suk, W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande, and R.S. Ruoff, Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue, Nano Lett. 13(4), 1462–1467 (2013),
https://doi.org/10.1021/nl304420b
[8] A. Avsar, I.J. Vera-Marun, J.Y. Tan, K. Watanabe, T. Taniguchi, A.H. Castro Neto, and B. Ozyilmaz, Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors, ACS Nano 9(4), 4138–4145 (2015),
https://doi.org/10.1021/acsnano.5b00289
[9] U. Lee, Y. Han, S. Lee, J.S. Kim, Y.H. Lee, U.J. Kim, and H. Son, Time evolutional studies on strain and doping of graphene grown on a copper substrate using Raman spectroscopy, ACS Nano 14(1), 919–926 (2020),
https://doi.org/10.1021/acsnano.9b08205
[10] S. Ryu, L. Liu, S. Berciaud, Y.J. Yu, H. Liu, P. Kim, G.W. Flynn, and E.B. Louis, Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate, Nano Lett. 10(12), 4944–4951 (2010),
https://doi.org/10.1021/nl1029607
[11] A. Piazza, F. Giannazzo, G. Buscarino, G. Fisichella, A. La Magna, F. Roccaforte, M. Cannas, F.M. Gelardi, B. Pignataro, M. Scopelliti, and S. Agnello, Substrate and atmosphere influence on oxygen p-doped graphene, Carbon 107, 696–704 (2016),
https://doi.org/10.1016/j.carbon.2016.06.077
[12] A. Quellmalz, A.D. Smith, K. Elgamma, X. Fan, A. Delin, M. Östling. M. Lemme, K.B. Gylfason, and F. Niklaus, Influence of humidity on contact resistance in graphene devices, ACS Appl. Mater. Interfaces 10(48), 41738–41746 (2018),
https://doi.org/10.1021/acsami.8b10033
[13] J. Kang, D. Shin, S. Bae, and B.H. Hong, Graphene transfer: key for applications, Nanoscale 4(18), 5527–5537 (2012),
https://doi.org/10.1039/C2NR31317K
[14] A. Sakavičius, G. Astromskas, A. Lukša, V. Bukauskas, V. Nargelienė, I. Matulaitienė, and A. Šetkus, Annealing time effect on metal graphene contact properties, ECS J. Solid State Sci. Technol. 7(5), M77–M81 (2018),
https://doi.org/10.1149/2.0201805jss
[15] A. Sakavičius, G. Astromskas, V. Bukauskas, M. Kamarauskas, A. Lukša, V. Nargelienė, G. Niaura, I. Ignatjev, M. Treideris, and A. Šetkus, Long distance distortions in the graphene near the edge of planar metal contacts, Thin Solid Films 698, 137850 (2020),
https://doi.org/10.1016/j.tsf.2020.137850
[16] J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, and S. Ryu, Optical separation of mechanical strain from charge doping in graphene, Nat. Commun. 3, 1024 (2012),
https://doi.org/10.1038/ncomms2022
[17] A. Armano, C. Buscarino, M. Cannas, F.M. Gelardi, F. Giannazzo, E. Schilirò, and S. Agnello, Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere, Carbon 127, 270–279 (2018),
https://doi.org/10.1016/j.carbon.2017.11.008
[18] J.H. Lee, A. Avsar, J. Jung, J.Y. Tan, K. Watanabe, T. Taniguchi, S. Natarajan, G. Eda, S. Adam, A.H. Castro Neto, and B. Özyilmaz, Van der Waals force: a dominant factor for reactivity of graphene, Nano Lett. 15(1), 319–325 (2015),
https://doi.org/10.1021/nl5036012
[19] S. Schumacher, T.O. Wehling, P. Lazic, S. Runte, D.F. Förster, C. Busse, M. Petrović, M. Kralj, S. Blügel, N. Atodiresei, V. Caciuc, and T. Michely, The backside of graphene: manipulating adsorption by intercalation, Nano Lett. 13(11), 5013–5019 (2013),
https://doi.org/10.1021/nl402797j
[20] P.L. Levesque, S.S. Sabri, C.M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, Probing charge transfer at surfaces using graphene transistors, Nano Lett. 11(1), 132–137 (2011),
https://doi.org/10.1021/nl103015w
[21] M.M. Giangregorio, W. Jiao, G.V. Bianco, P. Capezzuto, A.S. Brown, G. Bruno, and M. Losurdo, Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids, Nanoscale 7(30), 12868–12877 (2015),
https://doi.org/10.1039/c5nr02610e