Received 17 September 2020; revised 28 October 2020; accepted 3
November 2020
[1] S. Wada, A. Saito, T. Hoshina, H. Kakemoto, T. Tsurumi, C.
Moriyoshi, and Y. Kuroiwa, Silver lithium niobate single
crystals and their piezoelectric properties, Ferroelectrics
346,
64–71 (2007),
https://doi.org/10.1080/00150190601180331
[2] A. Kania, K. Roleder, and M. Lukaszewki, The ferroelectric
phase in AgNbO3, Ferroelectrics
52, 265–269 (1984),
https://doi.org/10.1080/00150198408209394
[3] D. Fu, M. Endo, H. Taniguchi, T. Tanijama, and M. Itoh,
AgNbO
3: A lead-free material with large polarization
and electromechanical response, Appl. Phys. Lett.
90,
252907 (2007),
https://doi.org/10.1063/1.2751136
[4] D. Fu, M. Endo, H. Tsniguchi, T. Taniyama, S. Koshihara, and
M. Itoh, Piezoelectric properties of lithium modified silver
niobate perovskite single crystals, Appl. Phys. Lett.
92,
172905 (2008),
https://doi.org/10.1063/1.2918837
[5] A. Kania and S. Miga, Preparation and dielectric properties
of Ag
1–xLi
xNbO
3
(ALN) solid solutions ceramics, Mater. Sci. Eng. B
86,
128–133 (2001),
https://doi.org/10.1016/S0921-5107(01)00666-3
[6] A. Niewiadomski, A. Kania, G.E. Kugel, M. Hafid, and D.
Ditko, Raman spectroscopy, dielectric properties and phase
transitions of Ag
0.96Li
0.04NbO
3
ceramics, Mater. Res. Bull.
65, 123–131 (2015),
https://doi.org/10.1016/j.materresbull.2015.01.047
[7] D. Fu, M. Endo, H. Taniguchi, T. Taniyama, M. Itoh, and S.
Koshihara, Ferroelectricity of Li-doped silver niobate (Ag,
Li)NbO
3, J. Phys. Condens. Matter
23, 075901
(2011),
https://doi.org/10.1088/0953-8984/23/7/075901
[8] A. Newiadomski, D. Kajewski, A. Kania, K. Balin, S. Miga, M.
Pawlik, and S. Koperski, Microstructure and characterization of
Ag
1–xLi
xNbO
3
ceramics, Ceram. Int.
42, 4445–4451 (2016),
https://doi.org/10.1016/j.ceramint.2015.11.129
[9] H.U. Khan, I. Sterianou, J. Miao, J. Pokorny, and I.M.
Reaney, The effect of Li-substitution on the M-phases of AgNbO
3,
J. Appl. Phys.
111, 024107 (2012),
https://doi.org/10.1063/1.3677871
[10] Y. Sakabe, T. Takeda, Y. Ogiso, and N. Wada, Ferroelectric
properties of (Ag, Li)(Nb, Ta)O
3 ceramics, Jpn. J.
Appl. Phys.
42, 5675 (2001),
https://doi.org/10.1143/JJAP.40.5675
[11] V. Porokhonskyy, V. Bovtun, S. Kamba, E. Buixaderas, J.
Petzelt, A. Kania, S. Miga, and Y. Yakimenko, Microwave
dielectric properties of the Ag
1–xLi
xNbO
3
(
x = 0 ÷ 0.06) ceramics, Ferroelectrics
238,
137–138 (2000),
https://doi.org/10.1080/00150190008008776
[12] A. Kania, K. Roleder, G.E. Kugel, and M.D. Fontana, Raman
scattering, central peak and phase transitions in AgNbO
3,
J. Phys. C
19, 9 (1986),
https://doi.org/10.1088/0022-3719/19/1/007
[13] A.A. Volkov, B.P. Gorshunov, G. Komandin, W. Fortin, G.E.
Kugel, A. Kania, and J. Grigas, High-frequency dielectric
spectra of AgTaO
3-AgNbO
3 mixed ceramics,
J. Phys. Condens. Matter
7, 785 (1995),
https://doi.org/10.1088/0953-8984/7/4/009
[14] W. Fortin, G.E. Kugel, J. Grigas, and A. Kania,
Manifestation of Nb dynamics in Raman, microwave, and infrared
spectra of the AgTaO3-AgNbO
3 mixed system, J. Appl.
Phys.
79, 4273 (1996),
https://doi.org/10.1063/1.361796
[15] A. Ratuszna, J. Pawluk, and A. Kania, Temperature evolution
of the crystal structure of AgNbO
3, Phase Transit.
76,
611–620 (2003),
https://doi.org/10.1080/0141159021000009007
[16] I. Levin, V. Krayzman, J.C. Woicik, J. Karapetrova, T.
Proffen, M.G. Tucker, and I.M. Reaney, Structural changes
underlying the diffuse dielectric response in AgNbO
3,
Phys. Rev. B
79, 104113 (2009),
https://doi.org/10.1103/PhysRevB.79.104113
[17] Y. Tian, J. Li, Q. Hu, L. Jin, K. Yu, J. Li, E.D. Politova,
S. Yu, S.Y. Stefanovich, Z. Xu, and X. Wei, Ferroelectric
transitions in silver niobate ceramics, J. Mater. Chem. C
7,
1028–1034 (2019),
https://doi.org/10.1039/C8TC05451G
[18] Y. Tian, L. Jin, H.F. Zhang, Z. Xu, X.Y. Wei, E.D.
Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, and H.X.
Yan, High energy density in silver niobate ceramics, J. Mater.
Chem. A
4(44), 17279–17287 (2016),
https://doi.org/10.1039/C6TA06353E
[19] X. He, C. Chen, C.B. Li, H.R. Zhen, and Z.G. Yi,
Ferroelectric, photoelectric, and photovoltaic performance of
silver niobate ceramics, Adv. Funct. Mater.
29, 1900918
(2019),
https://doi.org/10.1002/adfm.201900918
[20] Z.N. Yan, D. Zhang, X.F. Zhou, H. Qi, H. Luo, and K.C.
Zhou, Silver niobate based lead-free ceramics with high energy
storage density, J. Mater. Chem. A
7, 10702–10711
(2019),
https://doi.org/10.1039/C9TA00995G
[21] Z. Liu, T. Lu, J.M. Ye, G.S. Wang, X.L. Dang, E. Whithers,
and Y. Liu, Antiferroelectrics for energy storage applications:
a review, Adv. Mater. Technol.
3, 10800111 (2018),
https://doi.org/10.1002/admt.201800111
[22] D. Damjanovic, Ferroelectric, dielectric and piezoelectric
properties of ferroelectric thin films and ceramics, Rep. Prog.
Phys.
61, 1267 (1998),
https://doi.org/10.1088/0034-4885/61/9/002
[23] M. Valant and D. Suvorov, New-high permittivity AgNb
1–xTa
xO
3
microwave ceramics: Part II, dielectric characteristics, J. Am.
Ceram. Soc.
82, 88 (1999),
https://doi.org/10.1111/j.1151-2916.1999.tb01727.x
[24] S. Kamba, D. Nuzhnyy, S. Veljko, V. Bovtun, J. Petzelt,
Y.L. Wang, N. Setter, J. Levoska, M. Tyunina, J. Macutkevic, and
J. Banys, Dielectric relaxation and polar phonon softening in
relaxor ferroelectric PbMg
1/3Ta
2/3O
3,
J. Appl. Phys.
102, 074106 (2007),
https://doi.org/10.1063/1.2784972