[PDF]  https://doi.org/10.3952/physics.v60i4.4360

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 60, 247–252 (2020)
 

BROADBAND AND INFRARED SPECTROSCOPY OF Ag0.98Li0.02NbO3 CERAMICS
Edita Palaimienėa, Jan Macutkevičb, Jūras Banysa, Irena Gruszkac, and Antoni Kaniac
  a Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
c Institute of Physics, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1, PL-41-500 Chorzów, Poland
Email: edita.palaimiene@ff.vu.lt

Received 17 September 2020; revised 28 October 2020; accepted 3 November 2020

The dielectric properties of Ag0.98Li0.02NbO3 (ALN2) ceramics were investigated in a broad frequency range (20 Hz – 60 THz). The dielectric spectra of ALN2 ceramics are mainly impacted by electrical conductivity at higher temperatures (above 400 K) and low frequencies (below 100 Hz), ferroelectric domains below ferroelectric phase transition temperature Tc = 330 K and at low frequencies (below 1 MHz), and contribution of the soft ferroelectric mode, the frequency of which is below 50 cm–1. All phononic modes are slightly temperature dependent, thus confirming the influence of Ag, O and Li ions dynamics on the phase transitions. However, the most important contribution to the dynamics of phase transition is made by Nb ions. Ceramics exhibits a huge value of dielectric permittivity and relatively low losses in a microwave frequency range (ε΄ ≈ 250 and ε˝ ≈ 20 at 10 GHz and room temperature), indicating that it is suitable for various microwave dielectric applications.
Keywords: ceramics, spectroscopy, phonons, ferroelectric
PACS: 77.84.Cg, 78.47.-p, 63.20.dd, 77.84.-s

PLAČIAJUOSTĖ Ag0,98Li0,02NbO3 KERAMIKŲ DIELEKTRINĖ IR INFRARAUDONOJI SPEKTROSKOPIJA
Edita Palaimienėa, Jan Macutkevičb, Jūras Banysa, Irena Gruszkac, Antoni Kaniac

a Vilniaus universiteto Taikomosios elektrodinamikos ir telekomunikacijų institutas, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
c Katovicų Silezijos universiteto Fizikos institutas, Chožuvas, Lenkija

Bešvinė pjezoelektrinė niobato sistemos medžiaga galėtų būti alternatyva jau žinomoms ir naudojamoms pjezoelektrinėms medžiagoms. Viena iš tokių feroelektrinių medžiagų yra perovskito struktūros sidabro niobatas AgNbO3 (AN). Sidabro niobato keramika yra feroelektrikas kambario temperatūroje. Tyrimais nustatyta, kad didinant ličio koncentraciją sidabro niobato junginyje feroelektrinio fazinio virsmo temperatūra taip pat didėja. Šiame darbe publikuojami Ag0,98Li0,02NbO3 (ALN2) dielektrinių ir IR tyrimų rezultatai. Tyrimai atlikti plačiajuostės dielektrinės ir IR spektroskopijų metodais 20 Hz – 60 THz dažnių diapazone esant 140–500 K temperatūrai. ALN2 keramikos dielektriniams spektrams daugiausia įtakos turi elektrinis laidumas (aukštesnei temperatūrai (per 400 K) ir žemiems dažniams (žemiau 100 Hz)), feroelektriniai domenai (žemiau Tc = 330 K, esant žemiems dažniams (žemiau 1 MHz)) ir minkštos feroelektrinės modos, kurios dažnis yra mažesnis nei 50 cm–1, įtaka. Ag ir O jonų dinamika turi įtakos faziniams virsmams, tai lemia fononines modas, kurios šiek tiek priklauso nuo temperatūros. Svarbiausią indėlį į fazinių virsmų dinamiką turi Nb jonai. ALN keramika turi didžiulę dielektrinės skvarbos vertę ir santykinai mažus nuostolius mikrobangų dažnių diapazone (ε΄ ≈ 250 ir ε˝ ≈ 20 esant 10 GHz ir kambario temperatūrai).
 
References / Nuorodos

[1] S. Wada, A. Saito, T. Hoshina, H. Kakemoto, T. Tsurumi, C. Moriyoshi, and Y. Kuroiwa, Silver lithium niobate single crystals and their piezoelectric properties, Ferroelectrics 346, 64–71 (2007),
https://doi.org/10.1080/00150190601180331
[2] A. Kania, K. Roleder, and M. Lukaszewki, The ferroelectric phase in AgNbO3, Ferroelectrics 52, 265–269 (1984),
https://doi.org/10.1080/00150198408209394
[3] D. Fu, M. Endo, H. Taniguchi, T. Tanijama, and M. Itoh, AgNbO3: A lead-free material with large polarization and electromechanical response, Appl. Phys. Lett. 90, 252907 (2007),
https://doi.org/10.1063/1.2751136
[4] D. Fu, M. Endo, H. Tsniguchi, T. Taniyama, S. Koshihara, and M. Itoh, Piezoelectric properties of lithium modified silver niobate perovskite single crystals, Appl. Phys. Lett. 92, 172905 (2008),
https://doi.org/10.1063/1.2918837
[5] A. Kania and S. Miga, Preparation and dielectric properties of Ag1–xLixNbO3 (ALN) solid solutions ceramics, Mater. Sci. Eng. B 86, 128–133 (2001),
https://doi.org/10.1016/S0921-5107(01)00666-3
[6] A. Niewiadomski, A. Kania, G.E. Kugel, M. Hafid, and D. Ditko, Raman spectroscopy, dielectric properties and phase transitions of Ag0.96Li0.04NbO3 ceramics, Mater. Res. Bull. 65, 123–131 (2015),
https://doi.org/10.1016/j.materresbull.2015.01.047
[7] D. Fu, M. Endo, H. Taniguchi, T. Taniyama, M. Itoh, and S. Koshihara, Ferroelectricity of Li-doped silver niobate (Ag, Li)NbO3, J. Phys. Condens. Matter 23, 075901 (2011),
https://doi.org/10.1088/0953-8984/23/7/075901
[8] A. Newiadomski, D. Kajewski, A. Kania, K. Balin, S. Miga, M. Pawlik, and S. Koperski, Microstructure and characterization of Ag1–xLixNbO3 ceramics, Ceram. Int. 42, 4445–4451 (2016),
https://doi.org/10.1016/j.ceramint.2015.11.129
[9] H.U. Khan, I. Sterianou, J. Miao, J. Pokorny, and I.M. Reaney, The effect of Li-substitution on the M-phases of AgNbO3, J. Appl. Phys. 111, 024107 (2012),
https://doi.org/10.1063/1.3677871
[10] Y. Sakabe, T. Takeda, Y. Ogiso, and N. Wada, Ferroelectric properties of (Ag, Li)(Nb, Ta)O3 ceramics, Jpn. J. Appl. Phys. 42, 5675 (2001),
https://doi.org/10.1143/JJAP.40.5675
[11] V. Porokhonskyy, V. Bovtun, S. Kamba, E. Buixaderas, J. Petzelt, A. Kania, S. Miga, and Y. Yakimenko, Microwave dielectric properties of the Ag1–xLixNbO3 (x = 0 ÷ 0.06) ceramics, Ferroelectrics 238, 137–138 (2000),
https://doi.org/10.1080/00150190008008776
[12] A. Kania, K. Roleder, G.E. Kugel, and M.D. Fontana, Raman scattering, central peak and phase transitions in AgNbO3, J. Phys. C 19, 9 (1986),
https://doi.org/10.1088/0022-3719/19/1/007
[13] A.A. Volkov, B.P. Gorshunov, G. Komandin, W. Fortin, G.E. Kugel, A. Kania, and J. Grigas, High-frequency dielectric spectra of AgTaO3-AgNbO3 mixed ceramics, J. Phys. Condens. Matter 7, 785 (1995),
https://doi.org/10.1088/0953-8984/7/4/009
[14] W. Fortin, G.E. Kugel, J. Grigas, and A. Kania, Manifestation of Nb dynamics in Raman, microwave, and infrared spectra of the AgTaO3-AgNbO3 mixed system, J. Appl. Phys. 79, 4273 (1996),
https://doi.org/10.1063/1.361796
[15] A. Ratuszna, J. Pawluk, and A. Kania, Temperature evolution of the crystal structure of AgNbO3, Phase Transit. 76, 611–620 (2003),
https://doi.org/10.1080/0141159021000009007
[16] I. Levin, V. Krayzman, J.C. Woicik, J. Karapetrova, T. Proffen, M.G. Tucker, and I.M. Reaney, Structural changes underlying the diffuse dielectric response in AgNbO3, Phys. Rev. B 79, 104113 (2009),
https://doi.org/10.1103/PhysRevB.79.104113
[17] Y. Tian, J. Li, Q. Hu, L. Jin, K. Yu, J. Li, E.D. Politova, S. Yu, S.Y. Stefanovich, Z. Xu, and X. Wei, Ferroelectric transitions in silver niobate ceramics, J. Mater. Chem. C 7, 1028–1034 (2019),
https://doi.org/10.1039/C8TC05451G
[18] Y. Tian, L. Jin, H.F. Zhang, Z. Xu, X.Y. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, and H.X. Yan, High energy density in silver niobate ceramics, J. Mater. Chem. A 4(44), 17279–17287 (2016),
https://doi.org/10.1039/C6TA06353E
[19] X. He, C. Chen, C.B. Li, H.R. Zhen, and Z.G. Yi, Ferroelectric, photoelectric, and photovoltaic performance of silver niobate ceramics, Adv. Funct. Mater. 29, 1900918 (2019),
https://doi.org/10.1002/adfm.201900918
[20] Z.N. Yan, D. Zhang, X.F. Zhou, H. Qi, H. Luo, and K.C. Zhou, Silver niobate based lead-free ceramics with high energy storage density, J. Mater. Chem. A 7, 10702–10711 (2019),
https://doi.org/10.1039/C9TA00995G
[21] Z. Liu, T. Lu, J.M. Ye, G.S. Wang, X.L. Dang, E. Whithers, and Y. Liu, Antiferroelectrics for energy storage applications: a review, Adv. Mater. Technol. 3, 10800111 (2018),
https://doi.org/10.1002/admt.201800111
[22] D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61, 1267 (1998),
https://doi.org/10.1088/0034-4885/61/9/002
[23] M. Valant and D. Suvorov, New-high permittivity AgNb1–xTaxO3 microwave ceramics: Part II, dielectric characteristics, J. Am. Ceram. Soc. 82, 88 (1999),
https://doi.org/10.1111/j.1151-2916.1999.tb01727.x
[24] S. Kamba, D. Nuzhnyy, S. Veljko, V. Bovtun, J. Petzelt, Y.L. Wang, N. Setter, J. Levoska, M. Tyunina, J. Macutkevic, and J. Banys, Dielectric relaxation and polar phonon softening in relaxor ferroelectric PbMg1/3Ta2/3O3, J. Appl. Phys. 102, 074106 (2007),
https://doi.org/10.1063/1.2784972