Rajeev K. Sinha
Received 3 August 2020; revised 16 November 2020; accepted 24
November 2020
[1] D.S. Alves, L. Pérez-Fons, A. Estepa, and V. Micol,
Membrane-related effects underlying the biological activity of
the anthraquinones emodin and barbaloin, Biochem. Pharmacol.
68(3),
549–561 (2004),
https://doi.org/10.1016/j.bcp.2004.04.012
[2] X. Huang, L. Kong, X. Li, X. Chen, M. Guo, and H. Zou,
Strategy for analysis and screening of bioactive compounds in
traditional Chinese medicines, J. Chromatogr. B
812(1–2),
71–84 (2004),
https://doi.org/10.1016/S1570-0232(04)00546-X
[3] H. Matsuda, T. Morikawa, I. Toguchida, J.-Y. Park, S.
Harima, and M. Yoshikawa, Antioxidant constituents from rhubarb:
structural requirements of stilbenes for the activity and
structures of two new anthraquinone glucosides, Bioorg. Med.
Chem.
9(1), 41–50 (2001),
https://doi.org/10.1016/S0968-0896(00)00215-7
[4] Y. Cai, Q. Luo, M. Sun, and H. Corke, Antioxidant activity
and phenolic compounds of 112 traditional Chinese medicinal
plants associated with anticancer, Life Sci.
74(17),
2157–2184 (2004),
https://doi.org/10.1016/j.lfs.2003.09.047
[5] C.H. Xiao, S.S. Yang, and X.K. Hong,
The Chemistry of
Traditional Chinese Medicines (Shanghai Science and
Technology Publishing Press, Shanghai, 2000)
[6] B.A. Monisha, N. Kumar, and A.B. Tiku, in:
Anti-inflammatory
Nutraceuticals and Chronic Diseases (Springer, Cham, 2016)
pp. 47–73,
https://doi.org/10.1007/978-3-319-41334-1_3
[7] R. Jin and H. Bao, A DFT study on the radical scavenging
activity of hydroxyanthraquinone derivatives in rhubarb, Int. J.
Quantum Chem.
111(5), 1064–1071 (2011),
https://doi.org/10.1002/qua.22466
[8] S.Z. Marković and N.T. Manojlović, DFT study on the
reactivity of OH groups in emodin: structural and electronic
features of emodin radicals, Monatsh. Chem.
140(11),
1311 (2009),
https://doi.org/10.1007/s00706-009-0192-9
[9] Z. Marković, N. Manojlović, and S. Zlatanović, Electronic
absorption spectra of substituted anthraquinones and their
simulation using ZINDO/S method, J. Serbian Soc. Comput. Mech.
2(2),
73–79 (2008)
[10] Q. Zhang, X. Gong, H. Xiao, and X. Xu, Density functional
theory study on anthraquinone and its hydroxyl derivatives, Acta
Chim. Sinica
64(5), 381 (2006)
[11] I.M. Kenawi, DFT analysis of diclofenac activity and cation
type influence on the theoretical parameters of some diclofenac
complexes, J. Mol. Struct. Theochem
761(1–3), 151–157
(2006),
https://doi.org/10.1016/j.theochem.2005.12.036
[12] H.N. Flores and M.D. Glossman, CHIH-DFT determination of
the electrical, optical, and magnetic properties and NICS
aromaticity of megazol, J. Mol. Struct. Theochem
717(1–3),
1–3 (2005),
https://doi.org/10.1016/j.theochem.2004.10.089
[13] P.G. De Benedetti, G. Pier, S. Quartieri, and A. Rastelli,
A theoretical study of the structure–activity relationship in
sulpha drugs, J. Mol. Struct. Theochem
85(1–2), 45–51
(1981),
https://doi.org/10.1016/0166-1280(81)85048-8
[14] Y.B. Shankar Rao, M.V.S. Prasad, N. Udaya Sri, and V.
Veeraiah, Vibrational (FT-IR, FT-Raman) and UV–Visible
spectroscopic studies, HOMO–LUMO, NBO, NLO and MEP analysis of
Benzyl (imino (1H-pyrazol-1-yl) methyl) carbamate using DFT
calculations, J. Mol. Struct.
1108, 567–582 (2016),
https://doi.org/10.1016/j.molstruc.2015.12.008
[15] A.M. Mansour, Coordination behavior of sulfamethazine drug
towards Ru (III) and Pt (II) ions: Synthesis, spectral, DFT,
magnetic, electrochemical and biological activity studies,
Inorg. Chim. Acta
394, 436–445 (2013),
https://doi.org/10.1016/j.ica.2012.08.025
[16] M.A. Thompson, in:
Proceedings of ACS Meeting, Vol.
172 (Philadelphia, 2004) p. 42
[17] TURBOMOLE V6.2010, a development of University of Karlsruhe
and Forschungszentrum Karlsruhe GmbH, 1989–2007 (TURBOMOLE GmbH,
since 2007),
https://www.turbomole.com/
[18] M. Büschel, Ch. Stadler, Ch. Lambert, M. Beck, and J. Daub,
Heterocyclic quinones as core units for redox switches:
UV–vis/NIR, FTIR spectroelectrochemistry and DFT calculations on
the vibrational and electronic structure of the radical anions,
J. Electroanal. Chem.
484(1), 24–32 (2000),
https://doi.org/10.1016/S0022-0728(00)00037-1
[19] A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and
D. Mathur, Raman tweezers spectroscopy of live, single red and
white blood cells, PLoS One
5(4), e10427 (2010),
https://doi.org/10.1371/journal.pone.0010427
[20] R.D. Snook, T.J. Harvey, E.C. Faria, and P. Gardner, Raman
tweezers and their application to the study of singly trapped
eukaryotic cells, Integr. Biol.
1(1), 43–52 (2009),
https://doi.org/10.1039/B815253E
[21] G. Smulevich and M.P. Marzocchi, Single crystal and
polarized infrared spectra of two forms of
1,8-dihydroxyanthraquinone vibrational assignment and crystal
structures, Chem. Phys.
94(1–2), 99–108 (1985),
https://doi.org/10.1016/0301-0104(85)85069-2
[22] G. Fabriciova, J.V. Garcıá -Ramos, P. Miskovsky, and S.
Sanchez-Cortes, Adsorption and acidic behavior of anthraquinone
drugs quinizarin and danthron on Ag nanoparticles studied by
Raman spectroscopy, Vib. Spectrosc.
34(2), 273–281
(2004),
https://doi.org/10.1016/j.vibspec.2004.01.001
[23] H.G.M. Edwards, E.M. Newton, D.D. Wynn-Williams, and S.R.
Coombes, Molecular spectroscopic studies of lichen substances 1:
parietin and emodin, J. Mol. Struct.
648(1–2), 49–59
(2003),
https://doi.org/10.1016/S0022-2860(02)00384-8