[PDF]  https://doi.org/10.3952/physics.v61i1.4404

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 27–34 (2021)
 

SECULAR AND SEMI-NONSECULAR MODELS OF CROSS-POLARIZATION KINETICS FOR REMOTE SPINS: AN APPLICATION FOR NANO-STRUCTURED CALCIUM HYDROXYAPATITE
Vytautas Klimavičiusa,b, Feliksas Kuliešiusa, Edvinas Orentasb, and Vytautas Balevičiusa
  a Institute of Chemical Physics, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b Department of Organic Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius, Lithuania
Email: vytautas.balevicius@ff.vu.lt

Received 15 January 2021; revised 18 February 2021; accepted 19 February 2021

The 1H → 31P cross-polarization (CP) kinetics in the nanostructured calcium hydroxyapatite (nano-CaHA) was measured under moderate (5 kHz) magic-angle spinning (MAS) rate. This material was chosen as it contains the distanced 1H–31P spin pairs and the interactions between them are characterized by a relatively low dipolar coupling (b) that could be comparable with the spin-diffusion rates (R). Therefore, the physical legitimacy to use the secular solution of the quantum Liouville–von Neumann equation is doubtful. The semi-nonsecular model of spin dynamics was applied, and the results were compared with those obtained by the secular approach. The comparable results obtained by both models show that the secular model is applicable, with certain reservation, also in the case of |b| ≈ R. The extremely high anisotropy of spin diffusion in the nano-CaHA was deduced. This can be a matter of the applied approach, as the interactions of the 31P spins with the proton bath were neglected in both models. The high anisotropy could also be caused by the physical reasons that stem from the structural and proton diffusion features of CaHA. This material belongs to low-dimensional proton conductors possessing a large motional freedom for protons along OH chains.
Keywords: solid-state NMR, cross-polarization, spin diffusion, magic-angle spinning, calcium hydroxyapatite

SEKULIARUSIS IR PUSIAU NESEKULIARUSIS SUKINIŲ KINETIKOS MODELIAI NUTOLUSIEMS SUKINIAMS: TAIKYMAS NANOSTRUKTŪRIZUOTAM KALCIO HIDROKSIAPATITUI
Vytautas Klimavičiusa,b, Feliksas Kuliešiusa, Edvinas Orentasb, Vytautas Balevičiusa

a Vilniaus universiteto Cheminės fizikos institutas, Vilnius, Lietuva
b Vilniaus universiteto Organinės chemijos katedra, Vilnius, Lietuva

Ištirta 1H → 31P kryžminės poliarizacijos (CP) taikant magiškojo kampo sukimą (MAS) kinetika, vykstanti nanostruktūrizuotame kalcio hidroksiapatite (nano-CaHA). Matavimai atlikti kambario temperatūroje (T = 298 K) sukant bandinį 5 kHz dažniu. Šiai medžiagai yra būdingas didelis protonų mobilumas išilgai OH...OH... grandinių. Dėl šios savybės CaHA priskiriamas medžiagų klasei, vadinamajai protonų laidininkei. Eksperimentiniai CP MAS duomenys buvo apdoroti taikant sekuliarųjį ir pusiau nesekuliarųjį sukinių kinetikos modelius. Sekuliarusis apibendrintos kvantinės mechaninės Liouville’o – von Neumann’o lygties sprendinys yra išvedamas išpildant dvi asimptotines sąlygas: 1) pridėtųjų radiolaukų dažniai ω1 yra daug didesni už dominuojantį dipolinį I–S (šiame darbe I = 1H ir S = 31P) sukinių sąveikos suskilimą, t. y. ω1I, ω1S ≫ |b|; 2) I–S sąveikos suskilimas yra daug didesnis už sukinių difuzijos spartas (|b| ≫ RIdf, RIdp). Pastaroji sąlyga yra sunkiai išpildoma tokiai nutolusių sukinių sistemai, kokia yra nano-CaHa. Kyla abejonių dėl sekuliariojo modelio taikymo. Gautieji kokybiškai identiški rezultatai byloja, kad CP MAS kinetikos gali būti aprašytos taikant tiek sekuliarųjį, tiek pusiau nesekuliarųjį sukinių kinetikos modelius, netgi tais atvejais, kai |b| ir RIdp yra tos pačios eilės dydžiai. Aptikta anomaliai didelė sukinių difuzijos anizotropija, kuri nepriklauso nuo taikyto modelio. Tai gali būti siejama su žemos dimensijos 1H sukinių dinamika nano-CaHA protonų rezervuare.
 
References / Nuorodos

[1] W. Habraken, P. Habibovic, M. Epple, and M. Bohner, Calcium phosphates in biomedical applications: materials for the future? Mater. Today 19, 69–87 (2016),
https://doi.org/10.1016/j.mattod.2015.10.008
[2] R.Z. Le Geros and J.P. Le Geros, in: Bioceramics and Their Clinical Applications, ed. T. Kokubo (Woodhead Publishing, Cambridge, 2008) pp. 367–394
[3] J.C. Elliott, in: Reviews in Mineralogy & Geochemistry, Vol. 48, eds. M.L. Kohn, J. Rakovan, and T.M. Hughes (Mineralogy Society of America, Washington, DC, 2002) pp. 427–453,
https://doi.org/10.2138/rmg.2002.48.11
[4] A. Zanotto, M.L. Saladino, D.C. Martino, and E. Caponetti, Influence of temperature on calcium hydroxyapatite nanopowders, Adv. Nanopart. 1, 21–28 (2012),
https://doi.org/10.4236/anp.2012.13004
[5] Hydroxyapatite and Related Materials, eds. P.W. Brown and B. Constantz (CRC Press, 1994)
[6] M. Yashima, N. Kubo, K. Omoto, H. Fujimori, K. Fujii, and K. Ohoyama, Diffusion path and conduction mechanism of protons in hydroxyapatite, J. Phys. Chem. C 118, 5180–5187 (2014),
https://doi.org/10.1021/jp412771f
[7] L. Dagys, V. Klimavicius, M. Brodrecht, G. Bunt­kows­ky, and V. Balevicius, Cross-polarization kinetics and fractal nature of thermal equilibration in spin systems: From low-dimensional proton conductors to tripeptides, J. Phys. Chem. Solids 152, 109946(7) (2021),
https://doi.org/10.1016/j.jpcs.2021.109946
[8] M. Ben Osman, S. Diallo-Garcia, V. Herledan, D. Brouri, T. Yoshioka, J. Kubo, Y. Millot, and G. Costentin, Discrimination of surface and bulk structure of crystalline hydroxyapatite nanoparticles by NMR, J. Phys. Chem. C 119, 23008–23020 (2015),
https://doi.org/10.1021/acs.jpcc.5b08732
[9] E.O. Stejskal, J. Schaefer, and J.S. Waugh, Magic-angle spinning and polarization transfer in proton-enhanced NMR, J. Magn. Reson. 28, 105–112 (1977),
https://doi.org/10.1016/0022-2364(77)90260-8
[10] E.O. Stejskal and J.D. Memory, High Resolution NMR in the Solid State: Fundamentals of CP/MAS (Oxford University Press, New York, 1994)
[11] W. Kolodziejski and J. Klinowski, Kinetics of cross-polarization in solid-state NMR: a guide for chemists, Chem. Rev. 102, 613–628 (2002),
https://doi.org/10.1021/cr000060n
[12] J. Raya, A. Bianco, and J. Hirschinger, Kinetics of 1H-13C multiple-contact cross-polarization as a powerful tool to determine the structure and dynamics of complex materials: application to graphene oxide, Phys. Chem. Chem. Phys. 22, 12209–12227 (2020),
https://doi.org/10.1039/D0CP00454E
[13] V. Klimavicius, L. Dagys, V. Chizhik, and V. Ba­le­vicius, CP MAS kinetics study of ionic liquids confined in mesoporous silica: Convergence of non-classical and classical spin coupling models, Appl. Magn. Reson. 48, 673–685 (2017),
https://doi.org/10.1007/s00723-017-0891-z
[14] S.K. Mann, M.K. Devgan, W.T. Franks, S. Hu­band, C.L. Chan, J. Griffith, D. Pugh, N.J. Brooks, T. Welton, T.N. Pham, et al., MAS NMR investigation of molecular order in an ionic liquid crystal, J. Phys. Chem. B 124, 4975–4988 (2020),
https://doi.org/10.1021/acs.jpcb.0c02328
[15] V. Klimavicius, A. Kareiva, and V. Balevicius, Solid-state NMR study of hydroxyapatite containing amorphous phosphate phase and nanostructured hydroxyapatite: Cut-off averaging of CP MAS kinetics and size profiles of spin clusters, J. Phys. Chem. C 118, 28914–28921 (2014),
https://doi.org/10.1021/jp510229f
[16] V. Klimavicius, L. Dagys, and V. Balevicius, Sub­nanoscale order and spin diffusion in complex solids through the processing of cross-polarization kinetics, J. Phys. Chem. C 120, 3542–3549 (2016),
https://doi.org/10.1021/acs.jpcc.5b11739
[17] L. Dagys, V. Klimavicius, T. Gutmann, G. Bunt­kows­ky, and V. Balevicius, Quasi-equilibria and polarization transfer between adjacent and remote spins: 1H–13C CP MAS kinetics in glycine, J. Phys. Chem. A 122, 8938–8947 (2018),
https://doi.org/10.1021/acs.jpca.8b09036
[18] L. Müller, A. Kumar, T. Baumann, and R.R. Ernst, Transient oscillations in NMR cross-polarization experiments in solids, Phys. Rev. Lett. 32, 1402–1406 (1974),
https://doi.org/10.1103/PhysRevLett.32.1402
[19] J. Raya and J. Hirschinger, Sensitivity enhancement by multiple-contact cross-polarization under magic-angle spinning, J. Magn. Reson. 281, 253–271 (2017),
https://doi.org/10.1016/j.jmr.2017.06.011
[20] A. Naito and C.A. McDowell, Anisotropic behavior of the 13C nuclear spin dynamics in a single crystal of l-alanine, J. Chem. Phys. 84, 4181–4186 (1986),
https://doi.org/10.1063/1.450038
[21] J. Hirschinger and J. Raya, Analytical descriptions of cross-polarisation dynamics: relaxing the secular approximations, Mol. Phys. 113, 3161–3175 (2015),
https://doi.org/10.1080/00268976.2015.1008596
[22] G.A. Alvarez, E.P. Danieli, P.R. Levstein, and H.M. Pastawski, Environmentally induced quantum dynamical phase transition in the spin swapping operation, J. Chem. Phys. 124, 194507(8) (2006),
https://doi.org/10.1063/1.2193518
[23] S. Hediger, Improvement of Heteronuclear Pola­rization Transfer in Solid-State NMR, Ph. D. Thesis (ETH-Zürich, 1997)
[24] C.A. Fyfe, A.R. Lewis, and J.M. Chézeau, A comparison of NMR distance determinations in the solid state by cross polarization, REDOR, and TEDOR techniques, Can. J. Chem. 77, 1984–1993 (1999),
https://doi.org/10.1139/v99-199
[25] L. Dagys, V. Klimavicius, and V. Balevicius, Processing of CP MAS kinetics: Towards NMR crystallography for complex solids, J. Chem. Phys. 145, 114202(9) (2016),
https://doi.org/10.1063/1.4962579
[26] W. Kolodziejski, in: New Techniques in Solid-State NMR, ed. J. Klinowski, Vol. 246 (Springer, Berlin, Heidelberg, 2004) pp. 235–270,
https://doi.org/10.1007/b98652
[27] A. Vyalikh, P. Simon, T. Kollmann, R. Kniep, and U. Scheler, Local environment in biomimetic hydroxyapatite-gelatin nanocomposites as probed by NMR spectroscopy, J. Phys. Chem. C 115, 1513–1519 (2011),
https://doi.org/10.1021/jp1082399
[28] G.P. Holland, R. Sharma, J.O. Agola, S. Amin, V.C. So­lomon, P. Singh, D.A. Buttry, and J.L. Yar­ger, NMR characterization of phosphonic acid capped SnO2 nanoparticles, Chem. Mater. 19, 2519–2526 (2007),
https://doi.org/10.1021/cm062821u
[29] C. Jäger, T. Welzel, W. Meyer-Zaika, and M. Epple, A Solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite, Magn. Reson. Chem. 44, 573–580 (2006),
https://doi.org/10.1002/mrc.1774
[30] L. Dagys, V. Klimkevičius, V. Klimavicius, K. Ai­das, R. Makuška, and V. Balevicius, CP MAS kinetics in soft matter: Spin diffusion, local disorder and thermal equilibration in poly(2-hydroxyethyl methacrylate), Solid State Nuclear Magn. Reson. 105, 101641 (2020),
https://doi.org/10.1016/j.ssnmr.2019.101641
[31] L. Dagys, V. Klimkevičius, V. Klimavicius, S. Bal­čiūnas, J. Banys, and V. Balevicius, Cross-pola­rization with magic-angle spinning kinetics and impedance spectroscopy study of proton mobility, local disorder, and thermal equilibration in hydrogen-bonded poly(methacrylic acid), J. Polym. Sci., 58, 3253–3263 (2020),
https://doi.org/10.1002/pol.20200592