Received 15 January 2021; revised 18 February 2021; accepted 19
February 2021
[1] W. Habraken, P. Habibovic, M. Epple, and M. Bohner, Calcium
phosphates in biomedical applications: materials for the future?
Mater. Today
19, 69–87 (2016),
https://doi.org/10.1016/j.mattod.2015.10.008
[2] R.Z. Le Geros and J.P. Le Geros, in:
Bioceramics and
Their Clinical Applications, ed. T. Kokubo (Woodhead
Publishing, Cambridge, 2008) pp. 367–394
[3] J.C. Elliott, in:
Reviews in Mineralogy &
Geochemistry, Vol. 48, eds. M.L. Kohn, J. Rakovan, and
T.M. Hughes (Mineralogy Society of America, Washington, DC,
2002) pp. 427–453,
https://doi.org/10.2138/rmg.2002.48.11
[4] A. Zanotto, M.L. Saladino, D.C. Martino, and E. Caponetti,
Influence of temperature on calcium hydroxyapatite nanopowders,
Adv. Nanopart.
1, 21–28 (2012),
https://doi.org/10.4236/anp.2012.13004
[5]
Hydroxyapatite and Related Materials, eds. P.W.
Brown and B. Constantz (CRC Press, 1994)
[6] M. Yashima, N. Kubo, K. Omoto, H. Fujimori, K. Fujii, and K.
Ohoyama, Diffusion path and conduction mechanism of protons in
hydroxyapatite, J. Phys. Chem. C
118, 5180–5187 (2014),
https://doi.org/10.1021/jp412771f
[7] L. Dagys, V. Klimavicius, M. Brodrecht, G. Buntkowsky, and
V. Balevicius, Cross-polarization kinetics and fractal nature of
thermal equilibration in spin systems: From low-dimensional
proton conductors to tripeptides, J. Phys. Chem. Solids
152,
109946(7) (2021),
https://doi.org/10.1016/j.jpcs.2021.109946
[8] M. Ben Osman, S. Diallo-Garcia, V. Herledan, D. Brouri, T.
Yoshioka, J. Kubo, Y. Millot, and G. Costentin, Discrimination
of surface and bulk structure of crystalline hydroxyapatite
nanoparticles by NMR, J. Phys. Chem. C
119, 23008–23020
(2015),
https://doi.org/10.1021/acs.jpcc.5b08732
[9] E.O. Stejskal, J. Schaefer, and J.S. Waugh, Magic-angle
spinning and polarization transfer in proton-enhanced NMR, J.
Magn. Reson.
28, 105–112 (1977),
https://doi.org/10.1016/0022-2364(77)90260-8
[10] E.O. Stejskal and J.D. Memory,
High Resolution NMR in
the Solid State: Fundamentals of CP/MAS (Oxford University
Press, New York, 1994)
[11] W. Kolodziejski and J. Klinowski, Kinetics of
cross-polarization in solid-state NMR: a guide for chemists,
Chem. Rev.
102, 613–628 (2002),
https://doi.org/10.1021/cr000060n
[12] J. Raya, A. Bianco, and J. Hirschinger, Kinetics of 1H-13C
multiple-contact cross-polarization as a powerful tool to
determine the structure and dynamics of complex materials:
application to graphene oxide, Phys. Chem. Chem. Phys.
22,
12209–12227 (2020),
https://doi.org/10.1039/D0CP00454E
[13] V. Klimavicius, L. Dagys, V. Chizhik, and V. Balevicius,
CP MAS kinetics study of ionic liquids confined in mesoporous
silica: Convergence of non-classical and classical spin coupling
models, Appl. Magn. Reson.
48, 673–685 (2017),
https://doi.org/10.1007/s00723-017-0891-z
[14] S.K. Mann, M.K. Devgan, W.T. Franks, S. Huband, C.L. Chan,
J. Griffith, D. Pugh, N.J. Brooks, T. Welton, T.N. Pham, et al.,
MAS NMR investigation of molecular order in an ionic liquid
crystal, J. Phys. Chem. B
124, 4975–4988 (2020),
https://doi.org/10.1021/acs.jpcb.0c02328
[15] V. Klimavicius, A. Kareiva, and V. Balevicius, Solid-state
NMR study of hydroxyapatite containing amorphous phosphate phase
and nanostructured hydroxyapatite: Cut-off averaging of CP MAS
kinetics and size profiles of spin clusters, J. Phys. Chem. C
118,
28914–28921 (2014),
https://doi.org/10.1021/jp510229f
[16] V. Klimavicius, L. Dagys, and V. Balevicius, Subnanoscale
order and spin diffusion in complex solids through the
processing of cross-polarization kinetics, J. Phys. Chem. C
120,
3542–3549 (2016),
https://doi.org/10.1021/acs.jpcc.5b11739
[17] L. Dagys, V. Klimavicius, T. Gutmann, G. Buntkowsky, and
V. Balevicius, Quasi-equilibria and polarization transfer
between adjacent and remote spins:
1H–
13C
CP MAS kinetics in glycine, J. Phys. Chem. A
122,
8938–8947 (2018),
https://doi.org/10.1021/acs.jpca.8b09036
[18] L. Müller, A. Kumar, T. Baumann, and R.R. Ernst, Transient
oscillations in NMR cross-polarization experiments in solids,
Phys. Rev. Lett.
32, 1402–1406 (1974),
https://doi.org/10.1103/PhysRevLett.32.1402
[19] J. Raya and J. Hirschinger, Sensitivity enhancement by
multiple-contact cross-polarization under magic-angle spinning,
J. Magn. Reson.
281, 253–271 (2017),
https://doi.org/10.1016/j.jmr.2017.06.011
[20] A. Naito and C.A. McDowell, Anisotropic behavior of the
13C
nuclear spin dynamics in a single crystal of l-alanine, J. Chem.
Phys.
84, 4181–4186 (1986),
https://doi.org/10.1063/1.450038
[21] J. Hirschinger and J. Raya, Analytical descriptions of
cross-polarisation dynamics: relaxing the secular
approximations, Mol. Phys.
113, 3161–3175 (2015),
https://doi.org/10.1080/00268976.2015.1008596
[22] G.A. Alvarez, E.P. Danieli, P.R. Levstein, and H.M.
Pastawski, Environmentally induced quantum dynamical phase
transition in the spin swapping operation, J. Chem. Phys.
124,
194507(8) (2006),
https://doi.org/10.1063/1.2193518
[23] S. Hediger,
Improvement of Heteronuclear Polarization
Transfer in Solid-State NMR, Ph. D. Thesis (ETH-Zürich,
1997)
[24] C.A. Fyfe, A.R. Lewis, and J.M. Chézeau, A comparison of
NMR distance determinations in the solid state by cross
polarization, REDOR, and TEDOR techniques, Can. J. Chem.
77,
1984–1993 (1999),
https://doi.org/10.1139/v99-199
[25] L. Dagys, V. Klimavicius, and V. Balevicius, Processing of
CP MAS kinetics: Towards NMR crystallography for complex solids,
J. Chem. Phys.
145, 114202(9) (2016),
https://doi.org/10.1063/1.4962579
[26] W. Kolodziejski, in:
New Techniques in Solid-State NMR,
ed. J. Klinowski, Vol. 246 (Springer, Berlin, Heidelberg, 2004)
pp. 235–270,
https://doi.org/10.1007/b98652
[27] A. Vyalikh, P. Simon, T. Kollmann, R. Kniep, and U.
Scheler, Local environment in biomimetic hydroxyapatite-gelatin
nanocomposites as probed by NMR spectroscopy, J. Phys. Chem. C
115,
1513–1519 (2011),
https://doi.org/10.1021/jp1082399
[28] G.P. Holland, R. Sharma, J.O. Agola, S. Amin, V.C.
Solomon, P. Singh, D.A. Buttry, and J.L. Yarger, NMR
characterization of phosphonic acid capped SnO
2
nanoparticles, Chem. Mater.
19, 2519–2526 (2007),
https://doi.org/10.1021/cm062821u
[29] C. Jäger, T. Welzel, W. Meyer-Zaika, and M. Epple, A
Solid-state NMR investigation of the structure of
nanocrystalline hydroxyapatite, Magn. Reson. Chem.
44,
573–580 (2006),
https://doi.org/10.1002/mrc.1774
[30] L. Dagys, V. Klimkevičius, V. Klimavicius, K. Aidas, R.
Makuška, and V. Balevicius, CP MAS kinetics in soft matter: Spin
diffusion, local disorder and thermal equilibration in
poly(2-hydroxyethyl methacrylate), Solid State Nuclear Magn.
Reson.
105, 101641 (2020),
https://doi.org/10.1016/j.ssnmr.2019.101641
[31] L. Dagys, V. Klimkevičius, V. Klimavicius, S. Balčiūnas,
J. Banys, and V. Balevicius, Cross-polarization with
magic-angle spinning kinetics and impedance spectroscopy study
of proton mobility, local disorder, and thermal equilibration in
hydrogen-bonded poly(methacrylic acid), J. Polym. Sci.,
58,
3253–3263 (2020),
https://doi.org/10.1002/pol.20200592