[PDF]  https://doi.org/10.3952/physics.v61i1.4405

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 35–41 (2021)
 

MEASUREMENT OF TWO-PHOTON ABSORPTION BY GOLD NANOPARTICLES OF DIFFERENT SIZES PHOTODEPOSITED ONTO THE CORE OF AN OPTICAL FIBRE
Jesús Manuel Cuvas-Limóna, José Gabriel Ortega-Mendozab, Juan Pablo Padilla-Martínezc, and Plácido Zaca-Moránc
  a Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, CP 72050, Puebla, México
b División de Posgrado, Universidad Politécnica de Tulancingo, CP 43629, Hidalgo, México
c Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, CP 72050, Puebla, México
Email: zmoran_placido@icloud.com

Received 8 May 2020; revised 28 November 2020; accepted 1 December 2020

In this work, the study of two-photon absorption by gold nanoparticles of different diameters photodeposited onto the core of a single-mode optical fibre is presented. The photodeposition of nanoparticles with diameters of 10, 20, 50 and 100 nm was achieved using a continuous wave laser at a wavelength of 1550 nm and a power of 50 mW. Nonlinear optical characterization was carried out by using the P-scan technique of a high gain erbium doped fibre amplifier with pulses of 20 ns at a frequency of 10 kHz, that provides a maximum intensity of approximately 60 MW/cm2. The results show that for gold nanoparticles greater than 20 nm photodeposited onto the fibre, in both cases, the nonlinear coefficient as well as the third-order susceptibility increase as the diameter of the nanoparticles increases, describing a typical behaviour of the two-photon absorption. The obtained results can be used for the design of filters and optical limiters in the communications area.
Keywords: nonlinearity, optical fibres, gold nanoparticles, photodeposition
PACS: 42.65.Yj, 42.81.-i, 81.07.-b

FOTODEPOZICIJOS BŪDU ANT OPTINIO ŠVIESOLAIDŽIO ŠERDIES NUSODINTŲ AUKSO DALELIŲ DVIFOTONĖS ABSORBCIJOS MATAVIMAI
Jesús Manuel Cuvas-Limóna, José Gabriel Ortega-Mendozab, Juan Pablo Padilla-Martínezc, Plácido Zaca-Moránc

a Autonominio Pueblos universiteto Elektronikos fakultetas, Puebla, Meksika
b Tulancingo politechnikos universitetas, Hidalgas, Meksika
c Autonominio Pueblos universiteto Mokslo institutas, Puebla, Meksika

 

References / Nuorodos

[1] Y. Golian and D. Dorranian, Effect of thickness on the optical nonlinearity of gold colloidal nanoparticles prepared by laser ablation, Opt. Quant. Electron. 46, 809–819 (2014),
https://doi.org/10.1007/s11082-013-9792-z
[2] C. Li, Y. Qi, X. Hao, X. Peng, and D. Li, Gold nanorods–silicone hybrid material films and their optical limiting property, Appl. Phys. A 121, 11–15 (2015),
https://doi.org/10.1007/s00339-015-9401-z
[3] N. Vijayan, G. Bhagavannarayana, S.K. Halder, S. Verma, J. Philip, R. Philip, and B. Rathi, X-ray topography, photopyroelectric and two-photon absorption studies on solution grown benzimidazole single crystal, App. Phys. A 110, 55–58 (2013),
https://doi.org/10.1007/s00339-012-7448-7
[4] O.M. Bankole and T. Nyokong, Mercatopyridine-substituted indium, zinc, and metal-free phtha­locyanines: nonlinear optical studies in solution and on polymer matrices, J. Coord. Chem. 68, 3727–3740 (2015),
https://doi.org/10.1080/00958972.2015.1077237
[5] K.V. Anand, G. Vinitha, M.K. Chinnu, R. Mohan, and R. Jayavel, Enhanced third-order nonlinear optical properties of high purity ZnS na noparticles, J. Nonlinear Opt. Phys. Mater. 24(02), 1–11 (2015),
https://doi.org/10.1142/S0218863515500162
[6] M.S. Sunitha, K.A. Vishnumurthy, and A.V. Adhi­kari, Synthesis and two-photon absorption property of new π-conjugated donor–acceptor polymers carrying different heteroaromatics, J. Chem. Sci. 125, 29–40 (2013),
https://doi.org/10.1007/s12039-013-0366-1
[7] P.P. Kiran, S.V. Rao, M. Ferrari, B.M. Krishna, H. Sekhar, S. Alee, and D.N. Rao, Enhanced optical limiting performance through nonlinear scattering in nanoparticles of CdS, co-doped Ag-Cu, and BSO, Nonlinear Opt. Quantum Opt. 40, 223–234 (2010),
https://www.oldcitypublishing.com/journals/nloqo-home/nloqo-issue-contents/nloqo-volume-40-number-1-4-2010/nloqo-40-1-4-p-223-234/
[8] V.I. Lukanin, D.S. Chunaev, and A.Y. Karasik, Two-photon absorption of high-power picosecond pulses in PbWO4, ZnWO4, PbMoO4, and CaMoO4 crystals, J. Exp. Theor. Phys. 113(3), 412–421 (2011),
https://doi.org/10.1134/S1063776111070077
[9] Q. Zhang, X. Tian, H. Zhou, J. Wu, and Y. Tian, Lighting the way to see inside two-photon absorption materials: structure–property relationship and biological imaging, Materials 10(3), 1–37 (2017),
https://doi.org/10.3390/ma10030223
[10] R.A. Ganeev, A.I. Ryasnyanskii, M.K. Kodirov, S.R. Kamalov, and T. Usmanov, Optical limiting in fullerenes, colloidal metal solutions, and semiconductors in the field of pico- and nanosecond pulses of an Nd:YAG laser, Opt. Spectrosc. 93(5), 789–796 (2002),
https://doi.org/10.1134/1.1524003
[11] S. Hirata, K. Totani, T. Yamashita, C. Aadachi, and M. Vacha, Large reverse saturable absorption under weak continuous incoherent light, Nat. Mat. 13, 938–946 (2014),
https://doi.org/10.1038/nmat4081
[12] R.A. Silva and M.O. Orlandi, Influence of synthesis route on the radiation sensing properties of ZnO nanostructures, J. Nanomater. 2016, 1–9 (2016),
https://doi.org/10.1155/2016/4054058
[13] L. Irimpan, V.P.N. Nampoori, and P. Radha­krishnan, Spectral and nonlinear optical characteristics of ZnO nanocomposites, Sci. Adv. Mater. 2(2), 117–137 (2010),
https://doi.org/10.1166/sam.2010.1083
[14] S. Kumar, M. Anija, and A.K. Sood, Tuning ultrafast photoresponse of gold nanorods, Plasmonics 8, 1477–1483 (2013),
https://doi.org/10.1007/s11468-013-9561-7
[15] T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, Nonlinear optical response of gold–silver nanoplanets, Radiat. Eff. Defect. S. 167(7), 520–526 (2012),
https://doi.org/10.1080/10420150.2012.680458
[16] H.I. Elim, J. Yang, and J.Y. Lee, Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods, Appl. Phys. Lett. 88(8), 083107 (2006),
https://doi.org/10.1063/1.2177366
[17] Y. Yang and M. Nogami, Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties, Appl. Phys. Lett. 88, 081110 (2006),
https://doi.org/10.1063/1.2172022
[18] J. Zhu, S.W. Bai, J.W. Zhao, and J.J. Li, Tunable optical limiting of gold nanorod thin films, Appl. Phys. A 97, 431–436 (2009),
https://doi.org/10.1007/s00339-009-5232-0
[19] O. Lysenko, M. Bache, and A. Lavrinenko, Third-order susceptibility of gold for ultrathin layers, Opt. Lett. 41(2), 317–320 (2016),
https://doi.org/10.1364/OL.41.000317
[20] S.K. Maurya, A. Rout, R.A. Ganeev, and C. Guo, Effect of size on the saturable absorption and reverse saturable absorption in silver nanoparticle and ultrafast dynamics at 400 nm, J. Nanomater. 2019, 1–12 (2019),
https://doi.org/10.1155/2019/9686913
[21] P. Zaca-Morán, R. Ramos-Garcia, J.G. Ortega-Mendoza, F. Chávez, G.F. Pérez-Sánchez, and C. Felipe, Saturable and two-photon absorption in zinc nanoparticles photodeposited onto the core of an optical fiber, Opt. Express 23(14), 18721–18729 (2015),
https://doi.org/10.1364/OE.23.018721
[22] L.C. Gómez-Pavón, G.J. Lozano-Perera, A. Luis-Ramos, J.M. Muñoz-Pacheco, J.P. Padilla-Mar­tí­nez, and P. Zaca-Morán, Influence on the saturable absorption of the induced losses by photodeposition of zinc nanoparticles in an optical fiber, Opt. Express 26(2), 1556–1563 (2018),
https://doi.org/10.1364/OE.26.001556
[23] P. Zaca-Morán, E. Kuzin, J. Torres-Turiján, J.G. Ortega-Mendoza, F. Chávez, G.F. Pérez-Sánchez, and L.C. Gómez-Pavón, High gain pulsed erbium-doped fiber amplifier for the nonlinear characterization of SWCNTs photodeposited on optical fibers, Opt. Laser Technol. 52, 15–20 (2013),
https://doi.org/10.1016/j.optlastec.2013.04.004
[24] A. Alesenkov, J. Pilipavičius, A. Beganskienė, R. Sirutkaitis, and V. Sirutkaitis, Nonlinear properties of silver nanoparticles explored by a femtosecond Z-scan technique, Lith. J. Phys. 55(2), 100–109 (2015),
https://doi.org/10.3952/physics.v55i2.3100
[25] S. Mohapatra, Y.K. Mishra, A.M. Warrier, R. Phil­ip, S. Sahoo, A.K. Arora, and D.K. Avasthi, Plasmonic, low frequency Raman, and nonlinear optical-limiting studies in copper–silica nanocomposites, Plasmonics 7, 25–31 (2012),
https://doi.org/10.1007/s11468-011-9271-y