[PDF]  https://doi.org/10.3952/physics.v61i1.4406

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 42–52 (2021)
 

DIE HARD HOLOGRAPHIC PHENOMENOLOGY OF CUPRATES
Dmitri V. Khveshchenko
  Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599
Email: khvesh@physics.unc.edu

Received 3 December 2020; accepted 6 January 2021

We discuss the attempts of fitting a number of the approximate power-law dependences observed in the cuprates into one consistent holographic or holographically inspired hydrodynamic framework. Contrary to the expectations, the goal of reproducing as many as possible of the established behaviours of the thermodynamic and transport coefficients appears to be achievable within the picture of a non-degenerate fermion fluid with quadratic dispersion. While not immediately elucidating the essential physics of the cuprates, this observation suggests a possible reason for which the previous attempts towards that goal have so far remained inconclusive.
Keywords: high-Tc cuprates, applied holography, transport, hydrodynamics

TVARI HOLOGRAFIŠKOJI FENOMENOLOGIJA KUPRATAMS
Dmitri V. Khveshchenko

Šiaurės Karolinos universiteto Fizikos ir astronomijos fakultetas, Čepel Hilas, JAV

 

References / Nuorodos

[1] P.W. Anderson, Hall effect in the two-dimensional Luttinger liquid, Phys. Rev. Lett. 67, 2092 (1991),
https://doi.org/10.1103/PhysRevLett.67.2092
[2] P. Coleman, A.J. Schofield, and A.M. Tsvelik, Phenomenological transport equation for the cuprate metals, Phys. Rev. Lett. 76, 1324 (1996),
https://doi.org/10.1103/PhysRevLett.76.1324
[3] D.K. Lee and P.A. Lee, Transport phenomenology for a holon–spinon fluid, J. Phys. Cond. Mat. 9, 10421 (1997),
https://doi.org/10.1088/0953-8984/9/47/010
[4] C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A.E. Ruckenstein, Pheno­menology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63, 1996 (1989),
https://doi.org/10.1103/PhysRevLett.63.1996
[5] J.M. Harris, Y.F. Yan, P. Matl, N.P. Ong, P.W. Ander­son, T. Kimura, and K. Kitazawa, Violation of Kohler’s rule in the normal-state magnetoresistance of YBa2Cu3O7−δ and La2SrxCuO4, Phys. Rev. Lett. 75, 1391 (1995),
https://doi.org/10.1103/PhysRevLett.75.1391
[6] J.W. Loram, K.A. Mirza, J.M. Wade, J.R. Cooper, and W.Y. Liang, THe electronic specific heat of cuprate superconductors, Physica C 235–240, 134 (1994),
https://doi.org/10.1016/0921-4534(94)91331-5
[7] B. Michon, C. Girod, S. Badoux, J. Kačmarčík, Q. Ma, M. Dragomir, H.A. Dabkowska, B.D. Gau­lin, J.-S. Zhou, S. Pyon, et al., Thermodynamic signatures of quantum criticality in cuprate superconductors, Nature 567, 218 (2019),
https://doi.org/10.1038/s41586-019-0932-x
[8] Y. Zhang, N.P. Ong, Z.A. Xu, K. Krishana, R. Gag­non, and L. Taillefer, Determining the Wiede­mann-Franz ratio from the thermal Hall conductivity: Application to Cu and YBa2Cu3O6.95, Phys. Rev. Lett. 84, 2219 (2000),
https://doi.org/10.1103/PhysRevLett.84.2219
[9] Y. Wang, L. Li, and N.P. Ong, Nernst effect in high-Tc superconductors, Phys. Rev. B 73, 024510 (2006),
https://doi.org/10.1103/PhysRevB.73.024510
[10] G. Grissonnanche, A. Legros, S. Badoux, E. Le­fran­çois, V. Zatko, M. Lizaire, F. Laliberté, A. Gour­gout, J.-S. Zhou, S. Pyon, et al., Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors, Nature 571, 376 (2019),
https://doi.org/10.1038/s41586-019-1375-0
[11] J. Chang, N. Doiron-Leyraud, F. Laliberté, R. Daou, D. LeBoeuf, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, C. Proust, et al., Nernst effect in the cuprate superconductor YBa2Cu3Oy: Broken rotational and translational symmetries, Phys. Rev. B 84, 014507 (2011),
https://doi.org/10.1103/PhysRevB.84.014507
[12] N. Doiron-Leyraud, S. Lepault, O. Cyr-Choinière, B. Vignolle, G. Grissonnanche, F. Laliberté, J. Chang, N. Barišić, M.K. Chan, L. Ji, et al., Hall, Seebeck, and Nernst coefficients of underdoped HgBa2CuO4+δ: Fermi-surface reconstruction in an archetypal cuprate superconductor, Phys. Rev. X 3, 021019 (2013),
https://doi.org/10.1103/PhysRevX.3.021019
[13] G. Grissonnanche, F. Laliberté, S. Dufour-Beauséjour, M. Matusiak, S. Badoux, F.F. Tafti, B. Michon, A. Riopel, O. Cyr-Choinière, J.C. Bag­lo, et al., Wiedemann-Franz law in the underdoped cuprate superconductor YBa2Cu3Oy, Phys. Rev. B 93, 064513 (2016),
https://doi.org/10.1103/PhysRevB.93.064513
[14] B. Michon, A. Ataei, P. Bourgeois-Hope, C. Col­lignon, S.Y. Li, S. Badoux, A. Gourgout, F. La­liberté, J.-S. Zhou, N. Doiron-Leyraud, and L. Taillefer, Wiedemann-Franz law and abrupt change in conductivity across the pseudogap critical point of a cuprate superconductor, Phys. Rev. X 8, 041010 (2018),
https://doi.org/10.1103/PhysRevX.8.041010
[15] M. Matusiak and T. Wolf, Lorenz number in the optimally doped and underdoped superconductor EuBa2Cu3Oy, Phys. Rev. B 72, 054508(R) (2005),
https://doi.org/10.1103/PhysRevB.72.054508
[16] M. Matusiak, J. Hori, and T. Suzuki, The Hall–Lorenz number in the La1.855Sr0.145CuO4 single crystal, Solid State Commun. 139, 376 (2006),
https://doi.org/10.1016/j.ssc.2006.06.024
[17] M. Matusiak, K. Rogacki, and B.W. Veal, Enhancement of the Hall-Lorenz number in optimally doped YBa2Cu3O7–d, Euro Phys. Lett. 88, 47005 (2009),
https://doi.org/10.1209/0295-5075/88/47005
[18] S.I. Mirzaei, D. Stricker, J.N. Hancock, C. Berthod, A. Georges, E. van Heumen, M.K. Chan, X. Zhao, Y. Li, M. Greven, N. Barišić, and D. van der Marel, Spectroscopic evidence for Fermi liquid-like energy and temperature dependence of the relaxation rate in the pseudogap phase of the cuprates, PNAS 110, 5774 (2013),
https://doi.org/10.1073/pnas.1218846110
[19] Y. Li, W. Tabis, G. Yu, N. Barišić, and M. Greven, Hidden Fermi-liquid charge transport in the antiferromagnetic phase of the electron-doped cuprate superconductors, Phys. Rev. Lett. 117, 197001 (2016),
https://doi.org/10.1103/PhysRevLett.117.197001
[20] N. Barišić, M.K. Chan, Y. Li, G. Yu, X. Zhao, M. Dres­sel, A. Smontara, and M. Greven, Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors, PNAS 110(30), 12235 (2013),
https://doi.org/10.1073/pnas.1301989110
[21] N. Barišić, M.K. Chan, M.J. Veit, C.J. Dorow, Y. Ge, Y. Li, W. Tabis, Y. Tang, G. Yu, X. Zhao, and M. Greven, Evidence for a universal Fermi-liquid scattering rate throughout the phase diagram of the copper-oxide superconductors, New J. Phys. 21, 113007 (2019),
https://doi.org/10.1088/1367-2630/ab4d0f
[22] S.-D. Chen, M. Hashimoto, Y. He, D. Song, K.-J. Xu, J.-F. He, T.P. Devereaux, H. Eisaki, D.- H. Lu, J. Zaanen, and Z.-X. Shen, Incoherent strange metal sharply bounded by a critical doping in Bi2212, Science 366, 1099 (2019),
https://doi.org/10.1126/science.aaw8850
[23] J. Zaanen, Planckian dissipation, minimal viscosity and the transport in cuprate strange metals, SciPost Phys. 6, 061 (2019),
https://doi.org/10.21468/SciPostPhys.6.5.061
[24] M.V. Sadovskii, Planckian relaxation delusion in metals, Usp. Fiz. Nauk 64(2) (2021) [accepted],
https://doi.org/10.3367/UFNr.2020.08.038821
https://doi.org/10.3367/UFNe.2020.08.038821
[25] D. Pelc, M.J. Veit, C.J. Dorow, Y. Ge, N. Barišić, and M. Greven, Resistivity phase diagram of cuprates revisited, Phys. Rev. B 102, 075114 (2020),
https://doi.org/10.1103/PhysRevB.102.075114
[26] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26, 224002 (2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[27] C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[28] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010, 723105 (2010),
https://doi.org/10.1155/2010/723105
[29] S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics? Ann. Rev. Cond. Matt. Phys. 3, 9 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[30] J. Zaanen, Y. Liu, Y.-W. Sun, and K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[31] M. Ammon and J. Erdmenger, Gauge/Gravity Duality (Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[32] S.A. Hartnoll, A. Lucas, and S. Sachdev, Holographic Quantum Matter (MIT Press, 2018),
https://mitpress.mit.edu/books/holographic-quantum-matter
[33] R.A. Davison, K. Schalm, and J. Zaanen, Holo­graphic duality and the resistivity of strange metals, Phys. Rev. B 89, 245116 (2014),
https://doi.org/10.1103/PhysRevB.89.245116
[34] S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B 91, 155126 (2015),
https://doi.org/10.1103/PhysRevB.91.155126
[35] J.S. Kim, B.H. Kim, D.C. Kim, and Y.W. Park, Thermoelectric power of La2–xSrxCuO4 at high temperatures, Ann. Phys. 13, 43 (2004),
https://doi.org/10.1002/andp.200310041
[36] D.V. Khveshchenko, Viable phenomenologies of the normal state of cuprates, Europhys. Lett. 111, 17003 (2015),
https://doi.org/10.1209/0295-5075/111/17003
[37] G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, and J. Kulda, Nearly singular magnetic fluctuations in the normal state of a high-Tc cuprate superconductor, Science 278, 1432 (1997),
https://doi.org/10.1126/science.278.5342.1432
[38] R.E. Walstedt, T.E. Mason, G. Aeppli, S.M. Hayden, and H.A. Mook, Pseudogap term in the magnetic response of cuprate superconductors. Phys. Rev. B 84, 024530 (2011),
https://doi.org/10.1103/PhysRevB.84.024530
[39] X.-H. Ge, Y. Tian, S.-Y. Wu, and S.-F. Wu, Linear and quadratic in temperature resistivity from holography, JHEP 2016(11), 128 (2016),
https://doi.org/10.1007/JHEP11(2016)128
[40] X.-H. Ge, Y. Tian, S.-Y. Wu, and S.-F. Wu, Hyperscaling violating black hole solutions and magneto-thermoelectric DC conductivities in holography, Phys. Rev. D 96, 046015 (2017),
https://doi.org/10.1103/PhysRevD.96.046015
[41] S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76, 144502 (2007),
https://doi.org/10.1103/PhysRevB.76.144502
[42] B.N. Narozhny, I.V. Gornyi, M. Titov, M. Schütt, and A.D. Mirlin, Hydrodynamics in graphene: Linear-response transport, Phys. Rev. B 91, 035414 (2015),
https://doi.org/10.1103/PhysRevB.91.035414
[43] B.N. Narozhny, I.V. Gornyi, A.D. Mirlin, and J. Schma­lian, Hydrodynamic approach to electronic transport in graphene, Ann. Phys. 529, 1700043 (2017),
https://doi.org/10.1002/andp.201700043
[44] B.N. Narozhny and M. Schütt, Magneto­hydro­dynamics in graphene: Shear and Hall viscosities, Phys. Rev. B 100, 5125 (2019),
https://doi.org/10.1103/PhysRevB.100.035125
[45] B.N. Narozhny, I.V. Gornyi, and M. Titov, Hydro­dynamic collective modes in graphene, arXiv:2011.03806,
https://arxiv.org/abs/2011.03806
[46] D.V. Khveshchenko, Taking a critical look at holographic critical matter, Lith. J. Phys. 55, 208 (2015),
https://doi.org/10.3952/physics.v55i3.3150
[47] D.V. Khveshchenko, Demystifying the holographic mystique: A critical review, Lith. J. Phys. 56, 125 (2016),
https://doi.org/10.3952/physics.v56i3.3363
[48] B. Goutéraux, Universal scaling properties of extremal cohesive holographic phases, JHEP 1401, 080 (2014),
https://doi.org/10.1007/JHEP01(2014)080
[49] B. Goutéraux, Charge transport in holography with momentum dissipation, JHEP 1404, 181 (2014),
https://doi.org/10.1007/JHEP04(2014)181
[50] A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP 2014(06), 007 (2014),
https://doi.org/10.1007/JHEP06(2014)007
[51] A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 2014(11), 081 (2014),
https://doi.org/10.1007/JHEP11(2014)081
[52] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D. Musso, Thermoelectric transport in gauge/gravity models with momentum dissipation, JHEP 2014(09), 160 (2014),
https://doi.org/10.1007/JHEP09(2014)160
[53] A. Amoretti, A. Braggio, N. Magnoli, and D. Mus­so, Bounds on charge and heat diffusivities in momentum dissipating holography, JHEP 2015(07), 102 (2015),
https://doi.org/10.1007/JHEP07(2015)102
[54] A. Amoretti, M. Baggioli, N. Magnoli, and D. Musso, Chasing the cuprates with dilatonic dyons, JHEP 2016(06), 113 (2016),
https://doi.org/10.1007/JHEP06(2016)113
[55] A. Amoretti, A. Braggio, N. Maggiore, N. Mag­noli, and D. Musso, Analytic dc thermoelectric conductivities in holography with massive gravitons, Phys. Rev. D 91, 025002 (2015),
https://doi.org/10.1103/PhysRevD.91.025002
[56] R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP 2015(09), 090 (2015),
https://doi.org/10.1007/JHEP09(2015)090
[57] M. Blake, Momentum relaxation from the fluid/gravity correspondence, JHEP 2015(09), 010 (2015),
https://doi.org/10.1007/JHEP09(2015)010
[58] S.A. Hartnoll and C.P. Herzog, Ohm’s law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76, 106012 (2007),
https://doi.org/10.1103/PhysRevD.76.106012
[59] A. Amoretti, D.K. Brattan, N. Magnoli, and M. Scanavino, Magneto-thermal transport implies an incoherent Hall conductivity, JHEP 2020(08), 97 (2020),
https://doi.org/10.1007/JHEP08(2020)097
[60] M. Blake and A. Donos, Quantum critical transport and the Hall angle in holographic models, Phys. Rev. Lett. 114, 021601 (2015),
https://doi.org/10.1103/PhysRevLett.114.021601
[61] A. Amoretti and D. Musso, Magneto-transport from momentum dissipating holography, JHEP 2015(09), 094 (2015),
https://doi.org/10.1007/JHEP09(2015)094
[62] A. Amoretti, A. Braggio, N. Maggiore, and N. Magnoli, Thermo-electric transport in gauge/gravity models, Adv. Phys. X 2, 409 (2017),
https://doi.org/10.1080/23746149.2017.1300509
[63] S. Cremonini, H.-S. Liu, H. Lü, and C.N. Pope, DC conductivities from non-relativistic scaling geometries with momentum dissipation, JHEP 2017(04), 009 (2017),
https://doi.org/10.1007/JHEP04(2017)009
[64] S. Cremonini, A. Hoover, L. Li, and S. Waskie, Anomalous scalings of cuprate strange metals from nonlinear electrodynamics, Phys. Rev. D 99, 061901 (2019),
https://doi.org/10.1103/PhysRevD.99.061901
[65] S. Cremonini, M. Cvetič, and I. Papadimitriou, Thermoelectric DC conductivities in hyper­scaling violating Lifshitz theories, JHEP 2018(04), 099 (2018),
https://doi.org/10.1007/JHEP04(2018)099
[66] J. Lux and L. Fritz, Interaction-dominated transport and Coulomb drag in bilayer graphene, Phys. Rev. B 87, 075423 (2013),
https://doi.org/10.1103/PhysRevB.87.075423
[67] G. Wagner, D.X. Nguyen, and S.H. Simon, Transport in bilayer graphene near charge neutrality: Which scattering mechanisms are important? Phys. Rev. Lett. 124, 026601 (2020),
https://doi.org/10.1103/PhysRevLett.124.026601
[68] G. Wagner, D.X. Nguyen, and S.H. Simon, Transport properties of multilayer graphene, Phys. Rev. B 101, 245438 (2020),
https://doi.org/10.1103/PhysRevB.101.245438
[69] G. Wagner, D.X. Nguyen, and S.H. Simon, Quantum Boltzmann equation for bilayer graphene, Phys. Rev. B 101, 035117 (2020),
https://doi.org/10.1103/PhysRevB.101.035117
[70] D.Y.H. Ho, I. Yudhistira, N. Chakraborty, and S. Adam, Theoretical determination of hydrodynamic window in monolayer and bilayer graphene from scattering rates, Phys. Rev. B 97, 121404(R) (2018),
https://doi.org/10.1103/PhysRevB.97.121404
[71] C. Tan, D.Y.H. Ho, L. Wang, J.I.A. Li, I. Yudhistira, D.A. Rhodes, T. Taniguchi, K. Watanabe, K. She­pard, P.L. McEuen, et al., Realization of a universal hydrodynamic semiconductor in ultra-clean dual-gated bilayer graphene, arXiv:1908.10921,
https://arxiv.org/abs/1908.10921
[72] A. Amoretti, M. Meinero, D.K. Brattan, F. Cag­lieris, E. Giannini, M. Affronte, C. Hess, B. Buech­ ner, N. Magnoli, and M. Putti, Hydrodynamical description for magneto-transport in the strange metal phase of Bi-2201, Phys. Rev. Res. 2, 023387 (2020),
https://doi.org/10.1103/PhysRevResearch.2.023387
[73] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll, and A. Karlsson, Bad metals from fluctuating density waves, SciPost Phys. 3, 025 (2017),
https://doi.org/10.21468/SciPostPhys.3.3.025
[74] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll, and A. Karlsson, Bad metals from fluctuating density waves, Phys. Rev. B 96, 195128 (2017),
https://doi.org/10.1103/PhysRevB.96.195128
[75] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll, and A. Karlsson, Theory of collective magnetophonon resonance and melting of a field-induced Wigner solid, Phys. Rev. B 100, 085140 (2019),
https://doi.org/10.1103/PhysRevB.100.085140
[76] A.S. Alexandrov, V.V. Kabanov, and N.F. Mott, Coherent ab and c transport theory of high-Tc cuprates, Phys. Rev. Lett. 77, 4796 (1996),
https://doi.org/10.1103/PhysRevLett.77.4796
[77] N. Luo and G.H. Miley, Kohler’s rule and relaxation rates in high-Tc superconductors, Physica C 371, 259 (2002),
https://doi.org/10.1016/S0921-4534(01)01101-7
[78] D.L. Maslov, V.I. Yudson, and A.V. Chubukov, Resistivity of a non-Galilean-invariant Fermi liquid near Pomeranchuk quantum criticality, Phys. Rev. Lett. 106, 106403 (2011),
https://doi.org/10.1103/PhysRevLett.106.106403
[79] H.K. Pal, V.I. Yudson, and D.L. Maslov, Resistivity of non-Galilean-invariant Fermi- and non-Fermi liquids, Lith. J. Phys. 52, 142 (2012),
https://doi.org/10.3952/physics.v52i2.2358
[80] M. Swift and C.G. Van de Walle, Conditions for T2 resistivity from electron-electron scattering, Eur. Phys. J. B 90, 151 (2017),
https://doi.org/10.1140/epjb/e2017-80367-1
[81] A. Alexandradinata, N.P. Armitage, A. Baydin, W. Bi, Y. Cao, H.J. Changlani, E. Chertkov, E.H. da Silva Neto, L. Delacretaz, I. El Baggari, et al., The future of the correlated electron problem, arXiv:2010.00584,
https://arxiv.org/abs/2010.00584