Dmitri V. Khveshchenko
[1] P.W. Anderson, Hall effect in the two-dimensional Luttinger
liquid, Phys. Rev. Lett.
67, 2092 (1991),
https://doi.org/10.1103/PhysRevLett.67.2092
[2] P. Coleman, A.J. Schofield, and A.M. Tsvelik,
Phenomenological transport equation for the cuprate metals,
Phys. Rev. Lett.
76, 1324 (1996),
https://doi.org/10.1103/PhysRevLett.76.1324
[3] D.K. Lee and P.A. Lee, Transport phenomenology for a
holon–spinon fluid, J. Phys. Cond. Mat.
9, 10421 (1997),
https://doi.org/10.1088/0953-8984/9/47/010
[4] C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams,
and A.E. Ruckenstein, Phenomenology of the normal state of Cu-O
high-temperature superconductors, Phys. Rev. Lett.
63,
1996 (1989),
https://doi.org/10.1103/PhysRevLett.63.1996
[5] J.M. Harris, Y.F. Yan, P. Matl, N.P. Ong, P.W. Anderson, T.
Kimura, and K. Kitazawa, Violation of Kohler’s rule in the
normal-state magnetoresistance of YBa
2Cu
3O
7−δ
and La
2Sr
xCuO
4, Phys.
Rev. Lett.
75, 1391 (1995),
https://doi.org/10.1103/PhysRevLett.75.1391
[6] J.W. Loram, K.A. Mirza, J.M. Wade, J.R. Cooper, and W.Y.
Liang, THe electronic specific heat of cuprate superconductors,
Physica C
235–240, 134 (1994),
https://doi.org/10.1016/0921-4534(94)91331-5
[7] B. Michon, C. Girod, S. Badoux, J. Kačmarčík, Q. Ma, M.
Dragomir, H.A. Dabkowska, B.D. Gaulin, J.-S. Zhou, S. Pyon, et
al., Thermodynamic signatures of quantum criticality in cuprate
superconductors, Nature
567, 218 (2019),
https://doi.org/10.1038/s41586-019-0932-x
[8] Y. Zhang, N.P. Ong, Z.A. Xu, K. Krishana, R. Gagnon, and L.
Taillefer, Determining the Wiedemann-Franz ratio from the
thermal Hall conductivity: Application to Cu and YBa
2Cu
3O
6.95,
Phys. Rev. Lett.
84, 2219 (2000),
https://doi.org/10.1103/PhysRevLett.84.2219
[9] Y. Wang, L. Li, and N.P. Ong, Nernst effect in high-
Tc
superconductors, Phys. Rev. B
73, 024510 (2006),
https://doi.org/10.1103/PhysRevB.73.024510
[10] G. Grissonnanche, A. Legros, S. Badoux, E. Lefrançois, V.
Zatko, M. Lizaire, F. Laliberté, A. Gourgout, J.-S. Zhou, S.
Pyon, et al., Giant thermal Hall conductivity in the pseudogap
phase of cuprate superconductors, Nature
571, 376
(2019),
https://doi.org/10.1038/s41586-019-1375-0
[11] J. Chang, N. Doiron-Leyraud, F. Laliberté, R. Daou, D.
LeBoeuf, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, C.
Proust, et al., Nernst effect in the cuprate superconductor YBa
2Cu
3O
y:
Broken rotational and translational symmetries, Phys. Rev. B
84,
014507 (2011),
https://doi.org/10.1103/PhysRevB.84.014507
[12] N. Doiron-Leyraud, S. Lepault, O. Cyr-Choinière, B.
Vignolle, G. Grissonnanche, F. Laliberté, J. Chang, N. Barišić,
M.K. Chan, L. Ji, et al., Hall, Seebeck, and Nernst coefficients
of underdoped HgBa
2CuO
4+δ:
Fermi-surface reconstruction in an archetypal cuprate
superconductor, Phys. Rev. X
3, 021019 (2013),
https://doi.org/10.1103/PhysRevX.3.021019
[13] G. Grissonnanche, F. Laliberté, S. Dufour-Beauséjour, M.
Matusiak, S. Badoux, F.F. Tafti, B. Michon, A. Riopel, O.
Cyr-Choinière, J.C. Baglo, et al., Wiedemann-Franz law in the
underdoped cuprate superconductor YBa
2Cu
3O
y,
Phys. Rev. B
93, 064513 (2016),
https://doi.org/10.1103/PhysRevB.93.064513
[14] B. Michon, A. Ataei, P. Bourgeois-Hope, C. Collignon, S.Y.
Li, S. Badoux, A. Gourgout, F. Laliberté, J.-S. Zhou, N.
Doiron-Leyraud, and L. Taillefer, Wiedemann-Franz law and abrupt
change in conductivity across the pseudogap critical point of a
cuprate superconductor, Phys. Rev. X
8, 041010 (2018),
https://doi.org/10.1103/PhysRevX.8.041010
[15] M. Matusiak and T. Wolf, Lorenz number in the optimally
doped and underdoped superconductor EuBa
2Cu
3O
y,
Phys. Rev. B
72, 054508(R) (2005),
https://doi.org/10.1103/PhysRevB.72.054508
[16] M. Matusiak, J. Hori, and T. Suzuki, The Hall–Lorenz number
in the La
1.855Sr
0.145CuO
4
single crystal, Solid State Commun.
139, 376 (2006),
https://doi.org/10.1016/j.ssc.2006.06.024
[17] M. Matusiak, K. Rogacki, and B.W. Veal, Enhancement of the
Hall-Lorenz number in optimally doped YBa
2Cu
3O
7–d,
Euro Phys. Lett.
88, 47005 (2009),
https://doi.org/10.1209/0295-5075/88/47005
[18] S.I. Mirzaei, D. Stricker, J.N. Hancock, C. Berthod, A.
Georges, E. van Heumen, M.K. Chan, X. Zhao, Y. Li, M. Greven, N.
Barišić, and D. van der Marel, Spectroscopic evidence for Fermi
liquid-like energy and temperature dependence of the relaxation
rate in the pseudogap phase of the cuprates, PNAS
110,
5774 (2013),
https://doi.org/10.1073/pnas.1218846110
[19] Y. Li, W. Tabis, G. Yu, N. Barišić, and M. Greven, Hidden
Fermi-liquid charge transport in the antiferromagnetic phase of
the electron-doped cuprate superconductors, Phys. Rev. Lett.
117,
197001 (2016),
https://doi.org/10.1103/PhysRevLett.117.197001
[20] N. Barišić, M.K. Chan, Y. Li, G. Yu, X. Zhao, M. Dressel,
A. Smontara, and M. Greven, Universal sheet resistance and
revised phase diagram of the cuprate high-temperature
superconductors, PNAS
110(30), 12235 (2013),
https://doi.org/10.1073/pnas.1301989110
[21] N. Barišić, M.K. Chan, M.J. Veit, C.J. Dorow, Y. Ge, Y. Li,
W. Tabis, Y. Tang, G. Yu, X. Zhao, and M. Greven, Evidence for a
universal Fermi-liquid scattering rate throughout the phase
diagram of the copper-oxide superconductors, New J. Phys.
21,
113007 (2019),
https://doi.org/10.1088/1367-2630/ab4d0f
[22] S.-D. Chen, M. Hashimoto, Y. He, D. Song, K.-J. Xu, J.-F.
He, T.P. Devereaux, H. Eisaki, D.- H. Lu, J. Zaanen, and Z.-X.
Shen, Incoherent strange metal sharply bounded by a critical
doping in Bi2212, Science
366, 1099 (2019),
https://doi.org/10.1126/science.aaw8850
[23] J. Zaanen, Planckian dissipation, minimal viscosity and the
transport in cuprate strange metals, SciPost Phys.
6,
061 (2019),
https://doi.org/10.21468/SciPostPhys.6.5.061
[24] M.V. Sadovskii, Planckian relaxation delusion in metals,
Usp. Fiz. Nauk
64(2) (2021) [accepted],
https://doi.org/10.3367/UFNr.2020.08.038821
https://doi.org/10.3367/UFNe.2020.08.038821
[25] D. Pelc, M.J. Veit, C.J. Dorow, Y. Ge, N. Barišić, and M.
Greven, Resistivity phase diagram of cuprates revisited, Phys.
Rev. B
102, 075114 (2020),
https://doi.org/10.1103/PhysRevB.102.075114
[26] S.A. Hartnoll, Lectures on holographic methods for
condensed matter physics, Class. Quant. Grav.
26, 224002
(2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[27] C.P. Herzog, Lectures on holographic superfluidity and
superconductivity, J. Phys. A
42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[28] J. McGreevy, Holographic duality with a view toward
many-body physics, Adv. High Energy Phys.
2010, 723105
(2010),
https://doi.org/10.1155/2010/723105
[29] S. Sachdev, What can gauge-gravity duality teach us about
condensed matter physics? Ann. Rev. Cond. Matt. Phys.
3,
9 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[30] J. Zaanen, Y. Liu, Y.-W. Sun, and K. Schalm,
Holographic
Duality in Condensed Matter Physics (Cambridge University
Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[31] M. Ammon and J. Erdmenger,
Gauge/Gravity Duality
(Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[32] S.A. Hartnoll, A. Lucas, and S. Sachdev,
Holographic
Quantum Matter (MIT Press, 2018),
https://mitpress.mit.edu/books/holographic-quantum-matter
[33] R.A. Davison, K. Schalm, and J. Zaanen, Holographic
duality and the resistivity of strange metals, Phys. Rev. B
89,
245116 (2014),
https://doi.org/10.1103/PhysRevB.89.245116
[34] S.A. Hartnoll and A. Karch, Scaling theory of the cuprate
strange metals, Phys. Rev. B
91, 155126 (2015),
https://doi.org/10.1103/PhysRevB.91.155126
[35] J.S. Kim, B.H. Kim, D.C. Kim, and Y.W. Park, Thermoelectric
power of La
2–xSr
xCuO
4
at high temperatures, Ann. Phys.
13, 43 (2004),
https://doi.org/10.1002/andp.200310041
[36] D.V. Khveshchenko, Viable phenomenologies of the normal
state of cuprates, Europhys. Lett.
111, 17003 (2015),
https://doi.org/10.1209/0295-5075/111/17003
[37] G. Aeppli, T.E. Mason, S.M. Hayden, H.A. Mook, and J.
Kulda, Nearly singular magnetic fluctuations in the normal state
of a high-
Tc cuprate superconductor, Science
278,
1432 (1997),
https://doi.org/10.1126/science.278.5342.1432
[38] R.E. Walstedt, T.E. Mason, G. Aeppli, S.M. Hayden, and H.A.
Mook, Pseudogap term in the magnetic response of cuprate
superconductors. Phys. Rev. B
84, 024530 (2011),
https://doi.org/10.1103/PhysRevB.84.024530
[39] X.-H. Ge, Y. Tian, S.-Y. Wu, and S.-F. Wu, Linear and
quadratic in temperature resistivity from holography, JHEP
2016(11),
128 (2016),
https://doi.org/10.1007/JHEP11(2016)128
[40] X.-H. Ge, Y. Tian, S.-Y. Wu, and S.-F. Wu, Hyperscaling
violating black hole solutions and magneto-thermoelectric DC
conductivities in holography, Phys. Rev. D
96, 046015
(2017),
https://doi.org/10.1103/PhysRevD.96.046015
[41] S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev,
Theory of the Nernst effect near quantum phase transitions in
condensed matter and in dyonic black holes, Phys. Rev. B
76,
144502 (2007),
https://doi.org/10.1103/PhysRevB.76.144502
[42] B.N. Narozhny, I.V. Gornyi, M. Titov, M. Schütt, and A.D.
Mirlin, Hydrodynamics in graphene: Linear-response transport,
Phys. Rev. B
91, 035414 (2015),
https://doi.org/10.1103/PhysRevB.91.035414
[43] B.N. Narozhny, I.V. Gornyi, A.D. Mirlin, and J. Schmalian,
Hydrodynamic approach to electronic transport in graphene, Ann.
Phys.
529, 1700043 (2017),
https://doi.org/10.1002/andp.201700043
[44] B.N. Narozhny and M. Schütt, Magnetohydrodynamics in
graphene: Shear and Hall viscosities, Phys. Rev. B
100,
5125 (2019),
https://doi.org/10.1103/PhysRevB.100.035125
[45] B.N. Narozhny, I.V. Gornyi, and M. Titov, Hydrodynamic
collective modes in graphene, arXiv:2011.03806,
https://arxiv.org/abs/2011.03806
[46] D.V. Khveshchenko, Taking a critical look at holographic
critical matter, Lith. J. Phys.
55, 208 (2015),
https://doi.org/10.3952/physics.v55i3.3150
[47] D.V. Khveshchenko, Demystifying the holographic mystique: A
critical review, Lith. J. Phys.
56, 125 (2016),
https://doi.org/10.3952/physics.v56i3.3363
[48] B. Goutéraux, Universal scaling properties of extremal
cohesive holographic phases, JHEP
1401, 080 (2014),
https://doi.org/10.1007/JHEP01(2014)080
[49] B. Goutéraux, Charge transport in holography with momentum
dissipation, JHEP
1404, 181 (2014),
https://doi.org/10.1007/JHEP04(2014)181
[50] A. Donos and J.P. Gauntlett, Novel metals and insulators
from holography, JHEP
2014(06), 007 (2014),
https://doi.org/10.1007/JHEP06(2014)007
[51] A. Donos and J.P. Gauntlett, Thermoelectric DC
conductivities from black hole horizons, JHEP
2014(11),
081 (2014),
https://doi.org/10.1007/JHEP11(2014)081
[52] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D.
Musso, Thermoelectric transport in gauge/gravity models with
momentum dissipation, JHEP
2014(09), 160 (2014),
https://doi.org/10.1007/JHEP09(2014)160
[53] A. Amoretti, A. Braggio, N. Magnoli, and D. Musso, Bounds
on charge and heat diffusivities in momentum dissipating
holography, JHEP
2015(07), 102 (2015),
https://doi.org/10.1007/JHEP07(2015)102
[54] A. Amoretti, M. Baggioli, N. Magnoli, and D. Musso, Chasing
the cuprates with dilatonic dyons, JHEP
2016(06), 113
(2016),
https://doi.org/10.1007/JHEP06(2016)113
[55] A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D.
Musso, Analytic dc thermoelectric conductivities in holography
with massive gravitons, Phys. Rev. D
91, 025002 (2015),
https://doi.org/10.1103/PhysRevD.91.025002
[56] R.A. Davison and B. Goutéraux, Dissecting holographic
conductivities, JHEP
2015(09), 090 (2015),
https://doi.org/10.1007/JHEP09(2015)090
[57] M. Blake, Momentum relaxation from the fluid/gravity
correspondence, JHEP
2015(09), 010 (2015),
https://doi.org/10.1007/JHEP09(2015)010
[58] S.A. Hartnoll and C.P. Herzog, Ohm’s law at strong
coupling: S duality and the cyclotron resonance, Phys. Rev. D
76,
106012 (2007),
https://doi.org/10.1103/PhysRevD.76.106012
[59] A. Amoretti, D.K. Brattan, N. Magnoli, and M. Scanavino,
Magneto-thermal transport implies an incoherent Hall
conductivity, JHEP
2020(08), 97 (2020),
https://doi.org/10.1007/JHEP08(2020)097
[60] M. Blake and A. Donos, Quantum critical transport and the
Hall angle in holographic models, Phys. Rev. Lett.
114,
021601 (2015),
https://doi.org/10.1103/PhysRevLett.114.021601
[61] A. Amoretti and D. Musso, Magneto-transport from momentum
dissipating holography, JHEP
2015(09), 094 (2015),
https://doi.org/10.1007/JHEP09(2015)094
[62] A. Amoretti, A. Braggio, N. Maggiore, and N. Magnoli,
Thermo-electric transport in gauge/gravity models, Adv. Phys. X
2, 409 (2017),
https://doi.org/10.1080/23746149.2017.1300509
[63] S. Cremonini, H.-S. Liu, H. Lü, and C.N. Pope, DC
conductivities from non-relativistic scaling geometries with
momentum dissipation, JHEP
2017(04), 009 (2017),
https://doi.org/10.1007/JHEP04(2017)009
[64] S. Cremonini, A. Hoover, L. Li, and S. Waskie, Anomalous
scalings of cuprate strange metals from nonlinear
electrodynamics, Phys. Rev. D
99, 061901 (2019),
https://doi.org/10.1103/PhysRevD.99.061901
[65] S. Cremonini, M. Cvetič, and I. Papadimitriou,
Thermoelectric DC conductivities in hyperscaling violating
Lifshitz theories, JHEP
2018(04), 099 (2018),
https://doi.org/10.1007/JHEP04(2018)099
[66] J. Lux and L. Fritz, Interaction-dominated transport and
Coulomb drag in bilayer graphene, Phys. Rev. B
87,
075423 (2013),
https://doi.org/10.1103/PhysRevB.87.075423
[67] G. Wagner, D.X. Nguyen, and S.H. Simon, Transport in
bilayer graphene near charge neutrality: Which scattering
mechanisms are important? Phys. Rev. Lett.
124, 026601
(2020),
https://doi.org/10.1103/PhysRevLett.124.026601
[68] G. Wagner, D.X. Nguyen, and S.H. Simon, Transport
properties of multilayer graphene, Phys. Rev. B
101,
245438 (2020),
https://doi.org/10.1103/PhysRevB.101.245438
[69] G. Wagner, D.X. Nguyen, and S.H. Simon, Quantum Boltzmann
equation for bilayer graphene, Phys. Rev. B
101, 035117
(2020),
https://doi.org/10.1103/PhysRevB.101.035117
[70] D.Y.H. Ho, I. Yudhistira, N. Chakraborty, and S. Adam,
Theoretical determination of hydrodynamic window in monolayer
and bilayer graphene from scattering rates, Phys. Rev. B
97,
121404(R) (2018),
https://doi.org/10.1103/PhysRevB.97.121404
[71] C. Tan, D.Y.H. Ho, L. Wang, J.I.A. Li, I. Yudhistira, D.A.
Rhodes, T. Taniguchi, K. Watanabe, K. Shepard, P.L. McEuen, et
al., Realization of a universal hydrodynamic semiconductor in
ultra-clean dual-gated bilayer graphene, arXiv:1908.10921,
https://arxiv.org/abs/1908.10921
[72] A. Amoretti, M. Meinero, D.K. Brattan, F. Caglieris, E.
Giannini, M. Affronte, C. Hess, B. Buech ner, N. Magnoli, and
M. Putti, Hydrodynamical description for magneto-transport in
the strange metal phase of Bi-2201, Phys. Rev. Res.
2,
023387 (2020),
https://doi.org/10.1103/PhysRevResearch.2.023387
[73] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll, and A.
Karlsson, Bad metals from fluctuating density waves, SciPost
Phys.
3, 025 (2017),
https://doi.org/10.21468/SciPostPhys.3.3.025
[74] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll, and A.
Karlsson, Bad metals from fluctuating density waves, Phys. Rev.
B
96, 195128 (2017),
https://doi.org/10.1103/PhysRevB.96.195128
[75] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll, and A.
Karlsson, Theory of collective magnetophonon resonance and
melting of a field-induced Wigner solid, Phys. Rev. B
100,
085140 (2019),
https://doi.org/10.1103/PhysRevB.100.085140
[76] A.S. Alexandrov, V.V. Kabanov, and N.F. Mott, Coherent
ab
and
c transport theory of high-
Tc
cuprates, Phys. Rev. Lett.
77, 4796 (1996),
https://doi.org/10.1103/PhysRevLett.77.4796
[77] N. Luo and G.H. Miley, Kohler’s rule and relaxation rates
in high-
Tc superconductors, Physica C
371,
259 (2002),
https://doi.org/10.1016/S0921-4534(01)01101-7
[78] D.L. Maslov, V.I. Yudson, and A.V. Chubukov, Resistivity of
a non-Galilean-invariant Fermi liquid near Pomeranchuk quantum
criticality, Phys. Rev. Lett.
106, 106403 (2011),
https://doi.org/10.1103/PhysRevLett.106.106403
[79] H.K. Pal, V.I. Yudson, and D.L. Maslov, Resistivity of
non-Galilean-invariant Fermi- and non-Fermi liquids, Lith. J.
Phys.
52, 142 (2012),
https://doi.org/10.3952/physics.v52i2.2358
[80] M. Swift and C.G. Van de Walle, Conditions for
T2
resistivity from electron-electron scattering, Eur. Phys. J. B
90,
151 (2017),
https://doi.org/10.1140/epjb/e2017-80367-1
[81] A. Alexandradinata, N.P. Armitage, A. Baydin, W. Bi, Y.
Cao, H.J. Changlani, E. Chertkov, E.H. da Silva Neto, L.
Delacretaz, I. El Baggari, et al., The future of the correlated
electron problem, arXiv:2010.00584,
https://arxiv.org/abs/2010.00584