[PDF]  https://doi.org/10.3952/physics.v61i1.4407

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 53–61 (2021)
 

ENVIRONMENTAL ISOTOPES AND NOBLE GAS AGES OF THE DEEP GROUNDWATER WITH COUPLED FLOW MODELLING IN THE BALTIC ARTESIAN BASIN
Robert Mokrik, Vytautas Samalavičius, Marius Gregorauskas, and Modestas Bujanauskas
  Institute of Geosciences at Vilnius University, Čiurlionio 21/27, 03101 Vilnius, Lithuania
Email: robert.mokrik@gf.vu.lt; vytautas.samalavicius@chgf.vu.lt

Received 28 August 2020; revised 6 January 2021; accepted 12 January 2021

In this study, modelled groundwater actual flow times in intermediate and deep aquifers, covered by regional scale impermeable aquitards, were compared with 4He and 81Kr age dating results. To improve the reliability of the steady state 3D groundwater flow model, the isotopic ages of deep groundwater were compared to the MODPATH modelled travel times. The highest helium values in groundwater reservoirs coincide with fault zones in the crystalline basement and sedimentary cover near Rapakivi granite massifs. Insights into isotope-geochemical anomalies of the Baltic Artesian Basin intermediate and deep groundwater support their main distribution peculiarities in the flow path towards the Baltic Sea coast lowland and seabed depression as the regional groundwater discharge area.
Keywords: deep groundwater dating, isotope-geochemistry, flow modelling
PACS: 91.67.Qr, 91.67.Rx, 92.40.Kf

GILIŲJŲ VANDENINGŲ SLUOKSNIŲ POŽEMINIO VANDENS IZOTOPINIAI IR INERTINIŲ DUJŲ AMŽIAI SU TĖKMĖS MODELIAVIMU BALTIJOS ARTEZINIAME BASEINE
Robert Mokrik, Vytautas Samalavičius, Marius Gregorauskas, Modestas Bujanauskas

Vilniaus universiteto Geomokslų institutas, Vilnius, Lietuva

Tyrime buvo palygintas modeliuotas požeminio vandens srauto judėjimo laikas vidutiniuose ir giliuose vandeninguose sluoksniuose su 4He ir 81Kr izotopais nustatytu amžiumi Baltijos artezinio baseino (BAB) požeminiame vandenyje. Izotopiniai ir hidrogeocheminiai duomenys padėjo kalibruoti ir patikrinti anksčiau sukurtus nuostovios filtracijos 3D požeminio vandens srauto modelius. Padidėjęs helio kiekis vandeninguose sluoksniuose sutampa su kristalinio pamato ir nuosėdinės dangos lūžių zonomis, esančiomis šalia Rapakivio granito masyvų Baltijos jūros pakrantėje. Atmosferinės kilmės 81Kr izotopo trajektorija turėtų atitikti modeliuotą dalelių judėjimo kryptį ir parodyti panašius požeminio vandens amžiaus rezultatus. Gauti duomenys atskleidė, kad 81Kr izotopo ir modeliuotų dalelių amžiai reikšmingai skiriasi. Skaitmeniniame modelyje trūksta vidinių geologinių struktūrinių elementų, tokių kaip lūžių zonos, todėl norint atspindėti natūralias sąlygas būtina koreguoti hidraulinius modelio parametrus. Remiantis izotopiniais ir hidrogeocheminiais duomenimis, patvirtinta BAB vandens helio anomalijų kilmė, formavimosi procesai ir amžius.
 
References / Nuorodos

[1] C. Gerber, R. Vaikmäe, W. Aeschbach, A. Babre, W. Jiang, M. Leuenberger, Z.T. Lu, R. Mokrik, P. Müller, V. Raidla, et al., Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale, Geochim. Cosmochim. Acta 205, 187–210 (2017),
https://doi.org/10.1016/j.gca.2017.01.033
[2] V. Juodkazis, Hydrogeological Map of the Pre-quaternary Deposits of the Soviet Baltic Republics (Ministry of Geology of the USSR, 1980)
[3] J. Virbulis, U. Bethers, T. Saks, J. Sennikovs, and A. Timuhins, Hydrogeological model of the Baltic Artesian Basin, Hydrogeol. J. 21, 845–862 (2013),
https://doi.org/10.1007/s10040-013-0970-7
[4] J. Pärn, V. Raidla, R. Vaikmäe, T. Martma, J. Ivask, R. Mokrik, and K. Erg, The recharge of glacial meltwater and its influence on the geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system, northern part of the Baltic Artesian Basin, Appl. Geochem. 72, 125–135 (2016),
https://doi.org/10.1016/j.apgeochem.2016.07.007
[5] V. Raidla, Z. Kern, J. Pärn, A. Babre, K. Erg, J. Ivask, A. Kalvāns, B. Kohán, M. Lelgus, T. Martma, et al., A δ18O isoscape for the shallow groundwater in the Baltic Artesian Basin, J. Hydrol. 542, 254–267 (2016),
https://doi.org/10.1016/j.jhydrol.2016.09.004
[6] R. Mokrik, The Paleohydrogeology of the Baltic Basin (Vilnius University Publishing House, Vilnius, 2003)
[7] K. Rozanski and A. Zuber, Glacial infiltration in Europe – myth or reality, Przegląd Geol. 48, 796–803 (2000)
[8] R. Mokrik, The Palaeohydrogeology of the Baltic Basin. Vendian and Cambrian (Tartu University Press, 1997)
[9] Z.T. Lu, P. Schlosser, W.M. Smethie, N.C. Sturchio, T.P. Fischer, B.M. Kennedy, R. Purtschert, J.P. Severinghaus, D.K. Solomon, T. Tanhua, and R. Yokochi, Tracer applications of noble gas radionuclides in the geosciences, Earth-Sci. Rev. 138, 196–214 (2014),
https://doi.org/10.1016/j.earscirev.2013.09.002
[10] A. Suckow, M. Gröning, M. Jaklitsch, L.-H. Han, and P. Aggarwal, in: Proceedings of 4th Mini Conference on Noble Gases in the Hydrosphere and Natural Gas Reservoirs (Potsdam, 2007) pp. 115,
https://doi.org/10.2312/GFZ.mga.050
[11] T. Matsumoto, D.K. Solomon, L. Araguás-Araguás, and P. Aggarwal, The IAEA’s coordinated research project on estimation of groundwater recharge and discharge by using the tritium, helium-3 dating technique, Geochem. J. 51, 385–390 (2017),
https://doi.org/10.2343/geochemj.2.0500
[12] W. Aeschbach-Hertig, Groundwater Sampling for Helium / Noble Gases (2020),
[PDF]
[13] L.E. Levina, V.V. Demanov, V.E. Stadnik, Yu.A. Galaskokov, V.V. Ermakov, N.N. Gar­taye­nov, and I.N. Yanitskii, A measuring device for helium analysis in geological investigations, EI. VEAMS Series 10, 1–22 (1975) [in Russian]
[14] R. Raudsep, in: Geology and Mineral Resources of Estonia, eds. A. Raukas, A. Teedumäe (Estonian Academy Publishers, Tallinn, 1997) pp. 436,
https://geoloogia.info/geology/
[15] T. Torgersen and M. Stute, in: Isotope Methods for Dating Old Groundwater (International Atomic Energy Agency, Vienna, 2013) pp. 376,
[PDF]
[16] V. Juodkazis and K. Tibar, Helium in groundwater on the northern flank of the Baltic Artesian Basin, Int. Geol. Rev. 31, 736–743(1989),
https://doi.org/10.1080/00206818909465927
[17] R. Mokrik, V. Puura, T. Floden, and R. Petkevičius, Peculiarities of helium distribution in the Baltic Basin, Litosfera 6, 121–123 (2002)
[18] P. Mejean, D.L. Pinti, B. Ghaleb, and M. Larocque, Fracturing-induced release of radiogenic 4He and 234U into groundwater during the last deglaciation: An alternative source to crustal helium fluxes in periglacial aquifers, J. Am. Water Resour. Assoc. 53, 5677–5689 (2017),
https://doi.org/10.1002/2016WR020014
[19] M. Yezhova, V. Polyakov, A. Tkachenko, L. Sa­vits­ki, and V. Belkina, Paleowaters of North Estonia and their influence on changes of resources and quality of fresh groundwaters of large coastal water supplies, Geology 19, 37–40 (1996),
https://doi.org/10.1016/S0262-1762(99)81256-5
[20] R. Mokrik, Pecularities of the formation of the isotopic composition of underground waters on the southern slope of the Baltic shield, Geologija 19, 16–25 (1996)
[21] V. Juodkazis, Regional Hydrogeology of the Baltic Region (Mokslas, Vilnius, 1989) [in Russian]
[22] V. Juodkazis, Regional Hydrogeology Foundations (Vilnius University Publishing House, Vilnius, 2003) [in Lithuanian]
[23] J. Mažeika, Regularities of Radionuclide Migration and Transformation in Lithuanian Geological Environment, Habilitation Thesis (1999)
[24] A. Zuzevičius, J. Mažeika, and V. Baltrūnas, A model of brackish groundwater formation in the Nemunas River valley, Lithuania, Geologija 60, 63–75 (2007),
http://mokslozurnalai.lmaleidykla.lt/geologija/2007/4/4287
[25] A. Zuzevičius, The groundwater dynamics in the southern part of the Baltic Artesian Basin during the Late Pleistocene, Baltica 23, 1–12 (2010),
[PDF]
[26] M. Gregorauskas, K. Kaušinis, M. Bujanauskas, V. Samalavičius, and R. Mokrik, Cenomanio-apatinės kreidos sluoksnio požeminio vandens išteklių ir hidrocheminių anomalijų mode­linis įvertinimas, Geologija. Geografija 3, 73–79 (2017) [in Lithuanian], 
https://doi.org/10.6001/geol-geogr.v3i2.3538
[27] I. Clark and P. Fritz, Environmental Isotopes in Hydrogeology (Lewis Publishers, Boca Raton, 1997),
https://doi.org/10.1201/9781482242911
[28] J.R. O’Neil, Hydrogen and oxygen isotope fractionation between ice and water, J. Phys. Chem. 72(10), 3683–3684 (1968),
https://doi.org/10.1021/j100856a060
[29] M. Lehmann and U. Siegenthaler, Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water, J. Glaciol. 37, 23–26 (1991),
https://doi.org/10.3189/S0022143000042751
[30] J. Banys, V. Juodkazis, and R. Mokrik, Regional regularities of radiocarbon distribution in groundwaters of the Baltic artesian basin, Water Resour. 6, 243–248 (1979) [in Russian]
[31] J. Pärn, S. Affolter, J. Ivask, S. Johnson, K. Kir­sim­äe, M. Leuenberger, T. Martma, V. Raidla, S. Schloemer, H. Sepp, R. Vaikmäe, and K. Wal­rae­vens, Redox zonation and organic matteroxidation in palaeogroundwater of glacial origin from the Baltic Artesian Basin, Chem. Geol. 488, 149–161 (2018),
https://doi.org/10.1016/j.chemgeo.2018.04.027
[32] V. Raidla, K. Kirsimäe, R. Vaikmäe, E. Kaup, and T. Martma, Carbon isotope systematics of the Cambrian–Vendian aquifer system in the northern Baltic Basin: Implications to the age and evolution of groundwater, Appl. Geochem. 27, 2042–2052 (2012),
https://doi.org/10.1016/j.apgeochem.2012.06.005
[33] A. Sterckx, J.M. Lemieux, and R. Vaikmäe, Representing glaciations and subglacial processes in hydrogeological models: A numerical investigation, Geofluids 2017, 1–12 (2017),
https://doi.org/10.1155/2017/4598902
[34] A. Sterckx, J.-M. Lemieux, and R. Vaikmäe, Assessment of paleo-recharge under the Fenno­scandian Ice Sheet and its impact on regional groundwater flow in the northern Baltic Artesian Basin using a numerical model, Hydrogeol. J. 26, 2793–2810 (2018),
https://doi.org/10.1007/s10040-018-1838-7
[35] A. Babre, A. Kalvāns, K. Popovs, I. Retiķe, A. Dē­liņa, R. Vaikmäe, and T. Martma, Pleistocene age paleo-groundwater inferred from water-stable isotope values in the central part of the Baltic Artesian Basin, Isot. Environ. Health Stud. 52, 706–725 (2016),
https://doi.org/10.1080/10256016.2016.1168411
[36] Highlights of Groundwater Research in the Baltic Artesian Basin, eds. A. Dēliņa, A. Kalvāns, T. Saks, U. Bethers, and V. Vircavs (University of Latvia, Riga, 2012),
[PDF]
[37] R. Vaikmäe, L. Vallner, H.H. Loosli, P.C. Blaser, and M. Juillard-Tardent, in: Palaeowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene, Special Publications, eds. W.M. Edmunds, C.J. Milne, Vol. 189 (Geological Society, London, 2001) pp. 17–27,
https://doi.org/10.1144/GSL.SP.2001.189.01.03