Robert Mokrik, Vytautas Samalavičius, Marius Gregorauskas, and
Modestas Bujanauskas
Received 28 August 2020; revised 6 January 2021; accepted 12
January 2021
[1] C. Gerber, R. Vaikmäe, W. Aeschbach, A. Babre, W. Jiang, M.
Leuenberger, Z.T. Lu, R. Mokrik, P. Müller, V. Raidla, et al.,
Using
81Kr and noble gases to characterize and date
groundwater and brines in the Baltic Artesian Basin on the
one-million-year timescale, Geochim. Cosmochim. Acta
205,
187–210 (2017),
https://doi.org/10.1016/j.gca.2017.01.033
[2] V. Juodkazis,
Hydrogeological Map of the Pre-quaternary
Deposits of the Soviet Baltic Republics (Ministry of
Geology of the USSR, 1980)
[3] J. Virbulis, U. Bethers, T. Saks, J. Sennikovs, and A.
Timuhins, Hydrogeological model of the Baltic Artesian Basin,
Hydrogeol. J.
21, 845–862 (2013),
https://doi.org/10.1007/s10040-013-0970-7
[4] J. Pärn, V. Raidla, R. Vaikmäe, T. Martma, J. Ivask, R.
Mokrik, and K. Erg, The recharge of glacial meltwater and its
influence on the geochemical evolution of groundwater in the
Ordovician-Cambrian aquifer system, northern part of the Baltic
Artesian Basin, Appl. Geochem.
72, 125–135 (2016),
https://doi.org/10.1016/j.apgeochem.2016.07.007
[5] V. Raidla, Z. Kern, J. Pärn, A. Babre, K. Erg, J. Ivask, A.
Kalvāns, B. Kohán, M. Lelgus, T. Martma, et al., A δ
18O
isoscape for the shallow groundwater in the Baltic Artesian
Basin, J. Hydrol.
542, 254–267 (2016),
https://doi.org/10.1016/j.jhydrol.2016.09.004
[6] R. Mokrik,
The Paleohydrogeology of the Baltic Basin
(Vilnius University Publishing House, Vilnius, 2003)
[7] K. Rozanski and A. Zuber, Glacial infiltration in Europe –
myth or reality, Przegląd Geol.
48, 796–803 (2000)
[8] R. Mokrik,
The Palaeohydrogeology of the Baltic Basin.
Vendian and Cambrian (Tartu University Press, 1997)
[9] Z.T. Lu, P. Schlosser, W.M. Smethie, N.C. Sturchio, T.P.
Fischer, B.M. Kennedy, R. Purtschert, J.P. Severinghaus, D.K.
Solomon, T. Tanhua, and R. Yokochi, Tracer applications of noble
gas radionuclides in the geosciences, Earth-Sci. Rev.
138,
196–214 (2014),
https://doi.org/10.1016/j.earscirev.2013.09.002
[10] A. Suckow, M. Gröning, M. Jaklitsch, L.-H. Han, and P.
Aggarwal, in:
Proceedings of 4th Mini Conference on Noble
Gases in the Hydrosphere and Natural Gas Reservoirs
(Potsdam, 2007) pp. 115,
https://doi.org/10.2312/GFZ.mga.050
[11] T. Matsumoto, D.K. Solomon, L. Araguás-Araguás, and P.
Aggarwal, The IAEA’s coordinated research project on estimation
of groundwater recharge and discharge by using the tritium,
helium-3 dating technique, Geochem. J.
51, 385–390
(2017),
https://doi.org/10.2343/geochemj.2.0500
[12] W. Aeschbach-Hertig,
Groundwater Sampling for Helium /
Noble Gases (2020),
[PDF]
[13] L.E. Levina, V.V. Demanov, V.E. Stadnik, Yu.A. Galaskokov,
V.V. Ermakov, N.N. Gartayenov, and I.N. Yanitskii, A measuring
device for helium analysis in geological investigations, EI.
VEAMS Series
10, 1–22 (1975) [in Russian]
[14] R. Raudsep, in:
Geology and Mineral Resources of
Estonia, eds. A. Raukas, A. Teedumäe (Estonian Academy
Publishers, Tallinn, 1997) pp. 436,
https://geoloogia.info/geology/
[15] T. Torgersen and M. Stute, in:
Isotope Methods for
Dating Old Groundwater (International Atomic Energy
Agency, Vienna, 2013) pp. 376,
[PDF]
[16] V. Juodkazis and K. Tibar, Helium in groundwater on the
northern flank of the Baltic Artesian Basin, Int. Geol. Rev.
31,
736–743(1989),
https://doi.org/10.1080/00206818909465927
[17] R. Mokrik, V. Puura, T. Floden, and R. Petkevičius,
Peculiarities of helium distribution in the Baltic Basin,
Litosfera
6, 121–123 (2002)
[18] P. Mejean, D.L. Pinti, B. Ghaleb, and M. Larocque,
Fracturing-induced release of radiogenic
4He and
234U
into groundwater during the last deglaciation: An alternative
source to crustal helium fluxes in periglacial aquifers, J. Am.
Water Resour. Assoc.
53, 5677–5689 (2017),
https://doi.org/10.1002/2016WR020014
[19] M. Yezhova, V. Polyakov, A. Tkachenko, L. Savitski, and
V. Belkina, Paleowaters of North Estonia and their influence on
changes of resources and quality of fresh groundwaters of large
coastal water supplies, Geology
19, 37–40 (1996),
https://doi.org/10.1016/S0262-1762(99)81256-5
[20] R. Mokrik, Pecularities of the formation of the isotopic
composition of underground waters on the southern slope of the
Baltic shield, Geologija
19, 16–25 (1996)
[21] V. Juodkazis,
Regional Hydrogeology of the Baltic
Region (Mokslas, Vilnius, 1989) [in Russian]
[22] V. Juodkazis,
Regional Hydrogeology Foundations
(Vilnius University Publishing House, Vilnius, 2003) [in
Lithuanian]
[23] J. Mažeika,
Regularities of Radionuclide Migration and
Transformation in Lithuanian Geological Environment,
Habilitation Thesis (1999)
[24] A. Zuzevičius, J. Mažeika, and V. Baltrūnas, A model of
brackish groundwater formation in the Nemunas River valley,
Lithuania, Geologija
60, 63–75 (2007),
http://mokslozurnalai.lmaleidykla.lt/geologija/2007/4/4287
[25] A. Zuzevičius, The groundwater dynamics in the southern
part of the Baltic Artesian Basin during the Late Pleistocene,
Baltica
23, 1–12 (2010),
[PDF]
[26] M. Gregorauskas, K. Kaušinis, M. Bujanauskas, V.
Samalavičius, and R. Mokrik, Cenomanio-apatinės kreidos
sluoksnio požeminio vandens išteklių ir hidrocheminių anomalijų
modelinis įvertinimas, Geologija. Geografija
3, 73–79
(2017) [in Lithuanian],
https://doi.org/10.6001/geol-geogr.v3i2.3538
[27] I. Clark and P. Fritz,
Environmental Isotopes in
Hydrogeology (Lewis Publishers, Boca Raton, 1997),
https://doi.org/10.1201/9781482242911
[28] J.R. O’Neil, Hydrogen and oxygen isotope fractionation
between ice and water, J. Phys. Chem.
72(10), 3683–3684
(1968),
https://doi.org/10.1021/j100856a060
[29] M. Lehmann and U. Siegenthaler, Equilibrium oxygen- and
hydrogen-isotope fractionation between ice and water, J.
Glaciol.
37, 23–26 (1991),
https://doi.org/10.3189/S0022143000042751
[30] J. Banys, V. Juodkazis, and R. Mokrik, Regional
regularities of radiocarbon distribution in groundwaters of the
Baltic artesian basin, Water Resour.
6, 243–248 (1979)
[in Russian]
[31] J. Pärn, S. Affolter, J. Ivask, S. Johnson, K. Kirsimäe,
M. Leuenberger, T. Martma, V. Raidla, S. Schloemer, H. Sepp, R.
Vaikmäe, and K. Walraevens, Redox zonation and organic
matteroxidation in palaeogroundwater of glacial origin from the
Baltic Artesian Basin, Chem. Geol.
488, 149–161 (2018),
https://doi.org/10.1016/j.chemgeo.2018.04.027
[32] V. Raidla, K. Kirsimäe, R. Vaikmäe, E. Kaup, and T. Martma,
Carbon isotope systematics of the Cambrian–Vendian aquifer
system in the northern Baltic Basin: Implications to the age and
evolution of groundwater, Appl. Geochem.
27, 2042–2052
(2012),
https://doi.org/10.1016/j.apgeochem.2012.06.005
[33] A. Sterckx, J.M. Lemieux, and R. Vaikmäe, Representing
glaciations and subglacial processes in hydrogeological models:
A numerical investigation, Geofluids
2017, 1–12 (2017),
https://doi.org/10.1155/2017/4598902
[34] A. Sterckx, J.-M. Lemieux, and R. Vaikmäe, Assessment of
paleo-recharge under the Fennoscandian Ice Sheet and its impact
on regional groundwater flow in the northern Baltic Artesian
Basin using a numerical model, Hydrogeol. J.
26,
2793–2810 (2018),
https://doi.org/10.1007/s10040-018-1838-7
[35] A. Babre, A. Kalvāns, K. Popovs, I. Retiķe, A. Dēliņa, R.
Vaikmäe, and T. Martma, Pleistocene age paleo-groundwater
inferred from water-stable isotope values in the central part of
the Baltic Artesian Basin, Isot. Environ. Health Stud.
52,
706–725 (2016),
https://doi.org/10.1080/10256016.2016.1168411
[36]
Highlights of Groundwater Research in the Baltic
Artesian Basin, eds. A. Dēliņa, A. Kalvāns, T. Saks, U.
Bethers, and V. Vircavs (University of Latvia, Riga, 2012),
[PDF]
[37] R. Vaikmäe, L. Vallner, H.H. Loosli, P.C. Blaser, and M.
Juillard-Tardent, in:
Palaeowaters in Coastal Europe:
Evolution of Groundwater Since the Late Pleistocene,
Special Publications, eds. W.M. Edmunds, C.J. Milne, Vol. 189
(Geological Society, London, 2001) pp. 17–27,
https://doi.org/10.1144/GSL.SP.2001.189.01.03