[PDF]  https://doi.org/10.3952/physics.v61i1.4408

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 1–26 (2021)
 

EFFICIENCY CALIBRATION OF HIGH-PURITY GERMANIUM DETECTOR USING MONTE CARLO SIMULATIONS INCLUDING COINCIDENCE-SUMMING CORRECTIONS: VOLUME SOURCE CASE
Marina Konstantinova, Darius Germanas, Arūnas Gudelis, and Artūras Plukis
  Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
Email: marina.konstantinova@ftmc.lt

Received 9 November 2020; revised 15 January 2021; accepted 18 January 2021

The gamma-ray spectrometry by the instrumentality of Ge detectors is used for the detection of low activity environmental samples of different geometry (soil samples, air filters with aerosols, milk powder, etc.). Such measurements require separate calibration of the detector. The high purity germanium (HPGe) gamma-ray spectrometer of GC2520 series was used for experiments. For the efficiency calibration, three cylindrical containers filled with different 60Co water solution levels were used, and the gamma-ray coincidence summing was modelled using MCNP6. The dimensions of the pure germanium crystal, provided by Canberra, were used for the simulations. The true coincidence summing takes place when two or more gamma quanta, which are emitted in a cascade from an excited nucleus, are detected within the resolving time of the detector. However, there is often a mismatch between the simulated and experimental efficiencies. The experimentally obtained and modelled spectra were compared: a good consistency of experimental and modelled results allows investigating the volume sources. During the simulation it was found that the factors affecting the accuracy of modelling are the thickness of the dead layer, crystal dimensions and the thickness of the Al detector cap. The analysis allows measuring the radionuclides activity concentration of samples placed in the containers with different filling heights having only standard shape calibration sources. The obtained accuracy is sufficient to fulfil criteria of 5–10% for such type of simulation to be applied for measurements of real samples in standard BURK-60 containers of various sample filling heights.
Keywords: HPGe detector, efficiency calibration, MCNP6, coincidence-summing correction

GRYNO GERMANIO DETEKTORIAUS EFEKTYVUMO KALIBRAVIMAS MONTE KARLO METODU SU SUTAPČIŲ SUMAVIMO PATAISOMIS: TŪRINIO ŠALTINIO ATVEJIS
Marina Konstantinova, Darius Germanas, Arūnas Gudelis, Artūras Plukis

Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Gama spektrometrija naudojant germanio detektorius taikoma mažo aktyvumo skirtingos geometrijos aplinkos mėginiams (dirvožemio mėginiams, oro filtrams su aerozoliais, pieno milteliams ir pan.) tirti. Tokie matavimai reikalauja atskiro detektorių kalibravimo. Eksperimentams buvo naudojamas GC2520 serijos gryno germanio (HPGe) gama spektrometras. Buvo atsižvelgta į gamintojo pateiktus gryno germanio kristalo matmenis. Efektyvumui kalibruoti buvo naudojami trijų skirtingų užpildymo laipsnių cilindriniai indai su 60Co vandeniniu tirpalu. Gama spinduliuotės sutapčių sumavimas buvo modeliuotas naudojant MCNP6. Tikru sutapčių sumavimu laikomas įvykis, kai du ar daugiau gama kvantų, kurie kaskadu sklinda iš sužadinto branduolio, aptinkami per detektoriaus skyrimo trukmę. Dažnai pastebima neatitiktis tarp modeliuotų ir eksperimentiškai nustatytų efektyvumo verčių. Palyginti eksperimentiškai gauti ir sumodeliuoti spektrai. Geras eksperimentinių ir sumodeliuotų rezultatų nuoseklumas leidžia tirti tūrinius šaltinius. Modeliuojant nustatyta, kad veiksniai, darantys įtaką modeliavimo tikslumui, yra neveikos sluoksnio storis, kristalų matmenys ir detektoriaus kriostato apvalkalo iš aliuminio storis. Analizė leidžia išmatuoti radionuklidų savitąjį aktyvumą skirtingo aukščio mėginių, įdėtų į BURK-60 indus, turint tik standartinius kalibravimo šaltinius. Mūsų modeliavimo tikslumas atitinka 5–10 % kriterijus, taikomus tokio tipo modeliavimui, ir šie rezultatai gali būti naudojami eksperimentuose imituojant įvairių užpildų ir aukščių standartinių BURK-60 konteinerių šaltinius.

 
References / Nuorodos

[1] T. Vichaidid, T. Soodprasert, and T. Verapaspong, Calibration of HPGe gamma-ray planar detector system for radioactivity standards, Kasetsart J. (Nat. Sci.) 41, 198–202 (2007),
https://li01.tci-thaijo.org/index.php/anres/article/view/244368
[2] M.H. Wiggs and C. Schmitt, Measurement of Germanium Detector Efficiency, Notre Dame Physics REU (University of Notre Dame 2009),
https://www.semanticscholar.org/paper/Measurement-of-Germanium-Detector-Efficiency-Wiggs-Schmitt/5dea08f8173c1915f9ee03921b607e200de56bd3
[3] A. Gudelis, V. Remeikis, A. Plukis, and D. Lu­kaus­kas, Efficiency calibration of HPGe detectors for measuring environmental samples, Environ. Chem. Phys. 22(3–4), 117–125 (2000)
[4] F.L. Bronson, Validation of the accuracy of the LabSOCS software for mathematical efficiency calibration of Ge detectors for typical laboratory samples, J. Radioanal. Nucl. Chem. 255(1), 137–141 (2003),
https://doi.org/10.1023/A:1022248318741
[5] S. Harb, K. Salahel Din, and A. Abbady, in: Proceedings of the 3rd Environmental Physics Conference (Aswan, Egypt, 2008) pp. 207–218,
https://inis.iaea.org/search/search.aspx?orig_q=RN:41046595
[6] M.E. Medhat and V.P. Singh, Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data, Indian J. Pure Appl. Phys. 54(02), 137–143 (2016),
https://nopr.niscair.res.in/handle/123456789/33798
[7] M.T. Haj-Heidari, M.J. Safari, H. Afarideh, and H. Rouhi, Method for developing HPGe detector model in Monte Carlo simulation codes, Radiat. Meas. 88, 1–6 (2016),
https://doi.org/10.1016/j.radmeas.2016.02.035
[8] M.E. Medhat and Y. Wang, Estimation of background spectrum in a shielded HPGe detector using Monte Carlo simulations, Appl. Radiat. Isotopes 84, 13–18 (2014),
https://doi.org/10.1016/j.apradiso.2013.10.017
[9] F. Courtine, S. Sanzelle, T. Pilleyre, and D. Miallier, Calibration of a germanium well-detector using 60Co: The effects of the angular correlation of the two gamma rays emitted in cascade, quantified with Monte Carlo simulations, Radiat. Meas. 61, 78–82 (2014),
https://doi.org/10.1016/j.radmeas.2013.11.007
[10] C. Agarwal, S. Chaudhury, A. Goswami, and M. Gathibandhe, True coincidence-summing corrections in point and extended sources, J. Radioanal. Nucl. Chem. 289, 773–780 (2011),
https://doi.org/10.1007/s10967-011-1126-7
[11] C. Agarwal, S. Chaudhury, A. Goswami, and M. Gathibandhe, Full energy peak efficiency calibration of HPGe detector for point and extended sources using Monte Carlo code, J. Radioanal. Nucl. Chem. 287, 701–708 (2011),
https://doi.org/10.1007/s10967-010-0820-1
[12] R.G. Helmer, J.C. Hardy, V.E. Iacob, M. Sanchez-Vega, R.G. Neilson, and J. Nelson, The use of Monte Carlo calculations in the determination of a Ge detector efficiency curve, Nucl. Instrum. Meth. A 511(3), 360–381 (2003),
https://doi.org/10.1016/S0168-9002(03)01942-9
[13] E. Andreotti, M. Hult, G. Marissens, G. Lutter, A. Garfagnini, S. Hemmerb, and K. von Sturm, Determination of dead-layer variation in HPGe detectors, Appl. Radiat. Isotopes 87, 331–335 (2014),
https://doi.org/10.1016/j.apradiso.2013.11.046
[14] C.J. Werner, J.S. Bull, C.J. Solomon, F.B. Brown, G.W. McKinney, M.E. Rising, D.A. Dixon, R.L. Martz, H.G. Hughes, L.J. Cox, et al., MCNP Version 6.2 Release Notes (Los Alamos National Lab. (LANL), Los Alamos, NM, United States, 2018),
https://www.osti.gov/biblio/1419730-mcnp-version-release-notes
[15] P. Andersson, V. Rathore, L. Senis, A. Anastasiadis, E. Andersson Sundén, H. Atak, S. Holcombe, A. Håkans­son, P. Jansson, and J. Nyberg, Simulation of the response of a segmented high-purity germanium detector for gamma emission tomography of nuclear fuel, SN Appl. Sci. 2, 271 (2020),
https://doi.org/10.1007/s42452-020-2053-4
[16] C. Thiam, M. Anagnostakis, R. Galea, D. Gurau, S. Hurtado, K. Karfopoulos, J. Liang, H. Liu, A. Luca, I. Mitsios, et al., A benchmark for Monte Carlo simulation in gamma-ray spectrometry, Appl. Radiat. Isotopes 154, 108850 (2019),
https://doi.org/10.1016/j.apradiso.2019.108850
[17] T. Marchais, B. Pérot, C. Carasco, P.-G. Allinei, P. Chaussonnet, J.-L. Ma, and H. Toubon, Detailed MCNP simulations of gamma-ray spectroscopy measurements with calibration blocks for uranium mining applications, IEEE Trans. Nucl. Sci. 65(9), 2533–2538 (2018),
https://doi.org/10.1109/TNS.2018.2797312
[18] C.J. Tichacek, M.M. Budzevich, T.J. Wadas, D.L. Morse, and E.G. Moros, A Monte Carlo meth­od for determining the response relationship between two commonly used detectors to indirectly measure alpha particle radiation activity, Molecules 24(18), 3397 (2019),
https://doi.org/10.3390/molecules24183397
[19] Z. Wang, B. Kahn, and J.D. Valentine, Efficiency calculation and coincidence summing correction for germanium detectors by Monte Carlo simulation, IEEE Trans. Nucl. Sci. 49(4), 1925–1931 (2002),
https://doi.org/10.1109/TNS.2002.801679
[20] E. Eftekhari Zadeh, S.A.H. Feghhi, E. Bayat, and G.H. Roshani, Gaussian energy broadening function of an HPGe detector in the range of 40 keV to 1.46 MeV, J. Exp. Phys. 2014, 1–4 (2014),
https://doi.org/10.1155/2014/623683
[21] M.C. Lépy, T. Altzitzoglou, D. Arnold, F. Bronson, R. Capote Noy, M. Décombaz, F. De Corte, R. Edelm­ aier, E. Herrera Peraza, S. Klemola, et al., Intercomparison of efficiency transfer software for gamma-ray spectrometry, Appl. Radiat. Isotopes 55(4), 493–503 (2001),
https://doi.org/10.1016/S0969-8043(01)00101-4