[PDF]  https://doi.org/10.3952/physics.v61i2.4436

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 75–83 (2021)
 

PROFILING OF PROTON BEAMS BY FLUENCE SCANNERS
Laimonas Deveikisa, Juozas Vidmantis Vaitkusa, Tomas Čeponisa, Mindaugas Gaspariūnasb, Vitalij Kovalevskija,b, Vytautas Rumbauskasa, and Eugenijus Gaubasa
  a Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius
b Centre for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius
Email: laimonas.deveikis@tmi.vu.lt

Received 6 April 2021; accepted 15 April 2021

Profiling of particle beams is one of the most important diagnostic procedures for operating any kind of accelerator. In this work, the proton beam profilers, based on fluence measurements performed by recording the changes of carrier lifetime in Si material and scintillation intensity of thin GaN layers, caused by radiation induced defects and emission centres, are presented. The beams of penetrative (26 GeV/c) and stopped (1.6 MeV) protons have been examined. It is shown that the penetrative particle regime should be employed to appropriately record 2D fluence distribution profiles. It is also illustrated that the presented profiling techniques can be applied for scanning of other charged (namely, pions) and neutral (neutrons) particle beams.
Keywords: particle beam profiling, carrier lifetime, microwave probed photoconductivity, luminescence, scintillators
PACS: 29.27.−a, 29.40.Mc, 72.40.+w, 78.60.−b

PROTONŲ PLUOŠTELIŲ PROFILIAVIMAS ĮTĖKIO SKENERIAIS
Laimonas Deveikisa, Juozas Vidmantis Vaitkusa, Tomas Čeponisa, Mindaugas Gaspariūnasb, Vitalij Kovalevskija,b, Vytautas Rumbauskasa, Eugenijus Gaubasa

a Vilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva
b Fizinių ir technologinių mokslų centras, Vilnius, Lietuva

Darbe aptartos protonų pluoštelių charakterizavimo technologijos pasitelkiant Si ir GaN sensorius bei apšvitos įtėkio skenavimo būdus. Šie būdai yra pagrįsti krūvininkų gyvavimo trukmės didžiavaržiame Si ir žaliai geltonosios GaN liuminescencijos intensyvumo pasiskirstymo kontrole. Parodyta, kad egzistuoja gana universalios charakteristikos, nusakančios radiacinių defektų koncentracijos, krūvininkų gyvavimo trukmės ir liuminescencijos intensyvumo ryšius su Si bei GaN medžiagų apšvitos hadronais įtėkiu. Šios charakteristikos yra pasitelktos įtėkio pasiskirstymo profiliams identifikuoti. Parodyta, kad daugeliu atveju įvairių dalelių greitintuvų formuojamų pluoštelių forma gali būti aproksimuojama Gauso funkcija. Aptartos šių metodų taikymo galimybės elektringiems ir neutraliems dalelių pluoštams kiekybiškai charakterizuoti.


References / Nuorodos

[1] G. Kube, Beam diagnostic requirements: an overview, in: Proceedings of the 2018 CERN Accelerator School’s Course on Beam Instrumentation (CERN, Geneva) pp. 18–119, arXiv-2005.08389,
[PDF],
https://arxiv.org/abs/2005.08389
[2] K. Wittenburg, Specific instrumentation and diagnostics for high-intensity hadron beams, in: Proceedings of the CERN Accelerator School’s Course on High Power Hadron Machines, ed. R. Bailey (CERN, Geneva, 2013) pp. 251–308,
[PDF]
[3] E. Bravin, Transverse beam profiles, in: Proceedings of the 2018 CERN Accelerator School’s Course on Beam Instrumentation (CERN, Geneva) pp. 318–354,
[PDF]
[4] B. Boyer, R. Cornat, E. Delagnes, Y. Geerebaert, O. Gevin, F. Haddad, C. Koumeir, F. Magniette, P. Manigot, F. Poirier, et al., Development of an ultra thin beam profiler for charged particle beams, Nucl. Instrum. Methods Phys. Res. A 936, 29–30 (2019),
https://doi.org/10.1016/j.nima.2018.09.134
[5] P. Ausset, S. Bousson, D. Gardès, A.C. Mueller, B. Pottin, R. Gobin, G. Belyaev, and I. Roudskoy, Optical transverse beam profile measurements for high power proton beams, in: Proceedings of 8th European Particle Acceleration Conference EPAC 2002 (European Physical Society, Geneva, 2002) pp. 1840–1842,
[PDF]
[6] V.E. Scarpine, Transverse beam shape measurements of intense proton beams using optical transition radiation, Phys. Procedia 37, 2123–2128 (2012),
https://doi.org/10.1016/j.phpro.2012.03.764
[7] A. Nause, E. Dyunin, R. Ianconescu, and A. Gover, Exact theory of optical transition radiation in the far and near zones, J. Opt. Soc. Am. B 31(10), 2438–2445 (2014),
https://doi.org/10.1364/JOSAB.31.002438
[8] C. Belver-Aguilar, S. Braccini, T.S. Carzaniga, A. Gsponer, P.D. Häffner, P. Scampoli, and M. Schmid, A novel three-dimensional non-destructive beam-monitoring detector, Appl. Sci. 10(22), 8217 (2020),
https://doi.org/10.3390/app10228217
[9] N.P. Dover, M. Nishiuchi, H. Sakaki, M.A. Alkhimova, A.Ya. Faenov, Y. Fukuda, H. Kiriyama, A. Kon, K. Kondo, K. Nishitani, et al., Scintillator-based transverse proton beam profiler for laser-plasma ion sources, Rev. Sci. Instrum. 88, 073304 (2017),
https://doi.org/10.1063/1.4994732
[10] M. Cavallonea, A. Flaccoa, and V. Malka, Shaping of a laser-accelerated proton beam for radiobiology applications via genetic algorithm, Phys. Med. 67, 123–131 (2019),
https://doi.org/10.1016/j.ejmp.2019.10.027
[11] E. Gaubas, E. Simoen, and J. Vanhellemont, Review-Carrier lifetime spectroscopy for defect characterization in semiconductor materials and devices, ECS J. Solid State Sci. Technol. 5, P3108–P3137 (2016),
https://doi.org/10.1149/2.0201604jss
[12] E. Gaubas, T. Ceponis, A. Uleckas, J. Vaitkus, K. Žilinskas, V. Kovalevskij, M. Gaspariunas, and V. Remeikis, In situ analysis of the carrier lifetime in silicon during implantation of 1.5 MeV protons, Lith. J. Phys. 50(4), 427–433 (2010),
https://doi.org/10.3952/lithjphys.50410
[13] E. Gaubas, T. Ceponis, A. Jasiunas, V. Kovalevskij, D. Meskauskaite, J. Pavlov, V. Remeikis, A. Tekorius, and J. Vaitkus, Correlative analysis of the in situ changes of carrier decay and proton induced photoluminescence characteristics in chemical vapour deposition grown GaN, Appl. Phys. Lett. 104, 62104 (2014),
https://doi.org/10.1063/1.4865499
[14] P.J. Sellin and J. Vaitkus, New materials for radiation hard semiconductor detectors, Nucl. Instrum. Methods Phys. Res. A 557, 479–489 (2006),
https://doi.org/10.1016/j.nima.2005.10.128
[15] E. Gaubas, T. Ceponis, A. Jasiunas, A. Uleckas, J. Vaitkus, E. Cortina, and O. Militaru, Correlated evolution of barrier capacitance charging, generation and drift currents and of carrier lifetime in Si structures during 25 MeV neutrons irradiation, Appl. Phys. Lett. 101, 232104 (2012),
https://doi.org/10.1063/1.4769370