[1] G. Kube, Beam diagnostic requirements: an overview, in:
Proceedings
of the 2018 CERN Accelerator School’s Course on Beam
Instrumentation (CERN, Geneva) pp. 18–119,
arXiv-2005.08389,
[PDF],
https://arxiv.org/abs/2005.08389
[2] K. Wittenburg, Specific instrumentation and diagnostics for
high-intensity hadron beams, in:
Proceedings of the CERN
Accelerator School’s Course on High Power Hadron Machines,
ed. R. Bailey (CERN, Geneva, 2013) pp. 251–308,
[PDF]
[3] E. Bravin, Transverse beam profiles, in:
Proceedings of
the 2018 CERN Accelerator School’s Course on Beam
Instrumentation (CERN, Geneva) pp. 318–354,
[PDF]
[4] B. Boyer, R. Cornat, E. Delagnes, Y. Geerebaert, O. Gevin,
F. Haddad, C. Koumeir, F. Magniette, P. Manigot, F. Poirier, et
al., Development of an ultra thin beam profiler for charged
particle beams, Nucl. Instrum. Methods Phys. Res. A
936,
29–30 (2019),
https://doi.org/10.1016/j.nima.2018.09.134
[5] P. Ausset, S. Bousson, D. Gardès, A.C. Mueller, B. Pottin,
R. Gobin, G. Belyaev, and I. Roudskoy, Optical transverse beam
profile measurements for high power proton beams, in:
Proceedings
of 8th European Particle Acceleration Conference EPAC 2002
(European Physical Society, Geneva, 2002) pp. 1840–1842,
[PDF]
[6] V.E. Scarpine, Transverse beam shape measurements of intense
proton beams using optical transition radiation, Phys. Procedia
37, 2123–2128 (2012),
https://doi.org/10.1016/j.phpro.2012.03.764
[7] A. Nause, E. Dyunin, R. Ianconescu, and A. Gover, Exact
theory of optical transition radiation in the far and near
zones, J. Opt. Soc. Am. B
31(10), 2438–2445 (2014),
https://doi.org/10.1364/JOSAB.31.002438
[8] C. Belver-Aguilar, S. Braccini, T.S. Carzaniga, A. Gsponer,
P.D. Häffner, P. Scampoli, and M. Schmid, A novel
three-dimensional non-destructive beam-monitoring detector,
Appl. Sci.
10(22), 8217 (2020),
https://doi.org/10.3390/app10228217
[9] N.P. Dover, M. Nishiuchi, H. Sakaki, M.A. Alkhimova, A.Ya.
Faenov, Y. Fukuda, H. Kiriyama, A. Kon, K. Kondo, K. Nishitani,
et al., Scintillator-based transverse proton beam profiler for
laser-plasma ion sources, Rev. Sci. Instrum.
88, 073304
(2017),
https://doi.org/10.1063/1.4994732
[10] M. Cavallonea, A. Flaccoa, and V. Malka, Shaping of a
laser-accelerated proton beam for radiobiology applications via
genetic algorithm, Phys. Med.
67, 123–131 (2019),
https://doi.org/10.1016/j.ejmp.2019.10.027
[11] E. Gaubas, E. Simoen, and J. Vanhellemont, Review-Carrier
lifetime spectroscopy for defect characterization in
semiconductor materials and devices, ECS J. Solid State Sci.
Technol.
5, P3108–P3137 (2016),
https://doi.org/10.1149/2.0201604jss
[12] E. Gaubas, T. Ceponis, A. Uleckas, J. Vaitkus, K.
Žilinskas, V. Kovalevskij, M. Gaspariunas, and V. Remeikis,
In
situ analysis of the carrier lifetime in silicon during
implantation of 1.5 MeV protons, Lith. J. Phys.
50(4),
427–433 (2010),
https://doi.org/10.3952/lithjphys.50410
[13] E. Gaubas, T. Ceponis, A. Jasiunas, V. Kovalevskij, D.
Meskauskaite, J. Pavlov, V. Remeikis, A. Tekorius, and J.
Vaitkus, Correlative analysis of the in situ changes of carrier
decay and proton induced photoluminescence characteristics in
chemical vapour deposition grown GaN, Appl. Phys. Lett.
104,
62104 (2014),
https://doi.org/10.1063/1.4865499
[14] P.J. Sellin and J. Vaitkus, New materials for radiation
hard semiconductor detectors, Nucl. Instrum. Methods Phys. Res.
A
557, 479–489 (2006),
https://doi.org/10.1016/j.nima.2005.10.128
[15] E. Gaubas, T. Ceponis, A. Jasiunas, A. Uleckas, J. Vaitkus,
E. Cortina, and O. Militaru, Correlated evolution of barrier
capacitance charging, generation and drift currents and of
carrier lifetime in Si structures during 25 MeV neutrons
irradiation, Appl. Phys. Lett.
101, 232104 (2012),
https://doi.org/10.1063/1.4769370