[PDF]  https://doi.org/10.3952/physics.v61i2.4437

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 84–90 (2021)
 

ORIGIN OF THERMAL QUENCHING OF EXCITON PHOTOLUMINESCENCE IN AlGaN EPILAYERS
Oleg Kravcov, Juras Mickevičius, and Gintautas Tamulaitis
  Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: kravcovas@gmail.com; juras.mickevicius@ff.vu.lt

Received 11 May 2021; accepted 13 May 2021

Dynamics of a low-density exciton system is simulated using the kinetic Monte Carlo algorithm. The temperature dependences of photoluminescence (PL) intensity and PL band Stokes shift in a high-Al-content AlGaN epilayer are calculated and fitted to the experimentally measured ones. The key features of nonradiative recombination via delocalized states and direct tunnelling to nonradiative recombination centres and their influence on PL efficiency are analysed. A strong influence of the tunnelling-based recombination in AlGaN epilayers with a large ratio between the densities of nonradiative recombination centres and localized states is revealed.
Keywords: III-nitrides, carrier localization, Monte Carlo simulations, exciton hopping, nonradiative recombination
PACS: 78.55.-m, 78.20.Bh, 73.50.Gr

EKSITONINĖS FOTOLIUMINESCENCIJOS AlGaN EPITAKSINIUOSE SLUOKSNIUOSE TEMPERATŪRINIO GESIMO PRIGIMTIS
Oleg Kravcov, Juras Mickevičius, Gintautas Tamulaitis

Vilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva

Mažo tankio eksitonų sistemos dinamika tirta skaitmeninio modeliavimo metodais naudojant kinetinį Monte Karlo algoritmą. Sumodeliuotos fotoliuminescencijos (FL) intensyvumo ir FL juostos Stokso poslinkio temperatūrinės priklausomybės buvo tapatintos su eksperimentiškai išmatuotomis AlGaN epitaksiniame sluoksnyje su dideliu Al kiekiu. Darbe analizuojamos dviejų nespindulinės rekombinacijos mechanizmų – pagavimo per delokalizuotas būsenas ir tiesioginio tuneliavimo į nespindulinius centrus – savybės ir poveikis FL efektyvumui. Atskleista stipri tuneliavimo mechanizmo įtaka AlGaN epitaksiniuose sluoksniuose, pasižyminčiuose dideliu nespindulinių centrų ir lokalizuotų būsenų tankių santykiu.


References / Nuorodos

[1] D. Bimberg, M. Sondergeld, and E. Grobe, Thermal dissociation of excitons bound to neutral acceptors in high-purity GaAs, Phys. Rev. B 4, 3451 (1971),
https://doi.org/10.1103/PhysRevB.4.3451
[2] M. Hugues, B. Damilano, J.-Y. Duboz, and J. Massies, Exciton dissociation and hole escape in the thermal photoluminescence quenching of (Ga, In)(N, As) quantum wells, Phys. Rev. B 75, 115337 (2007),
https://doi.org/10.1103/PhysRevB.75.115337
[3] Y. Yang, P. Ma, X. Wei, D. Yan, Y. Wang, and Y. Zeng, Design strategies for enhancing carrier localization in InGaN-based light-emitting diodes, J. Lumin. 155, 238 (2014),
https://doi.org/10.1016/j.jlumin.2014.05.002
[4] H.D. Sun, S. Calvez, M.D. Dawson, J.A. Gupta, G.C. Aers, and G.I. Sproule, Thermal quenching mechanism of photoluminescence in 1.55 μm GaInNAsSb/Ga(N)As quantum-well structures, Appl. Phys. Lett. 89, 101909 (2006),
https://doi.org/10.1063/1.2345240
[5] K.L. Teo, J.S. Colton, P.Y. Yu, E.R. Weber, M.F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, An analysis of temperature dependent photoluminescence line shapes in InGaN, Appl. Phys. Lett. 73, 1697 (1998),
https://doi.org/10.1063/1.122249
[6] X.H. Zheng, H. Chen, Z.B. Yan, D.S. Li, H.B. Yu, Q. Huang, and J.M. Zhou, Influence of the deposition time of barrier layers on optical and structural properties of high-efficiency green-light-emitting InGaN/GaN multiple quantum wells, J. Appl. Phys. 96, 1899 (2004),
https://doi.org/10.1063/1.1769099
[7] M.A. Sousa, T.C. Esteves, N.B. Sedrine, J. Rodrigues, M.B. Laurenco, A. Redondo-Cubero, E. Alves, K.P. O'Donnell, M. Bockowski, C. Wetzel, M.R. Correia, K. Lorenz, and T. Monteiro, Luminescence studies on green emitting InGaN/GaN MQWs implanted with nitrogen, Sci. Rep. 5, 9703 (2015),
https://doi.org/10.1038/srep09703
[8] A. Yasan, R. McClintock, K. Mayes, D.H. Kim, P. Kung, and M. Razeghi, Photoluminescence study of AlGaN-based 280 nm ultraviolet light-emitting diodes, Appl. Phys. Lett. 83, 4083 (2003),
https://doi.org/10.1063/1.1626808
[9] J. Mickevičius, G. Tamulaitis, J. Jurkevičius, M.S. Shur, M. Shatalov, J. Yang, and R. Gaska, Efficiency droop and carrier transport in AlGaN epilayers and heterostructures, Phys. Status Solidi B 252, 961 (2015),
https://doi.org/10.1002/pssb.201451542
[10] S.D. Baranovskii, Theoretical description of charge transport in disordered organic semiconductors, Phys. Status Solidi B 252, 961 (2014),
https://doi.org/10.1002/pssb.201350339
[11] O. Rubel, S.D. Baranovskii, K. Hantke, B. Kunert, W.W. Ruhle, P. Thomas, K. Volz, and W. Stolz, Model of temperature quenching of photoluminescence in disordered semiconductors and comparison to experiment, Phys. Rev. B 73, 233201 (2006),
https://doi.org/10.1103/PhysRevB.73.233201
[12] M. Baranowski, R. Kudrawiec, J. Misiewicz, H. Turski, and C. Skierbiszewski, Photoluminescence characterization of InGaN/InGaN quantum wells grown by plasma-assisted molecular beam epitaxy: impact of nitrogen and gallium fluxes, Phys. Status Solidi B 252, 983 (2015),
https://doi.org/10.1002/pssb.201451588
[13] K. Jandieri, B. Kunert, S. Liebich, M. Zimprich, K. Volz, W. Stolz, F. Gebhard, S.D. Baranovskii, N. Koukourakis, N.C. Gerhardt, and M.R. Hofmann, Nonexponential photoluminescence transients in Ga(NAsP) lattice matched to a (001) silicon substrate, Phys. Rev. B 87, 035303 (2013),
https://doi.org/10.1103/PhysRevB.87.035303
[14] S.D. Baranovskii, R. Eichmann, and P. Thomas, Temperature-dependent exciton luminescence in quantum wells by computer simulation, Phys. Rev. B 58, 13081 (1998),
https://doi.org/10.1103/PhysRevB.58.13081
[15] M. Baranowski, M. Latkowska, R. Kudrawiec, and J. Misiewicz, Model of hopping excitons in GaInNAs: simulations of sharp lines in micro-photoluminescence spectra and their dependence on the excitation power and temperature, J. Phys. Condens. Matter 23, 205804 (2011),
https://doi.org/10.1088/0953-8984/23/20/205804
[16] P.G. Eliseev, P. Perlin, J. Lee, and M. Osinski, 'Blue' temperature-induced shift and band-tail emission in InGaN-based light sources, Appl. Phys. Lett. 71, 569 (1997),
https://doi.org/10.1063/1.119797
[17] K. Kazlauskas, A. Žukauskas, G. Tamulaitis, J. Mickevičius, M.S. Shur, R.S. Qhalid Fareed, J.P. Zhang, and R. Gaska, Exciton hopping and nonradiative decay in AlGaN epilayers, Appl. Phys. Lett. 87, 172102 (2005),
https://doi.org/10.1063/1.2112169
[18] J. Mickevičius, G. Tamulaitis, M. Shur, M. Shatalov, J. Tang, and R. Gaska, Internal quantum efficiency in AlGaN with strong carrier localization, Appl. Phys. Lett. 101, 211902 (2012),
https://doi.org/10.1063/1.4767657