Juozas Vidmantis Vaitkus, Algirdas Mekys, and Šarūnas
Vaitekonis
[1] M. Huhtinen, Simulation of non-ionising energy loss and
defect formation in silicon, Nucl. Instrum. Methods A
491,
194–215 (2002),
https://doi.org/10.1016/S0168-9002(02)01227-5
[2] I. Pintilie, G. Lindstroem, A. Junkes, and E. Fretwurst,
Radiation-induced point- and cluster-related defects with strong
impact on damage properties of silicon detectors, Nucl. Instrum.
Methods
611, 52–68 (2009),
https://doi.org/10.1016/j.nima.2009.09.065
[3] R.E. Beddoe, S. Messoloras, R.J. Stewart, G. Kostorz, and
E.W.J. Mitchell, Temperature-dependent neutron scattering from
silicon single crystals, Philos. Mag. A
48, 935–952
(1983),
https://doi.org/10.1080/01418618308244328
[4] I. Mandić, V. Cindro, A. Gorišek, B. Hiti, G. Kramberger, M.
Mikuž, M. Zavrtanik, P. Skomina, S. Hidalgo, and G. Pellegrini,
Measurements with silicon detectors at extreme neutron fluences,
JINST
15, P11018 (2020),
https://doi.org/10.1088/1748-0221/15/11/p11018
[5] E. Gaubas, T. Čeponis, L. Deveikis, D. Meškauskaitė, J.
Pavlov, V. Rumbauskas, J. Vaitkus, M. Moll, and F. Ravotti,
Anneal induced transformations of defects in hadron irradiated
Si wafers and Schottky diodes, Mater. Sci. Semiconduct. Process.
75, 157–165 (2018),
https://doi.org/10.1016/j.mssp.2017.11.035
[6] E. Žąsinas and J. Vaitkus, Disordered small defect cluster
in silicon, Lith. J. Phys.
55, 330–334 (2015),
https://doi.org/10.3952/physics.v55i4.3231
[7] E. Žąsinas and J. Vaitkus, Modelling of radiation induced
vacancy-interstitial clusters, in:
Book of Abstracts, 26th
RD50 Workshop (2015) p. 9,
BoA
[PDF],
contribution
[PDF]
[8] J. Ziegler, SRIM & TRIM,
http://www.srim.org/
[9] R. Radu, I. Pintilie, L.C. Nistor, E. Fretwurst, G.
Lindstroem, and L.F. Makarenko, Investigation of point and
extended defects in electron irradiated silicon – Dependence on
the particle energy, J. Appl. Phys.
117, 164503 (2015),
https://doi.org/10.1063/1.4918924
[10] T.J. Brodbeck, A. Chilingarov, T. Sloan, E. Fretwurst, M.
Kuhnke, and G. Lindstroem, Carrier mobilities in irradiated
silicon, Nucl. Instrum. Methods A
477, 287–292 (2002),
https://doi.org/10.1016/S0168-9002(01)01858-7
[11] J.V. Vaitkus, A. Mekys, V. Rumbauskas, and J. Storasta,
Neutron irradiation influence on mobility and compensation of
dark conductivity in silicon, Lith. J. Phys.
56, 102–110
(2016),
https://doi.org/10.3952/physics.v56i2.3306
[12] D.K. Schröder,
Semiconductor Material and Device
Characterization (A. Wiley-Interscience Publication, N.
Y., 1990)
[13] L. Donetti, F. Gamiz, and S. Cristoloveanu, Monte Carlo
simulation of Hall and magnetoresistance mobility in SOI
devices, Solid State Electron.
51, 1216–1220 (2007),
https://doi.org/10.1016/j.sse.2007.07.022
[14] E.M. Conwell and V.F. Weisskopf, Theory of impurity
scattering in semiconductors, Phys. Rev.
77, 388–390
(1950),
https://doi.org/10.1103/PhysRev.77.388
[15] R. Stratton, Dipole scattering from ion pairs in
compensated semiconductors, J. Phys. Chem. Solids
23,
1011 (1962),
https://doi.org/10.1016/0022-3697(62)90159-2
[16] K.W. Böer,
Handbook of the Physics of Thin-Film Solar
Cells (Springer Science & Business Media, Berlin,
2014),
https://doi.org/10.1007/978-3-642-36748-9
[17] C. Jacoboni, C. Canali, G. Ottaviani, and A. Albrigi
Quaranta, A review of some charge transport properties of
silicon, Solid State Electron.
20, 77–89 (1977),
https://doi.org/10.1016/0038-1101(77)90054-5
[18] A. Rose,
Concepts in Photoconductivity and Allied
Problems (Interscience Publishers, 1963)
[19] J.S. Blakemore,
Semiconductor Statistics (Elsevier,
2016),
https://www.elsevier.com/books/semiconductor-statistics/blakemore/978-0-08-009592-9
[20] B. Van Zeghbroeck,
Principles of Semiconductor Devices
(University of Colorado, 2007),
http://ecee.colorado.edu/~bart/book/
[21] S. Olibet, E. Vallat-Sauvain, and Ch. Ballif, Model for
a-Si:H/c-Si interface recombination based on the amphoteric
nature of silicon dangling bonds, Phys. Rev. B
76, 1–14
(2007),
https://doi.org/10.1103/PhysRevB.76.035326
[22] G.B. Norris and K.K. Bajaj, Exciton-plasma Mott transition
in Si, Phys. Rev. B
26, 6706–6710 (1982),
https://doi.org/10.1103/PhysRevB.26.6706