[PDF]  https://doi.org/10.3952/physics.v61i2.4438

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 91–96 (2021)
 

ELECTRON MOBILITY DEPENDENCE ON NEUTRON IRRADIATION FLUENCE IN HEAVILY IRRADIATED SILICON
Juozas Vidmantis Vaitkus, Algirdas Mekys, and Šarūnas Vaitekonis
  Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: juozas.vaitkus@ff.vu.lt

Received 12 May 2021; accepted 13 May 2021

An increase of neutron irradiation fluence caused a decrease of Si radiation detector efficiency that was exceptionally well seen at 1017 neutron/cm2 fluence when the observed IV characteristic of p-n junction under forward bias and under reverse bias became similar. Therefore the investigation of free carrier mobility could be a key experiment to understand the change of heavily irradiated silicon.
The electron mobility was investigated by magnetoresistance means in microstrip silicon samples at temperature range T = 200–276 K. The analysis included the free carrier scattering by phonons, ionized impurities, dipoles and clusters and a contribution of each process was found by fitting the mobility dependence on temperature.
The analysis of experimental data clearly demonstrated that the applied model did not explain the mobility in the samples irradiated to the highest fluence. Therefore a new concept of carrier transport is needed, and, as a conclusion, it could be stated that Si irradiated above 1016 cm–2 fluence (and up to 1020 cm–2) is a disordered material with the clusters.
Keywords: irradiation detector, silicon, mobility
PACS: 61.80.Lj, 72.20.Fr, 77.55.df

STIPRIAI APŠVITINTO NEUTRONAIS SILICIO ELEKTRONŲ JUDRIO PRIKLAUSOMYBĖ NUO NEUTRONŲ ĮTĖKIO
Juozas Vidmantis Vaitkus, Algirdas Mekys, Šarūnas Vaitekonis

Vilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva

Didinant greitųjų neutronų įtėkį, krinta Si radiacinių detektorių naudingumas. Tai aiškiausiai matosi įtėkį padidinus iki 1017 n/cm2, kai p-n jungties voltamperinė charakteristika tiesiogine ir priešinga kryptimis susivienodina. Tokios medžiagos laisvųjų krūvininkų judrio tyrimai galėtų atskleisti apšvitinto Si savybių pasikeitimus.
Darbe krūvininkų judris buvo nustatomas iš magnetovaržos reiškinio mikrostripelių pavidalo Si bandiniuose T = 200–276 K temperatūros intervale. Pernašos reiškiniams analizuoti buvo įskaitoma laisvųjų krūvininkų sklaida fononais, jonizuotomis priemaišomis, dipoliais ir defektų klasteriais. Kiekvieno iš jų indėlis buvo nustatomas atskirai pritaikant judrio temperatūriniam kitimui matematines išraiškas.
Eksperimentinių duomenų analizė aiškiai parodė, kad didžiausio paminėto įtėkio bandiniuose naudojamas pernašos modelis netinka judrio temperatūriniam dėsningumui paaiškinti. Reikalingas naujas modelis šiems pernašos reiškiniams aiškinti, o iš gautų rezultatų galima daryti išvadą, kad Si švitintas įtėkiu per 1016 cm–2 (ir iki 1020 cm–2) yra netvarki medžiaga su defektiniais klasteriais.


References / Nuorodos

[1] M. Huhtinen, Simulation of non-ionising energy loss and defect formation in silicon, Nucl. Instrum. Methods A 491, 194–215 (2002),
https://doi.org/10.1016/S0168-9002(02)01227-5
[2] I. Pintilie, G. Lindstroem, A. Junkes, and E. Fretwurst, Radiation-induced point- and cluster-related defects with strong impact on damage properties of silicon detectors, Nucl. Instrum. Methods 611, 52–68 (2009),
https://doi.org/10.1016/j.nima.2009.09.065
[3] R.E. Beddoe, S. Messoloras, R.J. Stewart, G. Kostorz, and E.W.J. Mitchell, Temperature-dependent neutron scattering from silicon single crystals, Philos. Mag. A 48, 935–952 (1983),
https://doi.org/10.1080/01418618308244328
[4] I. Mandić, V. Cindro, A. Gorišek, B. Hiti, G. Kramberger, M. Mikuž, M. Zavrtanik, P. Skomina, S. Hidalgo, and G. Pellegrini, Measurements with silicon detectors at extreme neutron fluences, JINST 15, P11018 (2020),
https://doi.org/10.1088/1748-0221/15/11/p11018
[5] E. Gaubas, T. Čeponis, L. Deveikis, D. Meškauskaitė, J. Pavlov, V. Rumbauskas, J. Vaitkus, M. Moll, and F. Ravotti, Anneal induced transformations of defects in hadron irradiated Si wafers and Schottky diodes, Mater. Sci. Semiconduct. Process. 75, 157–165 (2018),
https://doi.org/10.1016/j.mssp.2017.11.035
[6] E. Žąsinas and J. Vaitkus, Disordered small defect cluster in silicon, Lith. J. Phys. 55, 330–334 (2015),
https://doi.org/10.3952/physics.v55i4.3231
[7] E. Žąsinas and J. Vaitkus, Modelling of radiation induced vacancy-interstitial clusters, in: Book of Abstracts, 26th RD50 Workshop (2015) p. 9,
BoA [PDF], contribution [PDF]
[8] J. Ziegler, SRIM & TRIM,
http://www.srim.org/
[9] R. Radu, I. Pintilie, L.C. Nistor, E. Fretwurst, G. Lindstroem, and L.F. Makarenko, Investigation of point and extended defects in electron irradiated silicon – Dependence on the particle energy, J. Appl. Phys. 117, 164503 (2015),
https://doi.org/10.1063/1.4918924
[10] T.J. Brodbeck, A. Chilingarov, T. Sloan, E. Fretwurst, M. Kuhnke, and G. Lindstroem, Carrier mobilities in irradiated silicon, Nucl. Instrum. Methods A 477, 287–292 (2002),
https://doi.org/10.1016/S0168-9002(01)01858-7
[11] J.V. Vaitkus, A. Mekys, V. Rumbauskas, and J. Storasta, Neutron irradiation influence on mobility and compensation of dark conductivity in silicon, Lith. J. Phys. 56, 102–110 (2016),
https://doi.org/10.3952/physics.v56i2.3306
[12] D.K. Schröder, Semiconductor Material and Device Characterization (A. Wiley-Interscience Publication, N. Y., 1990)
[13] L. Donetti, F. Gamiz, and S. Cristoloveanu, Monte Carlo simulation of Hall and magnetoresistance mobility in SOI devices, Solid State Electron. 51, 1216–1220 (2007),
https://doi.org/10.1016/j.sse.2007.07.022
[14] E.M. Conwell and V.F. Weisskopf, Theory of impurity scattering in semiconductors, Phys. Rev. 77, 388–390 (1950),
https://doi.org/10.1103/PhysRev.77.388
[15] R. Stratton, Dipole scattering from ion pairs in compensated semiconductors, J. Phys. Chem. Solids 23, 1011 (1962),
https://doi.org/10.1016/0022-3697(62)90159-2
[16] K.W. Böer, Handbook of the Physics of Thin-Film Solar Cells (Springer Science & Business Media, Berlin, 2014),
https://doi.org/10.1007/978-3-642-36748-9
[17] C. Jacoboni, C. Canali, G. Ottaviani, and A. Albrigi Quaranta, A review of some charge transport properties of silicon, Solid State Electron. 20, 77–89 (1977),
https://doi.org/10.1016/0038-1101(77)90054-5
[18] A. Rose, Concepts in Photoconductivity and Allied Problems (Interscience Publishers, 1963)
[19] J.S. Blakemore, Semiconductor Statistics (Elsevier, 2016),
https://www.elsevier.com/books/semiconductor-statistics/blakemore/978-0-08-009592-9
[20] B. Van Zeghbroeck, Principles of Semiconductor Devices (University of Colorado, 2007),
http://ecee.colorado.edu/~bart/book/
[21] S. Olibet, E. Vallat-Sauvain, and Ch. Ballif, Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds, Phys. Rev. B 76, 1–14 (2007),
https://doi.org/10.1103/PhysRevB.76.035326
[22] G.B. Norris and K.K. Bajaj, Exciton-plasma Mott transition in Si, Phys. Rev. B 26, 6706–6710 (1982),
https://doi.org/10.1103/PhysRevB.26.6706