[PDF]  https://doi.org/10.3952/physics.v61i2.4439

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 97–109 (2021)
 

PHOTO-ACOUSTIC RESPONSE AND OPTICAL FEATURES OF 2D-TlGaSe2 AND GaAs SEMICONDUCTORS
Vytautas Grivickasa, Karolis Gulbinasa, Vitalijus Bikbajevasa, and Paulius Grivickasb
  a Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, 10257 Vilnius, Lithuania
b Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
Email: vytautas.grivickas@ff.vu.lt

Received 14 May 2021; accepted 18 May 2021

The paper focuses on investigation of the acoustic-optical properties of 2D-TlGaSe2 and GaAs semiconductors using laser pulses. We present the photo-darkening experiments performed by using CW light in spectral ranges below the band gap of TlGaSe2. The data provides evidence that photo-acoustic signals (PAS) for the above band gap are significantly stronger and linear in 2D-TlGaSe2 while they are distorted by nonlinear processes in isotropic GaAs. The comparison discloses characteristic parameters of TlGaSe2, namely a high factor and a negative sign in the refraction coefficient with pressure, a low absorption coefficient and absence of band filling; all guarantee stabile energy conversion by thermoelastic deformation mechanism. Below the band gap range, we found a new kind of PAS in TlGaSe2 on near surfaces. Likewise, we demonstrate that in such spectral range the giant Stark effect in TlGaSe2 is created by focused CW beams. The Stark effect produces local optical darkening which can provide explosion at extreme light power. Likely, both effects could be related to the planar stacking faults in 2D-TlGaSe2, which produce a spontaneous charge separation on layers.
Keywords: 2D-semiconductors, optical deflection, photo-acoustics, induced Stark effect, photo-darkening
PACS: 78.20, 43.35

AKUSTINIS 2D-TlGaSe2 IR GaAs PUSLAIDININKIŲ FOTOATSAKAS BEI OPTINĖS YPATYBĖS
Vytautas Grivickasa, Karolis Gulbinasa, Vitalijus Bikbajevasa, Paulius Grivickasb

a Vilniaus universiteto Fotonikos ir nanotechnologijų institutas, Vilnius, Lietuva
b Lawrence’o Livermoro nacionalinė laboratorija, Livermoras, Kalifornija, JAV

Naudodami lazerio impulsus tyrėme fotoakustines 2D-TlGaSe2 ir GaAs puslaidininkių savybes. Taip pat atlikome fotopatamsėjimo eksperimentus, naudodami pastovaus veikimo fokusuotą apšvitinimą su mažesne nei TlGaSe2 sugerties kraštas kvanto energija. Parodyta, kad fotoakustiniai signalai, generuojami lazerio kvanto energija, virš TlGaSe2 sugerties krašto yra daug stipresni, o nuo sužadinimo lygio – tiesiški, GaAs yra iškraipomi kelių netiesinių optinių procesų. Atlikti palyginimai atskleidė būdingus TlGaSe2 parametrus, atsakingus už šį reiškinį. Tai didelis lūžio rodiklio pokytis tarpsluoksnio slėgio (100) kryptimi ir neigiamas pakitimo ženklas, taip pat esant nedideliam sugerties koeficientui ir nestebint energetinių būsenų užpildymo. Šios savybės garantuoja stabilų lazerio energijos konversijos lygį į akustinius signalus per termoelastinį–deformacinį fotoatsaką. Žemiau energijos krašto aptikome naujus akustinius signalus TlGaSe2 bandiniuose. Matavimai fokusuotos nuolatinės veikos spinduliais šioje kvantų srityje parodė atsirandantį didelį Štarko efektą, kuris indukuoja TlGaSe2 bandinių tamsėjimą ir esant dideliam energijos tankiui sukelia lokalinę medžiagos degradaciją arba sprogimą apšvitintose srityse. Darbo rezultatai leidžia manyti, kad planariniai sanglaudos defektai, būdingi TlGaSe2 sluoksnių struktūroms, yra atsakingi už pasirodžiusią sluoksnių poliarizaciją ir šių savaiminių reiškinių atsiradimą.


References / Nuorodos

[1] A.M. Panich, Electronic properties and phase transitions in low-dimensional semiconductors, J. Phys. Condens. Matter 20, 293202 (2008),
https://doi.org/10.1088/0953-8984/20/29/293202
[2] S. Johnsen, Z. Liu, J.A. Peters, J.-H. Song, S.C. Peter, C.D. Malliakas, N.K. Cho, H. Jin, A.J. Freeman, B.W. Wessels, and M.G. Kanatzidis, Thallium chalcogenide-based wide-band-gap semiconductors: TlGaSe2 for radiation detectors, Chem. Mater. 23, 3120 (2011),
https://doi.org/10.1021/cm200946y
[3] K.A. Yee and Th.A. Albright, Bonding and structure of TIGaSe2, J. Amer. Chem. Soc. 113, 6474 (1991),
https://doi.org/10.1021/ja00017a018
[4] K. Gulbinas, V. Grivickas, and V. Gavryushin, Anisotropy of band gap absorption in TlGaSe2 semiconductor by ferroelectric phase transformation, Appl. Phys. Lett. 10, 5242107 (2014),
https://doi.org/10.1063/1.4904884
[5] M.-H.Yu. Seyidov, R.A. Suleymanov, F. Sale, and E. Balaban, Enhanced exciton photoconductivity due to build-in electric field in TlGaSe2 layered semiconductor, J. Appl. Phys. 116, 213702 (2014),
https://doi.org/10.1063/1.4903051
[6] V. Grivickas, P. Ščajev, V. Bikbajevas, O.V. Korolik, and A.V. Mazanik, Carrier dynamics in highly excited TlInS2: evidence of 2D electron-hole charge separation at parallel layers, Phys. Chem. Chem. Phys. 21, 2102 (2019),
https://doi.org/10.1039/C8CP06209A
[7] V. Grivickas, K. Gulbinas, V. Gavryushin, V. Bikbajevas, O.V. Korolik, A.V. Mazanik, and A.K. Fedotov, Room-temperature photoluminescence in quasi-2D TlGaSe2 and TlInS2 semiconductors, Phys. Status Solidi RRL 8, 639 (2014),
https://doi.org/10.1002/pssr.201409148
[8] V. Grivickas, V. Bikbajevas, K. Gulbinas, V. Gavryushin, and J. Linnros, Strong photoacoustic oscillations in layered TlGaSe2 semiconductor, Phys. Status Solidi B 244, 4624 (2007),
https://doi.org/10.1002/pssb.200743303
[9] V. Grivickas, V. Bikbajevas, K. Allakhverdiev, and J. Linnros, Two-photon absorption in GaSe, J. Phys. Conf. Ser. 100, 042008 (2008),
https://doi.org/10.1088/1742-6596/100/4/042008
[10] M.W. Sigrist, Laser generation of acoustic wave in liquids and gases, J. Appl. Phys. 60, R83 (1986),
https://doi.org/10.1063/1.337089
[11] E.S.K. Young, A.V. Akimov, R.P. Campion, A.J. Kent, and V. Gusev, Picosecond strain pulses generated by a supersonically expanding electron-hole plasma in GaAs, Phys. Rev. B 86, 155207 (2012),
https://doi.org/10.1103/PhysRevB.86.155207
[12] K. Song, H. Cha, J. Lee, and I.A. Veselovskii, Application of optical parametric oscillators to photoacoustic studies in semiconductors, Appl. Phys. B 61, 547 (1995),
https://doi.org/10.1007/BF01091212
[13] K. Gulbinas, Photoelectrical and Optical Properties of Indirect Bandgap Semiconductors, PhD Thesis (Vilnius University, 2015),
http://talpykla.elaba.lt/elaba-fedora/objects/elaba:8283338/datastreams/MAIN/content
[14] C. Thomsen, H.T. Grahn, H.J. Maris, and J. Tauc, Surface generation and detection of phonons by picosecond light pulses, Phys. Rev. B 34, 4129 (1986),
https://doi.org/10.1103/PhysRevB.34.4129
[15] J. Zelewski and R. Kudrawiec, Photoacoustic and modulated reflectance studies of indirect and direct band gap in van der Waals crystals, Sci. Rep. 7, 15365 (2021),
https://doi.org/10.1038/s41598-017-15763-1
[16] B. Sullivan and A.C. Tam, Profile of laser-produced acoustic pulse in a liquid, J. Acoust. Soc. Am. 75, 437 (1984),
https://doi.org/10.1121/1.390467
[17] A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publishers, Vilnius, Lithuania, 1994)
[18] B. Weinstein, R. Zallen, M. Slade, and A. deLozanne, Photoelastic trends for amorphous and crystalline solids of differing network dimensionality, Phys. Rev. B 24, 4652 (1981),
https://doi.org/10.1103/PhysRevB.24.4652
[19] F.J. Manjon, Y. van der Vijver, A. Segura, and V. Muñoz, Pressure dependence of the refractive index in InSe, Semicond. Sci. Tech. 15, 806 (2000),
https://doi.org/10.1088/0268-1242/15/8/304
[20] K.R. Allakhverdiev, T.G. Mammadov, R.A. Suleymanov, and N.Z. Gasanov, Deformation effects in electronic spectra of the layered semiconductors TlGaS2, TlGaSe2 and TlInS2, J. Phys. Condens. Matter 15, 1291 (2003),
https://doi.org/10.1088/0953-8984/15/8/313
[21] S. Adachi, GaAs and Related Materials, Bulk Semiconductors and Superlattice Properties (World Scientific, Singapore, 1994),
https://doi.org/10.1142/2508
[22] D.F. McMorrow, R.A. Cowley, P.D. Hatton, and J. Banys, The structure of the paraelectric and incommensurate phases of TlGaSe2, J. Phys. Condens. Matter 2, 3699 (1990),
https://doi.org/10.1088/0953-8984/2/16/001
[23] K.R. Allakhverdiev, M.A. Aldzanov, T.G. Mamedov, and E.Yu. Salaev, Anomalous behaviour of the Urbach edge and phase transitions in TlGaSe2, Sol. St. Commun. 58, 295 (1986),
https://doi.org/10.1016/0038-1098(86)90087-6
[24] M. Kull, J.L. Coutaz, G. Manneberg, and V. Grivickas, Absorption saturation and photodarkening in semiconductor-doped glasses, Appl. Phys. Lett. 54, 1830 (1989),
https://doi.org/10.1063/1.101249
[25] J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2, J. Appl. Phys. 86, 6128 (1999),
https://doi.org/10.1063/1.371663
[26] P. Roussignol, M. Kull, D. Ricard, F. de Rougemont, R. Frey, and C. Flytzanis, Time-resolved direct observation of Auger recombination in semiconductor-doped glasses, Appl. Phys. Lett. 51, 1882 (1987),
https://doi.org/10.1063/1.98499