[1] A.M. Panich, Electronic properties and phase transitions in
low-dimensional semiconductors, J. Phys. Condens. Matter
20,
293202 (2008),
https://doi.org/10.1088/0953-8984/20/29/293202
[2] S. Johnsen, Z. Liu, J.A. Peters, J.-H. Song, S.C. Peter,
C.D. Malliakas, N.K. Cho, H. Jin, A.J. Freeman, B.W. Wessels,
and M.G. Kanatzidis, Thallium chalcogenide-based wide-band-gap
semiconductors: TlGaSe
2 for radiation detectors,
Chem. Mater. 23, 3120 (2011),
https://doi.org/10.1021/cm200946y
[3] K.A. Yee and Th.A. Albright, Bonding and structure of TIGaSe
2,
J. Amer. Chem. Soc.
113, 6474 (1991),
https://doi.org/10.1021/ja00017a018
[4] K. Gulbinas, V. Grivickas, and V. Gavryushin, Anisotropy of
band gap absorption in TlGaSe
2 semiconductor by
ferroelectric phase transformation, Appl. Phys. Lett.
10,
5242107 (2014),
https://doi.org/10.1063/1.4904884
[5] M.-H.Yu. Seyidov, R.A. Suleymanov, F. Sale, and E. Balaban,
Enhanced exciton photoconductivity due to build-in electric
field in TlGaSe
2 layered semiconductor, J. Appl.
Phys.
116, 213702 (2014),
https://doi.org/10.1063/1.4903051
[6] V. Grivickas, P. Ščajev, V. Bikbajevas, O.V. Korolik, and
A.V. Mazanik, Carrier dynamics in highly excited TlInS
2:
evidence of 2D electron-hole charge separation at parallel
layers, Phys. Chem. Chem. Phys.
21, 2102 (2019),
https://doi.org/10.1039/C8CP06209A
[7] V. Grivickas, K. Gulbinas, V. Gavryushin, V. Bikbajevas,
O.V. Korolik, A.V. Mazanik, and A.K. Fedotov, Room-temperature
photoluminescence in quasi-2D TlGaSe
2 and TlInS
2
semiconductors, Phys. Status Solidi RRL
8, 639 (2014),
https://doi.org/10.1002/pssr.201409148
[8] V. Grivickas, V. Bikbajevas, K. Gulbinas, V. Gavryushin, and
J. Linnros, Strong photoacoustic oscillations in layered TlGaSe2
semiconductor, Phys. Status Solidi B
244, 4624 (2007),
https://doi.org/10.1002/pssb.200743303
[9] V. Grivickas, V. Bikbajevas, K. Allakhverdiev, and J.
Linnros, Two-photon absorption in GaSe, J. Phys. Conf. Ser.
100,
042008 (2008),
https://doi.org/10.1088/1742-6596/100/4/042008
[10] M.W. Sigrist, Laser generation of acoustic wave in liquids
and gases, J. Appl. Phys.
60, R83 (1986),
https://doi.org/10.1063/1.337089
[11] E.S.K. Young, A.V. Akimov, R.P. Campion, A.J. Kent, and V.
Gusev, Picosecond strain pulses generated by a supersonically
expanding electron-hole plasma in GaAs, Phys. Rev. B
86,
155207 (2012),
https://doi.org/10.1103/PhysRevB.86.155207
[12] K. Song, H. Cha, J. Lee, and I.A. Veselovskii, Application
of optical parametric oscillators to photoacoustic studies in
semiconductors, Appl. Phys. B
61, 547 (1995),
https://doi.org/10.1007/BF01091212
[13] K. Gulbinas,
Photoelectrical and Optical Properties of
Indirect Bandgap Semiconductors, PhD Thesis (Vilnius
University, 2015),
http://talpykla.elaba.lt/elaba-fedora/objects/elaba:8283338/datastreams/MAIN/content
[14] C. Thomsen, H.T. Grahn, H.J. Maris, and J. Tauc, Surface
generation and detection of phonons by picosecond light pulses,
Phys. Rev. B
34, 4129 (1986),
https://doi.org/10.1103/PhysRevB.34.4129
[15] J. Zelewski and R. Kudrawiec, Photoacoustic and modulated
reflectance studies of indirect and direct band gap in van der
Waals crystals, Sci. Rep.
7, 15365 (2021),
https://doi.org/10.1038/s41598-017-15763-1
[16] B. Sullivan and A.C. Tam, Profile of laser-produced
acoustic pulse in a liquid, J. Acoust. Soc. Am.
75, 437
(1984),
https://doi.org/10.1121/1.390467
[17] A. Dargys and J. Kundrotas,
Handbook on Physical
Properties of Ge, Si, GaAs and InP (Science and
Encyclopedia Publishers, Vilnius, Lithuania, 1994)
[18] B. Weinstein, R. Zallen, M. Slade, and A. deLozanne,
Photoelastic trends for amorphous and crystalline solids of
differing network dimensionality, Phys. Rev. B
24, 4652
(1981),
https://doi.org/10.1103/PhysRevB.24.4652
[19] F.J. Manjon, Y. van der Vijver, A. Segura, and V. Muñoz,
Pressure dependence of the refractive index in InSe, Semicond.
Sci. Tech.
15, 806 (2000),
https://doi.org/10.1088/0268-1242/15/8/304
[20] K.R. Allakhverdiev, T.G. Mammadov, R.A. Suleymanov, and
N.Z. Gasanov, Deformation effects in electronic spectra of the
layered semiconductors TlGaS
2, TlGaSe
2 and
TlInS
2, J. Phys. Condens. Matter
15, 1291
(2003),
https://doi.org/10.1088/0953-8984/15/8/313
[21] S. Adachi,
GaAs and Related Materials, Bulk
Semiconductors and Superlattice Properties (World
Scientific, Singapore, 1994),
https://doi.org/10.1142/2508
[22] D.F. McMorrow, R.A. Cowley, P.D. Hatton, and J. Banys, The
structure of the paraelectric and incommensurate phases of
TlGaSe
2, J. Phys. Condens. Matter
2, 3699
(1990),
https://doi.org/10.1088/0953-8984/2/16/001
[23] K.R. Allakhverdiev, M.A. Aldzanov, T.G. Mamedov, and E.Yu.
Salaev, Anomalous behaviour of the Urbach edge and phase
transitions in TlGaSe
2, Sol. St. Commun.
58,
295 (1986),
https://doi.org/10.1016/0038-1098(86)90087-6
[24] M. Kull, J.L. Coutaz, G. Manneberg, and V. Grivickas,
Absorption saturation and photodarkening in semiconductor-doped
glasses, Appl. Phys. Lett.
54, 1830 (1989),
https://doi.org/10.1063/1.101249
[25] J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas,
Analysis of the stretched exponential photoluminescence decay
from nanometer-sized silicon crystals in SiO
2, J.
Appl. Phys.
86, 6128 (1999),
https://doi.org/10.1063/1.371663
[26] P. Roussignol, M. Kull, D. Ricard, F. de Rougemont, R.
Frey, and C. Flytzanis, Time-resolved direct observation of
Auger recombination in semiconductor-doped glasses, Appl. Phys.
Lett.
51, 1882 (1987),
https://doi.org/10.1063/1.98499