Received 6 January 2021; revised 5 February 2021; accepted 8
February 2021
[1] J.R. Lakowicz,
Principles of Fluorescence Spectroscopy,
3rd ed. (Springer, New York, 2006),
https://doi.org/10.1007/978-0-387-46312-4
[2] M. Cho,
Two-Dimensional Optical Spectroscopy (Taylor
& Francis Inc, 2009),
https://doi.org/10.1201/9781420084306
[3] V. May and O. Kühn,
Charge and Energy Transfer Dynamics
in Molecular Systems (Wiley VCH Verlag GmbH, 2011),
https://doi.org/10.1002/9783527633791
[4] A. Nitzan,
Chemical Dynamics in Condensed Phases
(Oxford University Press, 2006),
https://doi.org/10.1093/oso/9780198529798.001.0001
[5] D.J. Griffiths and D.F. Schroeter,
Introduction to
Quantum Mechanics (Cambridge University Press, 2018),
https://doi.org/10.1017/9781316995433
[6] P.W. Atkins and R.S. Friedman,
Molecular Quantum
Mechanics (Oxford University Press, 2010),
https://global.oup.com/academic/product/molecular-quantum-mechanics-9780199541423
[7] J. Chmeliov, V. Butkus, and L. Valkūnas,
Kvantinė fizika
(Vilnius University Press, 2020) [in Lithuanian]
[8] W. Demtröder,
Laser Spectroscopy 1 (Springer Berlin
Heidelberg, 2014),
https://doi.org/10.1007/978-3-642-53859-9
[9] W.W. Parson,
Modern Optical Spectroscopy
(Springer-Verlag GmbH, 2015),
https://doi.org/10.1007/978-3-662-46777-0
[10] D.M. Jameson,
Introduction to Fluorescence (Taylor
& Francis Ltd, 2019),
https://doi.org/10.1201/b16502
[11] S. Mukamel,
Principles of Nonlinear Optical
Spectroscopy (Oxford University Press, 1999)
[12] J. Ren, Z. Shuai, and G.K.-L. Chan, Time-dependent density
matrix renormalization group algorithms for nearly exact
absorption and fluorescence spectra of molecular aggregates at
both zero and finite temperature, J. Chem. Theory Comput.
14,
5027 (2018),
https://doi.org/10.1021/acs.jctc.8b00628
[13] J. Ma and J. Cao, Förster resonance energy transfer,
absorption and emission spectra in multichromophoric systems. I.
Full cumulant expansions and system-bath entanglement, J. Chem.
Phys.
142, 094106 (2015),
https://doi.org/10.1063/1.4908599
[14] T. Renger, Theory of excitation energy transfer: from
structure to function, Photosynth. Res.
102, 471 (2009),
https://doi.org/10.1007/s11120-009-9472-9
[15] V.I. Novoderezhkin, M.A. Palacios, H. van Amerongen, and R.
van Grondelle, Energy-transfer dynamics in the LHCII complex of
higher plants: modified Redfield approach, J. Phys. Chem. B
108,
10363 (2004),
https://doi.org/10.1021/jp0496001
[16] T. Renger, M. Madjet, A. Knorr, and F. Müh, How the
molecular structure determines the flow of excitation energy in
plant light-harvesting complex II, J. Plant Physiol.
168,
1497 (2011),
https://doi.org/10.1016/j.jplph.2011.01.004
[17] Y. Jing, L. Chen, S. Bai, and Q. Shi, Equilibrium excited
state and emission spectra of molecular aggregates from the
hierarchical equations of motion approach, J. Chem. Phys.
138,
045101 (2013),
https://doi.org/10.1063/1.4775843
[18] E. Rybakovas, A. Gelzinis, and L. Valkunas, Simulations of
absorption and fluorescence lineshapes using the reaction
coordinate method, Chem. Phys.
515, 242 (2018),
https://doi.org/10.1016/j.chemphys.2018.05.030
[19] D.P. Craig and T. Thirunamachandran,
Molecular Quantum
Electrodynamics (Dover Publications Inc., 1998)
[20] J.D. Cresser, Theory of the spectrum of the quantised light
field, Phys. Rep.
94, 47 (1983),
https://doi.org/10.1016/0370-1573(83)90120-5
[21] L.D. Landau and E.M. Lifshitz,
Quantum Mechanics:
Non-Relativistic Theory (Elsevier Science, 1977)
[22] S. Weinberg,
Lectures on Quantum Mechanics
(Cambridge University Press, Cambridge, New York, 2013),
https://doi.org/10.1017/CBO9781316276105
[23] H.-P. Breuer and F. Petruccione,
The Theory of Open
Quantum Systems (Oxford University Press, Oxford, New
York, 2002),
https://global.oup.com/academic/product/the-theory-of-open-quantum-systems-9780198520634
[24] D. Griffiths,
Introduction to Elementary Particles
(Wiley-VCH GmbH, 2008),
https://www.wiley.com/en-us/Introduction+to+Elementary+Particles%2C+2nd%2C+Revised+Edition-p-9783527406012
[25] H. van Amerongen, L. Valkunas, and R. van Grondelle,
Photosynthetic
Excitons (World Scientific, Singapore, New Jersey, London,
Hong Kong, 2006)
[26] S.S. Andrews, Using rotational averaging to calculate the
bulk response of isotropic and anisotropic samples from
molecular parameters, J. Chem. Educ.
81, 877 (2004),
https://doi.org/10.1021/ed081p877