[PDF]  https://doi.org/10.3952/physics.v61i2.4440

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 110–123 (2021)
 

DERIVATION OF THE STATIONARY FLUORESCENCE SPECTRUM FORMULA FOR MOLECULAR SYSTEMS FROM THE PERSPECTIVE OF QUANTUM ELECTRODYNAMICS
Yakov Bravera,b, Leonas Valkunasa,b, and Andrius Gelzinisa,b
  a Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
b Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius,
Lithuania

Email: andrius.gelzinis@ff.vu.lt

Received 6 January 2021; revised 5 February 2021; accepted 8 February 2021

Numerical simulations of stationary fluorescence spectra of molecular systems usually rely on the relation between the photon emission rate and the system’s dipole–dipole correlation function. However, research papers usually take this relation for granted, and standard textbook expositions of the theory of fluorescence spectra also tend to leave out this important relation. In order to help researchers with less theoretical training gain a deeper understanding of the emission process, we perform a step-by-step derivation of the expression for the fluorescence spectrum, focusing on rigorous mathematical treatment and the underlying physical content. Right from the start, we employ quantum description of the electromagnetic field, which provides a clear picture of emission that goes beyond the phenomenological treatment in terms of the Einstein A coefficient. Having obtained the final expression, we discuss the relation of the latter to the present level of theory by studying a simple two-level system. From the technical perspective, the present work also aims at familiarizing the reader with the density matrix formalism and with the application of the double-sided Feynman diagrams.
Keywords: quantum molecular electrodynamics, dipole–dipole correlation function, Einstein coefficients, Feynman diagrams

MOLEKULINIŲ SISTEMŲ STACIONARIOSIOS FLUORESCENCIJOS SPEKTRO FORMULĖS IŠVEDIMAS NAUDOJANT KVANTINĘ ELEKTRODINAMIKĄ
Jakov Bravera,b, Leonas Valkūnasa,b, Andrius Gelžinisa,b

a Vilniaus universiteto Fizikos fakulteto Cheminės fizikos institutas, Vilnius, Lietuva
b Fizinių ir technologijos mokslų centro Molekulinių darinių fizikos skyrius, Vilnius, Lietuva

Molekulinių sistemų stacionarių fluorescencijos spektrų skaitinis modeliavimas dažniausiai remiasi tam tikru sąryšiu tarp fotonų emisijos spartos ir sistemos dipolių koreliacinės funkcijos. Mokslo darbuose ši išraiška paprastai laikoma savaime suprantamu dalyku, o fluorescencijos spektrų teorijos vadovėliuose šis svarbus sąryšis nėra aptariamas. Norėdami padėti mokslininkams giliau suprasti emisijos procesą, šiame darbe, išlaikydami matematinį griežtumą ir akcentuodami formulių fizikinį turinį, pateikiame nuoseklų fluorescencijos spektro išraiškos išvedimą. Naudojame kvantinį elektromagnetinio lauko aprašymą, suteikiantį aiškesnį emisijos proceso vaizdinį, negu fenomenologinis aprašymas taikant Einšteino koeficientą A. Gavę galutinę išraišką, pateikiame pavyzdinį jos panaudojimą, pritaikydami ją paprastai dviejų lygmenų sistemai nagrinėti. Be to, šiuo darbu siekiame supažindinti skaitytoją su tankio matricos formalizmu ir dvigubujų Feynmano diagramų taikymu.


References / Nuorodos

[1] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, New York, 2006),
https://doi.org/10.1007/978-0-387-46312-4
[2] M. Cho, Two-Dimensional Optical Spectroscopy (Taylor & Francis Inc, 2009),
https://doi.org/10.1201/9781420084306
[3] V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Wiley VCH Verlag GmbH, 2011),
https://doi.org/10.1002/9783527633791
[4] A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, 2006),
https://doi.org/10.1093/oso/9780198529798.001.0001
[5] D.J. Griffiths and D.F. Schroeter, Introduction to Quantum Mechanics (Cambridge University Press, 2018),
https://doi.org/10.1017/9781316995433
[6] P.W. Atkins and R.S. Friedman, Molecular Quantum Mechanics (Oxford University Press, 2010),
https://global.oup.com/academic/product/molecular-quantum-mechanics-9780199541423
[7] J. Chmeliov, V. Butkus, and L. Valkūnas, Kvantinė fizika (Vilnius University Press, 2020) [in Lithuanian]
[8] W. Demtröder, Laser Spectroscopy 1 (Springer Berlin Heidelberg, 2014),
https://doi.org/10.1007/978-3-642-53859-9
[9] W.W. Parson, Modern Optical Spectroscopy (Springer-Verlag GmbH, 2015),
https://doi.org/10.1007/978-3-662-46777-0
[10] D.M. Jameson, Introduction to Fluorescence (Taylor & Francis Ltd, 2019),
https://doi.org/10.1201/b16502
[11] S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1999)
[12] J. Ren, Z. Shuai, and G.K.-L. Chan, Time-dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature, J. Chem. Theory Comput. 14, 5027 (2018),
https://doi.org/10.1021/acs.jctc.8b00628
[13] J. Ma and J. Cao, Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement, J. Chem. Phys. 142, 094106 (2015),
https://doi.org/10.1063/1.4908599
[14] T. Renger, Theory of excitation energy transfer: from structure to function, Photosynth. Res. 102, 471 (2009),
https://doi.org/10.1007/s11120-009-9472-9
[15] V.I. Novoderezhkin, M.A. Palacios, H. van Amerongen, and R. van Grondelle, Energy-transfer dynamics in the LHCII complex of higher plants: modified Redfield approach, J. Phys. Chem. B 108, 10363 (2004),
https://doi.org/10.1021/jp0496001
[16] T. Renger, M. Madjet, A. Knorr, and F. Müh, How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II, J. Plant Physiol. 168, 1497 (2011),
https://doi.org/10.1016/j.jplph.2011.01.004
[17] Y. Jing, L. Chen, S. Bai, and Q. Shi, Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach, J. Chem. Phys. 138, 045101 (2013),
https://doi.org/10.1063/1.4775843
[18] E. Rybakovas, A. Gelzinis, and L. Valkunas, Simulations of absorption and fluorescence lineshapes using the reaction coordinate method, Chem. Phys. 515, 242 (2018),
https://doi.org/10.1016/j.chemphys.2018.05.030
[19] D.P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Dover Publications Inc., 1998)
[20] J.D. Cresser, Theory of the spectrum of the quantised light field, Phys. Rep. 94, 47 (1983),
https://doi.org/10.1016/0370-1573(83)90120-5
[21] L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Elsevier Science, 1977)
[22] S. Weinberg, Lectures on Quantum Mechanics (Cambridge University Press, Cambridge, New York, 2013),
https://doi.org/10.1017/CBO9781316276105
[23] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, New York, 2002),
https://global.oup.com/academic/product/the-theory-of-open-quantum-systems-9780198520634
[24] D. Griffiths, Introduction to Elementary Particles (Wiley-VCH GmbH, 2008),
https://www.wiley.com/en-us/Introduction+to+Elementary+Particles%2C+2nd%2C+Revised+Edition-p-9783527406012
[25] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific, Singapore, New Jersey, London, Hong Kong, 2006)
[26] S.S. Andrews, Using rotational averaging to calculate the bulk response of isotropic and anisotropic samples from molecular parameters, J. Chem. Educ. 81, 877 (2004),
https://doi.org/10.1021/ed081p877