[PDF]  https://doi.org/10.3952/physics.v61i2.4441

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 124–141 (2021)
 

THE BEHAVIOUR OF SAPPHIRE UNDER INTENSE TWO-COLOUR EXCITATION BY PICOSECOND LASER
Mindaugas Gedvilas, Valdemar Stankevič, and Gediminas Račiukaitis
  Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
Email: g.raciukaitis@ftmc.lt

Received 20 May 2021; accepted 21 May 2021

Ultrashort pulse lasers are evidencing their benefits in the processing of transparent materials. Sapphire is one of the most attractive engineering materials today. It is hard and, therefore, difficult to machine mechanically to the required shape. Laser dicing is one of the promising techniques for sapphire separation. Two-pulse two-colour irradiation was applied to initiate free-shape cutting of the material. Two collinear laser beams with wavelengths of 1064 and 355 nm, pulse duration of 10 ps and inter-pulse delay of 0.1 ns were combined to induce intra-volume modifications (directional cracks) in sapphire for wafer separation. The photon energy of both beams is well below the band gap, and various channels of the multi-photon excitation were involved in the process. Significant enhancement in the modification area was experimentally observed when intensities of focused infrared and ultraviolet beams were within narrow ranges. We discuss the resonant laser–sapphire interaction mechanisms, leading to up to four times higher excitation of the material involving multiple photons and energetic levels of intrinsic defects in the band-gap. The energy level schemes of colour centres involved in two-step multi-photon absorption in sapphire under intensive laser irradiation have been prepared.
Keywords: sapphire, picosecond laser, multi-photon excitation, colour centres
PACS: 33.80.Wz, 42.50.Hz, 42.62.−b, 42.62.Cf

SAFYRO KRISTALO SUŽADINIMAS INTENSYVIA DVIEJŲ SPALVŲ PIKOSEKUNDINIO LAZERIO SPINDULIUOTE
Mindaugas Gedvilas, Valdemar Stankevič, Gediminas Račiukaitis

Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Ultratrumpųjų impulsų lazeriai yra plačiai taikomi apdirbant skaidrias medžiagas. Kristalinis safyras yra viena plačiausiai naudojamų skaidrių medžiagų, tačiau dėl kietumo jį sunku apdirbti mechaniniais metodais. Paslėptasis lazerinis raižymas yra vienas iš perspektyviausių safyro padėklų perpjovimo būdų. Siekiant inicijuoti paslėptąjį safyro raižymą, šiame darbe buvo naudojama dviejų impulsų dviejų bangos ilgių kombinuota pikosekundinio lazerio spinduliuotė. Panaudotas kolinearus dviejų pluoštų su 355 ir 1064 nm bangos ilgiais, 10 ps impulso trukme ir 0,1 ns vėlinimu tarp impulsų kombinavimas. Kadangi abiejų pluoštų fotonų energija yra gerokai mažesnė nei draustinių energijų tarpas, buvo išanalizuoti įvairūs daugiafotonio sužadinimo keliai. Eksperimentiškai žymus, iki keturių kartų modifikacijos srities padidėjimas buvo stebimas, kai infraraudonosios ir ultravioletinės spinduliuočių intensyvumas kito siaurame diapazone. Darbe išanalizuotas labiausiai tikėtinas rezonansinis dviejų spalvų lazerio ir safyro kristalo sąveikos mechanizmas, dėl kurio pasiektas iki keturių kartų didesnis sužadinimas, apimantis safyro defektų energetinius lygmenis ir daugiafotonės sugerties kombinacijas. Remiantis ankstesne daugiafotoninės spektroskopijos patirtimi buvo išanalizuoti įvairūs elektronų sužadinimo intensyvia lazerio šviesa safyre modeliai. Parengti spalvinių centrų, dalyvaujančių dviejų pakopų daugiafotoninėje sugertyje safyre, apšvitinant jį intensyvia lazerio spinduliuote, energetiniai modeliai.


References / Nuorodos

[1] M. Yoshimoto, K. Yoshida, H. Maruta, Y. Hishitani, H. Koinuma, S. Nishio, M. Kakihana, and T. Tachibana, Epitaxial diamond growth on sapphire in an oxidising environment, Nature 399, 340–342 (1999),
https://doi.org/10.1038/20653
[2] P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, Sapphire-derived all-glass optical fibres, Nat. Photonics 6, 629–635 (2012),
https://doi.org/10.1038/nphoton.2012.182
[3] R. Yamauchi, Y. Hamasaki, T. Shibuya, A. Saito, N. Tsuchimine, K. Koyama, A. Matsuda, and M. Yoshimoto, Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates, Sci. Rep. 5, 14385 (2015),
https://doi.org/10.1038/srep14385
[4] H. Liu and D. Chi, Dispersive growth and laser-induced rippling of large-area single layer MoS2 nanosheets by CVD on c-plane sapphire substrate, Sci. Rep. 5, 11756 (2015),
https://doi.org/10.1038/srep11756
[5] A. Tanaka, R. Chen, K.L. Jungjohann, and S.A. Dayeh, Strong geometrical effects in submillimeter selective area growth and light extraction of GaN light emitting diodes on sapphire, Sci. Rep. 5, 17314 (2015),
https://doi.org/10.1038/srep17314
[6] G. Li, W. Wang, W. Yang, Y. Lin, H. Wang, Z. Lin, and S. Zhou, GaN-based light-emitting diodes on various substrates: a critical review, Rep. Prog. Phys. 79, 56501 (2016),
https://doi.org/10.1088/0034-4885/79/5/056501
[7] T. Vodenitcharova, L.C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho, and M. Sato, The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks, J. Mater. Process. Technol. 193, 52–62 (2007),
https://doi.org/10.1016/j.jmatprotec.2007.03.125
[8] R.W. Dreyfus, F. McDonald, and R.J. von Gutfeld, Laser energy deposition at sapphire surfaces studied by pulsed photothermal deformation, Appl. Phys. Lett. 50, 1491 (1987),
https://doi.org/10.1063/1.97809
[9] D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E.E. Campbell, Laser processing of sapphire with picosecond and sub-picosecond pulses, Appl. Surf. Sci. 120, 65–80 (1997),
https://doi.org/10.1016/S0169-4332(97)00218-3
[10] H. Horisawa, H. Emura, and N. Yasunaga, Surface machining characteristics of sapphire with fifth harmonic YAG laser pulses, Vacuum 73, 661–666 (2004),
https://doi.org/10.1016/j.vacuum.2003.12.065
[11] X.C. Wang, G.C. Lim, H.Y. Zheng, F.L. Ng, W. Liu, and S.J. Chua, Femtosecond pulse laser ablation of sapphire in ambient air, Appl. Surf. Sci. 228, 221–226 (2004),
https://doi.org/10.1016/j.apsusc.2004.01.009
[12] M. Kumagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsumi, and K. Fukumitsu, Advanced dicing technology for semiconductor wafer – Stealth Dicing, IEEE Trans. Semicond. Manuf. 20, 259–265 (2007),
https://doi.org/10.1109/ISSM.2006.4493065
[13] W.-S. Lei, A. Kumar, and R. Yalamanchili, Die singulation technologies for advanced packaging: A critical review, J. Vac. Sci. Technol. B 30, 40801 (2012),
https://doi.org/10.1116/1.3700230
[14] W.H. Teh, D.S. Boning, and R.E. Welsch, Multistrata stealth dicing before grinding for singulation-defects elimination and die strength enhancement: Experiment and simulation, IEEE Trans. Semicond. Manuf. 28, 408–423 (2015),
https://doi.org/10.1109/TSM.2015.2438875
[15] E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, Modified-layer formation mechanism into silicon with permeable nanosecond laser, Int. J. Comput. Mater. Sci. Surf. Eng. 1, 677 (2007),
https://doi.org/10.1504/IJCMSSE.2007.017923
[16] Y. Wang, A. Chen, S. Li, L. Sui, D. Liu, D. Tian, Y. Jiang, and M. Jin, Enhancement of laser-induced Fe plasma spectroscopy with dual-wavelength femtosecond double-pulse, J. Anal. At. Spectrom. 31, 497–505 (2016),
https://doi.org/10.1039/C5JA00420A
[17] S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, Laser-induced periodic surface structures on titanium upon single- and two-colour femtosecond double-pulse irradiation, Opt. Express 23, 25959–25971 (2015),
https://doi.org/10.1364/OE.23.025959
[18] M. Gedvilas, J. Mikšys, and G. Račiukaitis, Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation, RSC Adv. 5, 75075–75080 (2015),
https://dx.doi.org/10.1039/c5ra14210e
[19] S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, Femtosecond laser-induced periodic surface structures on silicon upon polarisation controlled two-colour double-pulse irradiation, Opt. Express 23, 61 (2015),
https://doi.org/10.1364/OE.23.000061
[20] S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, Laser-induced periodic surface structures on fused silica upon cross-polarised two-colour double-fs-pulse irradiation, Appl. Surf. Sci. 336, 39–42 (2015),
https://doi.org/10.1016/j.apsusc.2014.09.101
[21] S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J. Bonse, Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-colour double-pulse irradiation of metals, semiconductors, and dielectrics, Appl. Surf. Sci. 374, 331–338 (2016),
https://doi.org/10.1016/j.apsusc.2015.12.129
[22] P. Demange, R.A. Negres, A.M. Rubenchik, H.B. Radousky, M.D. Feit, and S.G. Demos, Understanding and predicting the damage performance of KDxH2–xPO4 crystals under simultaneous exposure to 532- and 355-nm pulses, Appl. Phys. Lett. 89, 181922 (2006),
https://doi.org/10.1063/1.2378484
[23] L. Yan, C. Wei, Y. Zhao, K. Yi, and J. Shao, Multiple wavelength laser induced damage of multilayer beam splitters, Proc. SPIE 8530, 1–16 (2012),
https://doi.org/10.1117/12.977254
[24] L. Yan, C. Wei, D. Li, K. Yi, and Z. Fan, Dual-wavelength investigation of laser-induced damage in multilayer mirrors at 532 and 1064 nm, Opt. Commun. 285, 2889–2896 (2012),
https://doi.org/10.1016/j.optcom.2012.02.028
[25] L. Lamaignere, S. Reyne, M. Loiseau, J.-C. Poncetta, and H. Bercegol, Effects of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2, Proc. SPIE 6720, 67200F (2007),
https://doi.org/10.1117/12.753057
[26] M. Mrohs, L. Jensen, S. Günster, T. Alig, and D. Ristau, Dual wavelength laser-induced damage threshold measurements of alumina/silica and hafnia/silica ultraviolet antireflective coatings, Appl. Opt. 55, 104–109 (2016),
https://doi.org/10.1364/AO.55.000104
[27] S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G. Geoffroy, and G. Vilmart, Ultrafast breakdown of dielectrics: Energy absorption mechanisms investigated by double pulse experiments, Appl. Surf. Sci. 336, 206–211 (2015),
https://doi.org/10.1016/j.apsusc.2014.11.036
[28] R.C.R. Santos, E. Longhinotti, V.N. Freire, R.B. Reimberg, and E.W.S. Caetano, Elucidating the high-k insulator α-Al2O3 direct/indirect energy band gap type through density functional theory computations, Chem. Phys. Lett., 637, 172–176 (2015),
https://doi.org/10.1016/j.cplett.2015.08.004
[29] M. Liu and H.K. Kim, Strain-induced channel waveguiding in bulk sapphire substrates, Appl. Phys. Lett. 79, 2693 (2001),
https://doi.org/10.1063/1.1413221
[30] R.H. French, R.L. Coble, R.V. Kasowski, and F.S. Ohuchia, Vacuum ultraviolet, photoemission and theoretical studies of the electronic structure of Al2O3 up to 1000°C, Physica B+C 150(1–2), 47–49 (1988),
https://doi.org/10.1016/0378-4363(88)90104-0
[31] G.O. Williams and M. Fajardo, Density-functional-theory calculations of the optical properties of Al2O3: From solid-state to warm dense matter conditions, High Energ. Dens. Phys. 33, 100718 (2019),
https://doi.org/10.1016/j.hedp.2019.100718
[32] F. Ohuchi and Q. Zhong, Electronic structure of metal-ceramic interfaces, ISIJ Int. 30(12), 1059–1065 (1990),
https://doi.org/10.2355/isijinternational.30.1059
[33] M. Gedvilas, J. Mikšys, J. Berzinš, V. Stankevič, and G. Račiukaitis, Multi-photon absorption enhancement by dual-wavelength double-pulse laser irradiation for efficient dicing of sapphire wafers, Sci. Rep. 7, 5218 (2017),
https://doi.org/10.1038/s41598-017-05548-x
[34] M.J. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett. 7, 196–198 (1982),
https://doi.org/10.1364/OL.7.000196
[35] B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Legare, F. Vidal, and J.C. Kieffer, Damage and ablation thresholds of fused-silica in femtosecond regime, Phys. Rev. B 84, 094104 (2011),
https://doi.org/10.1103/PhysRevB.84.094104
[36] F. Wang, J. Shan, E. Knoesel, M. Bonn, and T.F. Heinz, Electronic charge transport in sapphire studied by optical-pump/THz-probe spectroscopy, Proc. SPIE 5352, 216–221 (2004),
https://doi.org/10.1117/12.532505
[37] B.S. Wherrett, Scaling rules for multiphoton interband absorption in semiconductors, J. Opt. Soc. Am. B 1(1), 67–72 (1984),
https://doi.org/10.1364/JOSAB.1.000067
[38] E. Arola, Theoretical studies on multiphoton absorption of ultrashort laser pulses in sapphire, IEEE J. Quantum Electron. 50(8), 1–12 (2014),
https://doi.org/10.1109/JQE.2014.2328101
[39] F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P. Meynadier, and M. Perdrix, Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies, Appl. Phys. B 68, 459–463 (1999),
https://doi.org/10.1007/s003400050649
[40] L. Capuano, D. de Zeeuw, and G.R.B.E. Römer, Towards a numerical model of picosecond laser-material interaction in bulk sapphire, J. Laser Micro Nanoeng. 13(3), 166–177 (2018),
https://doi.org/10.2961/jlmn.2018.03.0005
[41] C. Karras, Z. Sun, D.N. Nguyen, L.A. Emmert, and W. Rudolph, The impact ionization coefficient in dielectric materials revisited, Proc. SPIE 8190, 819028 (2011),
https://doi.org/10.1117/12.899267
[42] M. Giehler, H. Kostial, R. Hey, and H.T. Grahn, Effect of free-carrier absorption on the threshold current density of GaAs/(Al,Ga)As quantum-cascade lasers, J. Appl. Phys. 96, 4755–4761 (2004),
https://doi.org/10.1063/1.1803635
[43] S. Guizard, N. Fedorov, A. Mouskeftaras, and S. Klimentov, Femtosecond laser ablation of dielectrics: experimental studies of fundamental processes, AIP Conf. Proc. 1278, 336 (2010),
https://doi.org/10.1063/1.3507119
[44] I. Chowdhury, A. Wu, X. Xu, and A. Weiner, Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics, Appl. Phys. A 81, 1627–1632 (2005),
https://doi.org/10.1007/s00339-005-3326-x
[45] S. Wu, D. Wu, J. Xu, H. Wang, T. Makimura, K. Sugioka, and K. Midorikawa, Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding, Opt. Express 21, 24049–24059 (2013),
https://doi.org/10.1364/OE.21.024049
[46] S.S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, Dynamics of femtosecond laser interactions with dielectrics, Appl. Phys. A 79, 1695–1709 (2004),
https://doi.org/10.1007/s00339-004-2684-0
[47] M.L. Bortz, R.H. French, D.J. Jones, R.V. Kasowski, and F.S. Ohuchi, Temperature dependence of the electronic structure of oxides: MgO, MgAl204 and Al2O3, Phys. Scr. 41, 537–541 (1990),
https://doi.org/10.1088/0031-8949/41/4/036
[48] J.B. Varley, A. Janotti, C. Franchini, and C.G. Van de Walle, Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides, Phys. Rev. B 85, 081109(R) (2012),
https://doi.org/10.1103/PhysRevB.85.081109
[49] B. Namozov, M. Fominich, R. Zakharchenya, and V. Myurk, Structure of the self-trapped exciton luminescence in α-Al2O3, Phys. Solid State 40, 837 (1998),
https://doi.org/10.1134/1.1130416
[50] A.M. Stoneham, J. Gavartin, A.L. Shluger, A.V. Kimmel, D. Munoz Ramo, H.M. Rønnow, G. Aeppli, and C. Renner, Trapping, self-trapping and the polaron family, J. Phys. Condens. Matter 19, 255208 (2007),
https://doi.org/10.1088/0953-8984/19/25/255208
[51] S. Lederer, S. Akhmadaliev, P. Forck, E. Gütlich, A. Lieberwirth, and W. Ensinger, Thermal annealing behavior of α-Al2O3 scintillation screens, Nucl. Instrum. Methods Phys. Res. B 365, 548–552 (2015),
https://doi.org/10.1016/j.nimb.2015.08.024
[52] T. Watcharatharapong, J.T. Thienprasert, and S. Limpijumnong, Theoretical study of optical properties of native point defects in α-Al2O3, Integr. Ferroelectr. 156(1), 79–85 (2014),
https://doi.org/10.1080/10584587.2014.906290
[53] R. Baltramiejunas, V.D. Ryzhikov, V. Gavryushin, A. Kazlauskas, G. Raciukaitis, V.I. Silin, D. Juodzbalis, and V. Stepankevicius, Luminescent and non-linear spectroscopy of recombination centers in isovalent doped ZnSe:Te crystals, J. Lumin. 52, 71–81 (1992),
https://doi.org/10.1016/0022-2313(92)90234-Z
[54] R. Baltrameyunas, V. Gavryushin, G. Rachyukaitis, V. Ryzhikov, A. Kazlauskas, and V. Kubertavichyus, Spectroscopy of deep centers in ZnSe:Te single crystals based on laser modulation of two-stage absorption, Sov. Phys. Semicond. 22(7), 738–743 (1988)
[55] C.B. Samantaray, H. Sim, and H. Hwang, First-principles study of electronic structure and electron-energy-loss-spectroscopy (EELS) of transition-metal aluminates as high-k gate dielectrics, Appl. Surf. Sci. 242, 121–128 (2005),
https://doi.org/10.1016/j.apsusc.2004.08.004
[56] J. Dienes, D.O. Welch, C.R. Fischer, R.D. Hatcher, O. Lazareth, and M. Samberg, Shell-model calculation of some point-defect properties in α – Al2O3, Phys. Rev. B 11(8), 3060–3070 (1975),
https://doi.org/10.1103/PhysRevB.11.3060
[57] V.A. Pustovarov, V.Sh. Aliev, T.V. Perevalov, V.A. Gritsenko, and A.P. Eliseev, Electronic structure of an oxygen vacancy in Al2O3 from the results of Ab Initio quantum-chemical calculations and photoluminescence experiments, J. Exp. Theor. Phys. 111(6), 989–995 (2010),
https://doi.org/10.1134/S1063776110120113
[58] O.A. Dicks, J. Cottom, A.L. Shluger, and V.V. Afanas’ev, The origin of negative charging in amorphous Al2O3 films: the role of native defects, Nanotechnology 30, 205201 (2019),
https://doi.org/10.1088/1361-6528/ab0450
[59] G. Wang, H. Zuo, M. Zhang, X. He, H. Han, C. Xu, J. Yang, and B. Grigoryan, The spectra and color centers of large sapphire crystal, Rare Metal Mater. Engineer. 36(z2), 457–460 (2007),
https://caod.oriprobe.com/articles/486942/The_Spectra_and_Color_Centers_of_Large_Sapphire_Cr.htm
[60] D.V. Ananchenko, S.V. Nikiforov, G.R. Ramazanova, R.I. Batalov, R.M. Bayazitov, and H.A. Novikov, Luminescence of sapphire single crystals irradiated with high-power ion beams, J. Phys. Conf. Ser. 1115, 052027 (2018),
https://doi.org/10.1088/1742-6596/1115/5/052027
[61] B.D. Evans and M. Stapelbroek, Optical properties of the F+ center in crystalline Al2O3, Phys. Rev. B 18, 7089–7098 (1978),
https://doi.org/10.1103/PhysRevB.18.7089
[62] V.S. Kortov, V.A. Pustovarov, S.V. Zvonarev, and T.V. Shtang, Luminescence and radiation-induced color centers in anion-defective alumina crystals after high-dose irradiation, Radiat. Meas. 90, 90–93 (2016),
https://doi.org/10.1016/j.radmeas.2016.01.010
[63] M. Izerrouken and T. Benyahia, Absorption and photoluminescence study of Al2O3 single crystal irradiated with fast neutrons, Nucl. Instrum. Methods Phys. Res. B 268, 2987–2990 (2010),
https://doi.org/10.1016/j.nimb.2010.05.024
[64] E. Shablonin, A.I. Popov, G. Prieditis, E. Vasil’chenko, and A. Lushchik, Thermal annealing and transformation of dimer F centers in neutron-irradiated Al2O3 single crystals, J. Nucl. Mater. 543, 152600 (2021),
https://doi.org/10.1016/j.jnucmat.2020.152600
[65] T. Mohanty, N.C. Mishra, F. Singh, S.V. Bhat, and D. Kanjila, Color center formation in sapphire by swift heavy ion irradiation, Radiat. Meas. 36(1–6), 723–727 (2003),
https://doi.org/10.1016/S1350-4487(03)00234-8