Mindaugas Gedvilas, Valdemar Stankevič, and Gediminas
Račiukaitis
[1] M. Yoshimoto, K. Yoshida, H. Maruta, Y. Hishitani, H.
Koinuma, S. Nishio, M. Kakihana, and T. Tachibana, Epitaxial
diamond growth on sapphire in an oxidising environment, Nature
399,
340–342 (1999),
https://doi.org/10.1038/20653
[2] P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato,
Sapphire-derived all-glass optical fibres, Nat. Photonics
6,
629–635 (2012),
https://doi.org/10.1038/nphoton.2012.182
[3] R. Yamauchi, Y. Hamasaki, T. Shibuya, A. Saito, N.
Tsuchimine, K. Koyama, A. Matsuda, and M. Yoshimoto, Layer
matching epitaxy of NiO thin films on atomically stepped
sapphire (0001) substrates, Sci. Rep.
5, 14385 (2015),
https://doi.org/10.1038/srep14385
[4] H. Liu and D. Chi, Dispersive growth and laser-induced
rippling of large-area single layer MoS
2 nanosheets
by CVD on c-plane sapphire substrate, Sci. Rep.
5, 11756
(2015),
https://doi.org/10.1038/srep11756
[5] A. Tanaka, R. Chen, K.L. Jungjohann, and S.A. Dayeh, Strong
geometrical effects in submillimeter selective area growth and
light extraction of GaN light emitting diodes on sapphire, Sci.
Rep.
5, 17314 (2015),
https://doi.org/10.1038/srep17314
[6] G. Li, W. Wang, W. Yang, Y. Lin, H. Wang, Z. Lin, and S.
Zhou, GaN-based light-emitting diodes on various substrates: a
critical review, Rep. Prog. Phys.
79, 56501 (2016),
https://doi.org/10.1088/0034-4885/79/5/056501
[7] T. Vodenitcharova, L.C. Zhang, I. Zarudi, Y. Yin, H. Domyo,
T. Ho, and M. Sato, The effect of anisotropy on the deformation
and fracture of sapphire wafers subjected to thermal shocks, J.
Mater. Process. Technol.
193, 52–62 (2007),
https://doi.org/10.1016/j.jmatprotec.2007.03.125
[8] R.W. Dreyfus, F. McDonald, and R.J. von Gutfeld, Laser
energy deposition at sapphire surfaces studied by pulsed
photothermal deformation, Appl. Phys. Lett.
50, 1491
(1987),
https://doi.org/10.1063/1.97809
[9] D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wähmer, and E.E.
Campbell, Laser processing of sapphire with picosecond and
sub-picosecond pulses, Appl. Surf. Sci.
120, 65–80
(1997),
https://doi.org/10.1016/S0169-4332(97)00218-3
[10] H. Horisawa, H. Emura, and N. Yasunaga, Surface machining
characteristics of sapphire with fifth harmonic YAG laser
pulses, Vacuum
73, 661–666 (2004),
https://doi.org/10.1016/j.vacuum.2003.12.065
[11] X.C. Wang, G.C. Lim, H.Y. Zheng, F.L. Ng, W. Liu, and S.J.
Chua, Femtosecond pulse laser ablation of sapphire in ambient
air, Appl. Surf. Sci.
228, 221–226 (2004),
https://doi.org/10.1016/j.apsusc.2004.01.009
[12] M. Kumagai, N. Uchiyama, E. Ohmura, R. Sugiura, K. Atsumi,
and K. Fukumitsu, Advanced dicing technology for semiconductor
wafer – Stealth Dicing, IEEE Trans. Semicond. Manuf.
20,
259–265 (2007),
https://doi.org/10.1109/ISSM.2006.4493065
[13] W.-S. Lei, A. Kumar, and R. Yalamanchili, Die singulation
technologies for advanced packaging: A critical review, J. Vac.
Sci. Technol. B
30, 40801 (2012),
https://doi.org/10.1116/1.3700230
[14] W.H. Teh, D.S. Boning, and R.E. Welsch, Multistrata stealth
dicing before grinding for singulation-defects elimination and
die strength enhancement: Experiment and simulation, IEEE Trans.
Semicond. Manuf.
28, 408–423 (2015),
https://doi.org/10.1109/TSM.2015.2438875
[15] E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita,
Modified-layer formation mechanism into silicon with permeable
nanosecond laser, Int. J. Comput. Mater. Sci. Surf. Eng.
1,
677 (2007),
https://doi.org/10.1504/IJCMSSE.2007.017923
[16] Y. Wang, A. Chen, S. Li, L. Sui, D. Liu, D. Tian, Y. Jiang,
and M. Jin, Enhancement of laser-induced Fe plasma spectroscopy
with dual-wavelength femtosecond double-pulse, J. Anal. At.
Spectrom.
31, 497–505 (2016),
https://doi.org/10.1039/C5JA00420A
[17] S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse,
Laser-induced periodic surface structures on titanium upon
single- and two-colour femtosecond double-pulse irradiation,
Opt. Express
23, 25959–25971 (2015),
https://doi.org/10.1364/OE.23.025959
[18] M. Gedvilas, J. Mikšys, and G. Račiukaitis, Flexible
periodical micro- and nano-structuring of a stainless steel
surface using dual-wavelength double-pulse picosecond laser
irradiation, RSC Adv.
5, 75075–75080 (2015),
https://dx.doi.org/10.1039/c5ra14210e
[19] S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J.
Bonse, Femtosecond laser-induced periodic surface structures on
silicon upon polarisation controlled two-colour double-pulse
irradiation, Opt. Express
23, 61 (2015),
https://doi.org/10.1364/OE.23.000061
[20] S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J.
Bonse, Laser-induced periodic surface structures on fused silica
upon cross-polarised two-colour double-fs-pulse irradiation,
Appl. Surf. Sci.
336, 39–42 (2015),
https://doi.org/10.1016/j.apsusc.2014.09.101
[21] S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, and J.
Bonse, Dynamics of the formation of laser-induced periodic
surface structures (LIPSS) upon femtosecond two-colour
double-pulse irradiation of metals, semiconductors, and
dielectrics, Appl. Surf. Sci.
374, 331–338 (2016),
https://doi.org/10.1016/j.apsusc.2015.12.129
[22] P. Demange, R.A. Negres, A.M. Rubenchik, H.B. Radousky,
M.D. Feit, and S.G. Demos, Understanding and predicting the
damage performance of KD
xH
2–xPO
4
crystals under simultaneous exposure to 532- and 355-nm pulses,
Appl. Phys. Lett.
89, 181922 (2006),
https://doi.org/10.1063/1.2378484
[23] L. Yan, C. Wei, Y. Zhao, K. Yi, and J. Shao, Multiple
wavelength laser induced damage of multilayer beam splitters,
Proc. SPIE
8530, 1–16 (2012),
https://doi.org/10.1117/12.977254
[24] L. Yan, C. Wei, D. Li, K. Yi, and Z. Fan, Dual-wavelength
investigation of laser-induced damage in multilayer mirrors at
532 and 1064 nm, Opt. Commun.
285, 2889–2896 (2012),
https://doi.org/10.1016/j.optcom.2012.02.028
[25] L. Lamaignere, S. Reyne, M. Loiseau, J.-C. Poncetta, and H.
Bercegol, Effects of wavelengths combination on initiation and
growth of laser-induced surface damage in SiO
2, Proc.
SPIE
6720, 67200F (2007),
https://doi.org/10.1117/12.753057
[26] M. Mrohs, L. Jensen, S. Günster, T. Alig, and D. Ristau,
Dual wavelength laser-induced damage threshold measurements of
alumina/silica and hafnia/silica ultraviolet antireflective
coatings, Appl. Opt.
55, 104–109 (2016),
https://doi.org/10.1364/AO.55.000104
[27] S. Guizard, S. Klimentov, A. Mouskeftaras, N. Fedorov, G.
Geoffroy, and G. Vilmart, Ultrafast breakdown of dielectrics:
Energy absorption mechanisms investigated by double pulse
experiments, Appl. Surf. Sci.
336, 206–211 (2015),
https://doi.org/10.1016/j.apsusc.2014.11.036
[28] R.C.R. Santos, E. Longhinotti, V.N. Freire, R.B. Reimberg,
and E.W.S. Caetano, Elucidating the high-k insulator α-Al2O3
direct/indirect energy band gap type through density functional
theory computations, Chem. Phys. Lett.,
637, 172–176
(2015),
https://doi.org/10.1016/j.cplett.2015.08.004
[29] M. Liu and H.K. Kim, Strain-induced channel waveguiding in
bulk sapphire substrates, Appl. Phys. Lett.
79, 2693
(2001),
https://doi.org/10.1063/1.1413221
[30] R.H. French, R.L. Coble, R.V. Kasowski, and F.S. Ohuchia,
Vacuum ultraviolet, photoemission and theoretical studies of the
electronic structure of Al
2O
3 up to
1000°C, Physica B+C
150(1–2), 47–49 (1988),
https://doi.org/10.1016/0378-4363(88)90104-0
[31] G.O. Williams and M. Fajardo, Density-functional-theory
calculations of the optical properties of Al
2O
3:
From solid-state to warm dense matter conditions, High Energ.
Dens. Phys.
33, 100718 (2019),
https://doi.org/10.1016/j.hedp.2019.100718
[32] F. Ohuchi and Q. Zhong, Electronic structure of
metal-ceramic interfaces, ISIJ Int.
30(12), 1059–1065
(1990),
https://doi.org/10.2355/isijinternational.30.1059
[33] M. Gedvilas, J. Mikšys, J. Berzinš, V. Stankevič, and G.
Račiukaitis, Multi-photon absorption enhancement by
dual-wavelength double-pulse laser irradiation for efficient
dicing of sapphire wafers, Sci. Rep.
7, 5218 (2017),
https://doi.org/10.1038/s41598-017-05548-x
[34] M.J. Liu, Simple technique for measurements of pulsed
Gaussian-beam spot sizes, Opt. Lett.
7, 196–198 (1982),
https://doi.org/10.1364/OL.7.000196
[35] B. Chimier, O. Uteza, N. Sanner, M. Sentis, T. Itina, P.
Lassonde, F. Legare, F. Vidal, and J.C. Kieffer, Damage and
ablation thresholds of fused-silica in femtosecond regime, Phys.
Rev. B
84, 094104 (2011),
https://doi.org/10.1103/PhysRevB.84.094104
[36] F. Wang, J. Shan, E. Knoesel, M. Bonn, and T.F. Heinz,
Electronic charge transport in sapphire studied by
optical-pump/THz-probe spectroscopy, Proc. SPIE
5352,
216–221 (2004),
https://doi.org/10.1117/12.532505
[37] B.S. Wherrett, Scaling rules for multiphoton interband
absorption in semiconductors, J. Opt. Soc. Am. B
1(1),
67–72 (1984),
https://doi.org/10.1364/JOSAB.1.000067
[38] E. Arola, Theoretical studies on multiphoton absorption of
ultrashort laser pulses in sapphire, IEEE J. Quantum Electron.
50(8),
1–12 (2014),
https://doi.org/10.1109/JQE.2014.2328101
[39] F. Quéré, S. Guizard, P. Martin, G. Petite, O. Gobert, P.
Meynadier, and M. Perdrix, Ultrafast carrier dynamics in
laser-excited materials: subpicosecond optical studies, Appl.
Phys. B
68, 459–463 (1999),
https://doi.org/10.1007/s003400050649
[40] L. Capuano, D. de Zeeuw, and G.R.B.E. Römer, Towards a
numerical model of picosecond laser-material interaction in bulk
sapphire, J. Laser Micro Nanoeng.
13(3), 166–177 (2018),
https://doi.org/10.2961/jlmn.2018.03.0005
[41] C. Karras, Z. Sun, D.N. Nguyen, L.A. Emmert, and W.
Rudolph, The impact ionization coefficient in dielectric
materials revisited, Proc. SPIE
8190, 819028 (2011),
https://doi.org/10.1117/12.899267
[42] M. Giehler, H. Kostial, R. Hey, and H.T. Grahn, Effect of
free-carrier absorption on the threshold current density of
GaAs/(Al,Ga)As quantum-cascade lasers, J. Appl. Phys.
96,
4755–4761 (2004),
https://doi.org/10.1063/1.1803635
[43] S. Guizard, N. Fedorov, A. Mouskeftaras, and S. Klimentov,
Femtosecond laser ablation of dielectrics: experimental studies
of fundamental processes, AIP Conf. Proc.
1278, 336
(2010),
https://doi.org/10.1063/1.3507119
[44] I. Chowdhury, A. Wu, X. Xu, and A. Weiner, Ultra-fast laser
absorption and ablation dynamics in wide-band-gap dielectrics,
Appl. Phys. A
81, 1627–1632 (2005),
https://doi.org/10.1007/s00339-005-3326-x
[45] S. Wu, D. Wu, J. Xu, H. Wang, T. Makimura, K. Sugioka, and
K. Midorikawa, Absorption mechanism of the second pulse in
double-pulse femtosecond laser glass microwelding, Opt. Express
21, 24049–24059 (2013),
https://doi.org/10.1364/OE.21.024049
[46] S.S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G.
Petite, and P. Martin, Dynamics of femtosecond laser
interactions with dielectrics, Appl. Phys. A
79,
1695–1709 (2004),
https://doi.org/10.1007/s00339-004-2684-0
[47] M.L. Bortz, R.H. French, D.J. Jones, R.V. Kasowski, and
F.S. Ohuchi, Temperature dependence of the electronic structure
of oxides: MgO, MgAl
20
4 and Al
2O
3,
Phys. Scr.
41, 537–541 (1990),
https://doi.org/10.1088/0031-8949/41/4/036
[48] J.B. Varley, A. Janotti, C. Franchini, and C.G. Van de
Walle, Role of self-trapping in luminescence and
p-type
conductivity of wide-band-gap oxides, Phys. Rev. B
85,
081109(R) (2012),
https://doi.org/10.1103/PhysRevB.85.081109
[49] B. Namozov, M. Fominich, R. Zakharchenya, and V. Myurk,
Structure of the self-trapped exciton luminescence in
α-Al
2O
3,
Phys. Solid State
40, 837 (1998),
https://doi.org/10.1134/1.1130416
[50] A.M. Stoneham, J. Gavartin, A.L. Shluger, A.V. Kimmel, D.
Munoz Ramo, H.M. Rønnow, G. Aeppli, and C. Renner, Trapping,
self-trapping and the polaron family, J. Phys. Condens. Matter
19,
255208 (2007),
https://doi.org/10.1088/0953-8984/19/25/255208
[51] S. Lederer, S. Akhmadaliev, P. Forck, E. Gütlich, A.
Lieberwirth, and W. Ensinger, Thermal annealing behavior of
α-Al
2O
3
scintillation screens, Nucl. Instrum. Methods Phys. Res. B
365,
548–552 (2015),
https://doi.org/10.1016/j.nimb.2015.08.024
[52] T. Watcharatharapong, J.T. Thienprasert, and S.
Limpijumnong, Theoretical study of optical properties of native
point defects in α-Al
2O
3, Integr.
Ferroelectr.
156(1), 79–85 (2014),
https://doi.org/10.1080/10584587.2014.906290
[53] R. Baltramiejunas, V.D. Ryzhikov, V. Gavryushin, A.
Kazlauskas, G. Raciukaitis, V.I. Silin, D. Juodzbalis, and V.
Stepankevicius, Luminescent and non-linear spectroscopy of
recombination centers in isovalent doped ZnSe:Te crystals, J.
Lumin.
52, 71–81 (1992),
https://doi.org/10.1016/0022-2313(92)90234-Z
[54] R. Baltrameyunas, V. Gavryushin, G. Rachyukaitis, V.
Ryzhikov, A. Kazlauskas, and V. Kubertavichyus, Spectroscopy of
deep centers in ZnSe:Te single crystals based on laser
modulation of two-stage absorption, Sov. Phys. Semicond.
22(7),
738–743 (1988)
[55] C.B. Samantaray, H. Sim, and H. Hwang, First-principles
study of electronic structure and
electron-energy-loss-spectroscopy (EELS) of transition-metal
aluminates as high-
k gate dielectrics, Appl. Surf. Sci.
242,
121–128 (2005),
https://doi.org/10.1016/j.apsusc.2004.08.004
[56] J. Dienes, D.O. Welch, C.R. Fischer, R.D. Hatcher, O.
Lazareth, and M. Samberg, Shell-model calculation of some
point-defect properties in α
– Al
2O
3,
Phys. Rev. B
11(8), 3060–3070 (1975),
https://doi.org/10.1103/PhysRevB.11.3060
[57] V.A. Pustovarov, V.Sh. Aliev, T.V. Perevalov, V.A.
Gritsenko, and A.P. Eliseev, Electronic structure of an oxygen
vacancy in Al
2O
3 from the results of Ab
Initio quantum-chemical calculations and photoluminescence
experiments, J. Exp. Theor. Phys.
111(6), 989–995
(2010),
https://doi.org/10.1134/S1063776110120113
[58] O.A. Dicks, J. Cottom, A.L. Shluger, and V.V. Afanas’ev,
The origin of negative charging in amorphous Al
2O
3
films: the role of native defects, Nanotechnology
30,
205201 (2019),
https://doi.org/10.1088/1361-6528/ab0450
[59] G. Wang, H. Zuo, M. Zhang, X. He, H. Han, C. Xu, J. Yang,
and B. Grigoryan, The spectra and color centers of large
sapphire crystal, Rare Metal Mater. Engineer.
36(z2),
457–460 (2007),
https://caod.oriprobe.com/articles/486942/The_Spectra_and_Color_Centers_of_Large_Sapphire_Cr.htm
[60] D.V. Ananchenko, S.V. Nikiforov, G.R. Ramazanova, R.I.
Batalov, R.M. Bayazitov, and H.A. Novikov, Luminescence of
sapphire single crystals irradiated with high-power ion beams,
J. Phys. Conf. Ser.
1115, 052027 (2018),
https://doi.org/10.1088/1742-6596/1115/5/052027
[61] B.D. Evans and M. Stapelbroek, Optical properties of the
F+
center in crystalline Al
2O
3, Phys. Rev. B
18, 7089–7098 (1978),
https://doi.org/10.1103/PhysRevB.18.7089
[62] V.S. Kortov, V.A. Pustovarov, S.V. Zvonarev, and T.V.
Shtang, Luminescence and radiation-induced color centers in
anion-defective alumina crystals after high-dose irradiation,
Radiat. Meas.
90, 90–93 (2016),
https://doi.org/10.1016/j.radmeas.2016.01.010
[63] M. Izerrouken and T. Benyahia, Absorption and
photoluminescence study of Al
2O
3 single
crystal irradiated with fast neutrons, Nucl. Instrum. Methods
Phys. Res. B
268, 2987–2990 (2010),
https://doi.org/10.1016/j.nimb.2010.05.024
[64] E. Shablonin, A.I. Popov, G. Prieditis, E. Vasil’chenko,
and A. Lushchik, Thermal annealing and transformation of dimer F
centers in neutron-irradiated Al2O3 single crystals, J. Nucl.
Mater.
543, 152600 (2021),
https://doi.org/10.1016/j.jnucmat.2020.152600
[65] T. Mohanty, N.C. Mishra, F. Singh, S.V. Bhat, and D.
Kanjila, Color center formation in sapphire by swift heavy ion
irradiation, Radiat. Meas.
36(1–6), 723–727 (2003),
https://doi.org/10.1016/S1350-4487(03)00234-8