[PDF]  https://doi.org/10.3952/physics.v61i3.4514

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 151–160 (2021)
 

RADIATION DEFECTS IN NaCl MATRIX WITH REDUCED LATTICE SYMMETRY CAUSED BY LIGHT CATION DOPING AND ELASTIC UNIAXIAL DEFORMATION
Kuanyshbek Shunkeyeva, Zhiger Ubaeva, Aleksandr Lushchika,b, and Lyudmila Myasnikovaa
  a K. Zhubanov Aktobe Regional University, 34 Moldagulova Avenue, 030000 Aktobe, Kazakhstan
Institute of Physics, University of Tartu, 1 W. Ostwald Street, 50411 Tartu, Estonia
Email: shunkeev@rambler.ru

Received 18 December 2020; revised 24 March 2021; accepted 24 March 2021

The processes of radiation defect creation and radiative relaxation of electronic excitations under applied local or/and uniaxial elastic deformation have been studied in NaCl crystals by means of optical absorption, luminescence and thermoactivation spectroscopy methods. In NaCl:Li at 80 K, X-ray-induced absorption bands peaked around 3.35 and 4.6 eV have been detected and ascribed to interstitial halide atoms located nearby Li impurity cations, HA(Li) centres. Subsequent thermal annealing of HA(Li) centres leads to the formation of polyhalide centres responsible for the absorption band at 5.35 eV. In an X-irradiated and stressed NaCl:Li crystal (degree of uniaxial elastic deformation of ε = 0.9%), the peak of thermally stimulated luminescence at ~115 K is composed of the ~2.7-eV emission appearing, in our opinion, due to the recombination of the electron, thermally released from an F′ centre, with a hole-type HA(Li) centre. The  applied uniaxial elastic stress facilitates the  self-trapping of anion excitons in regular regions of a NaCl lattice and impedes the energy transfer by mobile excitons to impurities/defects and, in turn, attenuates the Br-related luminescence peaked at 3.95 eV with respect to the π-emission of self-trapped excitons (~3.35 eV). The 3.95 eV emission has been detected in a natural NaCl crystal containing homologous Br impurity ions.
Keywords: alkali halide crystal, self-trapped exciton, electronic excitation, uniaxial elastic deformation
PACS: 61.10.Ht, 61.80.Az, 78.55.Fv, 78.70.En, 78.60.-b

RADIACINIAI DEFEKTAI NaCl MATRICOJE SU DĖL NEDIDELIŲ KATIJONINIŲ PRIEMAIŠŲ IR ELASTINĖS VIENAAŠĖS DEFORMACIJOS SUMAŽINTA GARDELĖS SIMETRIJA
Kuanyshbek Shunkeyeva, Zhiger Ubaeva, Aleksandr Lushchika,b,  Lyudmila Myasnikovaa

a Aktobės regioninis K. Zubanovo universitetas, Aktobė, Kazachstanas
Tartu universiteto Fizikos institutas, Tartu, Estija



References / Nuorodos

[1] Ch.B. Lushchik, in: Excitons, Ch. 12, eds. E.I. Rash­ba and M.D. Sturge (Amsterdam, North-Holland, New York, Oxford, 1982)
[2] K.S. Song and R.T. Williams, Self-Trapped Excitons, 2nd ed. (Springer Verlag, Berlin, 1993),
https://doi.org/10.1007/978-3-642-97432-8
[3] K. Kan'no, H. Tanaka, and T. Hayashi, New aspects of intrinsic luminescence in alkali halides, Rev. Solid State Sci. 4, 383–401 (1990)
[4] M.N. Kabler, Low-temperature recombination luminescence in alkali halide crystals, Phys. Rev. 136, A1296–A1302 (1964),
https://doi.org/10.1103/PhysRev.136.A1296
[5] J. Ramamurti and K. Teegarden, Intrinsic luminescence of RbI and KI at 10°K, Phys. Rev. 145, 698–703 (1966),
https://doi.org/10.1103/PhysRev.145.698
[6] K. Teegarden and G. Baldini, Optical absorption spectra of alkali halides at 10°K, Phys. Rev. 155, 896–907 (1967),
https://doi.org/10.1103/PhysRev.155.896
[7] M. Ikezawa and T. Kojima, Luminescence of alkali halide crystals induced by UV-light at low temperature, J. Phys. Soc. Jpn. 27, 1551–1563 (1969),
https://doi.org/10.1143/JPSJ.27.1551
[8] D. Pooley and W.A. Runciman, Recombination luminescence in alkali halides, J. Phys. C 3, 1815–1824 (1970),
https://doi.org/10.1088/0022-3719/3/8/022
[9] C.J. Delbecq, Y. Toyozawa, and P.H. Yuster, Tun­neling luminescence of trapped electrons and holes in KCl:AgCl and KCl:TlCl, Phys. Rev. B 9, 4497–4505 (1974),
https://doi.org/10.1103/PhysRevB.9.4497
[10] S. Iwai, T. Tokizaki, A. Nakamura, K. Tanimura, N. Itoh, and A. Shluger, One-center small polarons as short-lived precursors in self-trapping processes of holes and electron-hole pairs in alkali iodides, Phys. Rev. Lett. 76, 1691–1694 (1996),
https://doi.org/10.1103/PhysRevLett.76.1691
[11] Ch. Lushchik and A. Lushchik, Evolution of anion and cation excitons in alkali halide crystals, Fiz. Tverd. Tela 60, 1478–1494 (2018) [Phys. Solid State 60, 1487–1505 (2018)],
https://doi.org/10.1134/S1063783418080164
[12] A. Bekeshev, E. Vasil'chenko, A. Dauletbekova, K. Shunkeev, and A. Élango, Radiation-stimulated impurity yield in interstitial sites in KBr-Li and KCl-Li crystals, Phys. Solid State 38, 425–429 (1996)
[13] I.A. Kaplunov, G.I. Kropotov, V.E. Rogalin, and A.A. Shakhmin, On the transparency of alkali-halide crystal in the terahertz spectral range, Opt. Spectrosc. 128(10), 1583–1587 (2020),
https://doi.org/10.1134/S0030400X20100136
[14] Ch.B. Lushchik, in: Physics of Radiation Effects in Crystals, Ch. 8, eds. R.A. Johnson and A.N. Orlov (Amsterdam, North-Holland, New York, Oxford, 1986),
[15] T.F. Hunter, The F centre in alkali halide crystals (NaCl structure), Mol. Phys. 14, 171–181 (1968),
https://doi.org/10.1080/00268976800100181
[16] K. Ueta, Y. Kondo, M. Hirai, and M. Yoshinari, F center formation in KCl crystals by pulsed electron beam at 80°K, J. Phys. Soc. Jpn. 26, 1000–1006 (1969),
https://doi.org/10.1143/JPSJ.26.1000
[17] R.T. Williams, J.N. Bradford, and W.L. Faust, Short-pulse optical studies of exciton relaxation and F-center formation in NaCl, KCl, and NaBr, Phys. Rev. B 18, 7038–7057 (1978),
https://doi.org/10.1103/PhysRevB.18.7038
[18] K. Tanimura and N. Itoh, The hopping motion of the self-trapped exciton in NaCl, J. Phys. Chem. Solids 42, 901–910 (1981),
https://doi.org/10.1016/0022-3697(81)90016-0
[19] Ch. Lushchik, J. Kolk, A. Lushchik, and N. Lush­chik, Radiational creation of Frenkel defects in KCl–Tl, Phys. Status Solidi A 86, 219–227 (1984),
https://doi.org/10.1002/pssa.2210860123
[20] N. Itoh and K. Tanimura, Formation of interstitial-vacancy pairs by electronic excitation in pure ionic crystals, J. Phys. Chem. Solids 51, 717–735 (1990),
https://doi.org/10.1016/0022-3697(90)90145-6
[21] A. Lushchik, I. Kudryavtseva, Ch. Lushchik, E. Va­­sil'chenko, M. Kirm, and I. Martinson, Crea­tion of stable Frenkel defects by VUV radiation in KBr crystals under conditions of multiplication of electronic excitations, Phys. Rev. B 52, 10069–10072 (1995),
https://doi.org/10.1103/PhysRevB.52.10069
[22] A. Popov and E. Balanzat, F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K, Nucl. Instrum. Methods B 166, 545–549 (2000),
https://doi.org/10.1016/S0168-583X(99)00789-2
[23] A. Lushchik, M. Kirm, Ch. Lushchik, and E. Va­sil'chenko, Excitonic and electron-hole mechanisms of the creation of Frenkel defects in alkali halides, Nucl. Instrum. Methods B 166–167, 529–537 (2000),
https://doi.org/10.1016/S0168-583X(99)00788-0
[24] N. Itoh and A.M. Stoneham, Material Modification by Electronic Excitations (Cambridge University Press, Cambridge, 2000),
https://doi.org/10.1017/CBO9780511541254
[25] A. Lushchik, Ch. Lushchik, V. Nagirnyi, E. Shab­lonin, and E. Vasil'chenko, Low-temperature creation of Frenkel defects via hot electron-hole recombination in highly pure NaCl single crystal, Fiz. Nizk. Temp. 42, 699–704 (2016) [Low Temp. Phys. 42, 547–551 (2016)],
https://doi.org/10.1063/1.4959011
[26] A. Lushchik, Ch. Lushchik, E. Vasil'chenko, and A.I. Popov, Radiation creation of cation defects in alkali halide crystals: Review and today's concept, Fiz. Nizk. Temp. 44, 357–367 (2018) [Low Temp. Phys. 44, 269–277 (2018)],
https://doi.org/10.1063/1.5030448
[27] K. Kan'no and Y. Nakai, Defect formation with UV-laser irradiation in alkali halides, Semicond. Insulators 5, 493–504 (1983)
[28] M. Hirai, Formation of color centers in anion-doped crystals, J. Phys. Chem. Solids 51, 737–745 (1990),
https://doi.org/10.1016/0022-3697(90)90146-7
[29] A. Lushchik, Ch. Lushchik, N. Lushchik, A. Fro­rip, and O. Nikiforova, Formation and decay of electronic excitations localized near divacancies in alkali halides, Phys. Status Solidi B 168, 413–423 (1991),
https://doi.org/10.1002/pssb.2221680204
[30] V. Babin, A. Elango, K. Kalder, A. Maaroos, K. Shun­keev, E. Vasil'chenko, and S. Zazubovich, Luminescent defects created in alkali iodides by plastic deformation at 4.2 K, J. Lumin. 81, 71–77 (1999),
https://doi.org/10.1016/S0022-2313(98)00051-9
[31] E. Vasil'chenko, E. Sarmukhanov, K. Shunkeev, and A. Elango. Electronic excitations in KBr and KI сrystals near vacancy defects of different size, Phys. Status Solidi B, 174,155–163 (1992),
https://doi.org/10.1002/pssb.2221740115
[32] K. Shunkeyev, L. Myasnikova, A. Barmina, N. Zhan­turina, S. Sagimbaeva, Z. Aimaganbetova, and D. Ser­geyev, The thermostimulated luminescence of radiation defects in KCl, KBr and KI crystals at elastic and plastic deformation, J. Phys. Conf. Ser. 830(1), 012138 (2017),
https://doi.org/10.1088/1742-6596/830/1/012138
[33] M. Kobayashi, T. Hirose, and H. Nishimura, High pressure effects on self-trapped excitons in RbI, J. Lumin. 48–49, 98–102 (1991),
https://doi.org/10.1016/0022-2313(91)90083-8
[34] H. Nishimura, T. Tsujimoto, M. Nakayama, T. Horiguchi, and M. Kobayashi, Effects of hydrostatic pressure on the self-trapped exciton luminescence in KI, J. Phys. Soc. Jpn. 63, 2818–2824 (1994),
https://doi.org/10.1143/JPSJ.63.2818
[35] V. Babin, A. Bekeshev, A. Elango, K. Kalder, A. Maa­roos, K. Shunkeev, E. Vasil'chenko, and S. Za­zu­bovich, Effect in unixial stress on luminescence of undoped and thallium-doped KI and RbI crystals, J. Phys. Condens. Matter 11, 2303–2317 (1999),
https://doi.org/10.1088/0953-8984/11/10/016
[36] A. Elango, Sh. Sagimbaeva, E. Sarmukhanov, T. Savikhina, and K. Shunkeev, Effect in unixial stress on luminescence of X- and VUV-irradiated NaCl and NaBr crystals, Radiat. Meas. 33, 823–827 (2001),
https://doi.org/10.1016/S1350-4487(01)00244-X
[37] A. Bekeshev, K. Shunkeev, E. Vasil'chenko, and A. Elan­go, Effect of uniaxial compression on the luminescence of self-trapped excitons in CsI at 80 K, Phys. Solid State 39, 75–76 (1997),
https://doi.org/10.1134/1.1129835
[38] V. Babin, A. Bekeshev, A. Elango, K. Kalder, K. Shun­keev, E. Vasil'chenko, and S. Zazubovich, Effect of uniaxial on dynamics of electronic excitation in alkali halides, J. Lumin. 76–77, 502–506 (1998),
https://doi.org/10.1016/S0022-2313(97)00244-5
[39] K. Shunkeyev, E. Sarmukhanov, A. Bekeshev, S. Sagimbaeva, and K. Bizhanova, The cryostat for deformation of crystals at low temperatures, J. Phys. Conf. Ser. 400, 052032 (2012),
https://doi.org/10.1088/1742-6596/400/5/052032
[40] A. Lushchik, J. Kolk, N. Lushchik, and A. Frorip, Structure of H interstitials and the vibronic mechanism of exciton decay with the creation of Frenkel defects in NaCl crystals, Trudy Inst. Fiz. AN ESSR 58, 47–66 (1986)
[41] D. Schoemaker, Games people play with interstitials (in alkali halides), J. Phys. (Paris) Colloq. 37(C7), 63–71 (1976),
https://doi.org/10.1051/jphyscol:1976707
[42] A. Bekeshev, E. Sarmukhanov, S. Sagimbaeva, S. Tulepbergenov, K. Shunkeev, E. Vasil'chenko, and A. Elango, Influence of uniaxial compression at 80 K on the formation of radiation defects in KCl, KBr, and Kl crystals, Phys. Solid State 40, 63–67 (1998),
https://doi.org/10.1134/1.1130234
[43] T.G. Castner and W. Känzig, The electronic structure of V-centers. J. Phys. Chem. Solids 3, 178–195 (1957),
https://doi.org/10.1016/0022-3697(57)90023-9
[44] W. Känzig and T.O. Woodruff, The electronic structure of an H-center, J. Phys. Chem. Solids 9, 70–92 (1959),
https://doi.org/10.1016/0022-3697(59)90092-7
[45] F. Seitz, Color centers in alkali halide crystals. II, Rev. Mod. Phys. 26, 7–94 (1954),
https://doi.org/10.1103/RevModPhys.26.7
[46] K. Shunkeyev, N. Zhanturina, Z. Aimaganbetova, A. Barmina, L. Myasnikova, S. Sagymbaeva, and D. Sergeyev, The specifics of radiative annihilation of self-trapped excitons in a KI-Tl crystal under low-temperature deformation, Fiz. Nizk. Temp. 42, 738–742 (2016) [Low Temp. Phys. 42, 580–583 (2016)],
https://doi.org/10.1063/1.4960008
[47] K. Shunkeyev, A. Lushchik, L. Myasnikova, Sh. Sa­gimbaeva, Zh. Ubaev, and Z. Aimaganbetova, Deformation-stimulated Ex luminescence in a RbI single crystal, Fiz. Nizk. Temp. 45, 1323–1327 (2019) [Low Temp. Phys. 45, 1127–1130],
https://doi.org/10.1063/1.5125992