[PDF]  https://doi.org/10.3952/physics.v61i3.4515

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 161–168 (2021)
 

DEPOSITION OF COLLOIDAL METAL NANOPARTICLES ON ZINC OXIDE NANORODS AND THEIR INFLUENCE ON VISIBLE PHOTOLUMINESCENCE
Dilafruz Kulmatovaa,b, Margarita Baitimirovaa, Uldis Malinovskisa, Chiung-Fen Changc, Yesong Gud, Asta Tamulevičienėe, Donats Ertsa,f, and Juris Prikulisa
  a Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., 1586 Riga, Latvia
b National University of Uzbekistan, Vuzgorodok, 100174 Tashkent, Uzbekistan
c Department of Environmental Science and Engineering, Tunghai University, 40704 Taichung, Taiwan
d Department of Chemical and Materials Engineering, Tunghai University, 40704 Taichung, Taiwan
e Institute of Materials Science, Kaunas University of Technology, K. Baršausko 59, 51423 Kaunas, Lithuania
f Department of Chemistry, University of Latvia, 19 Raina Blvd., 1586 Riga, Latvia
Email: juris.prikulis@lu.lv

Received 18 December 2020; revised 12 April 2021; accepted 15 April 2021

We examine the influence of colloidal Au and Ag nanoparticles (NP) on hydrothermally grown ZnO nanorods (NR). Individual 60 nm diameter NP and small NP assemblies without formation of large aggregates were deposited on poly-L-lysine covered NR films using the dip-coating method. The evaluation of morphological and optical properties of the obtained ZnO-metal hybrids was done using scanning electron microscopy, photoluminescence (PL) аnd diffuse reflection spectroscopy. The presence of Au NP selectively suppressed the PL components near 560 nm wavelength associated with ZnO surface defects, whereas equally sized Ag NP resulted in a much smaller change of PL signal, barely above the noise level. The presented results may be useful for tuning the optical properties of hybrid materials in development of sensor or photovoltaic devices.
Keywords: ZnO nanostructures, plasmonic metal nanoparticles, templated deposition, dip coating
PACS: 73.20.Mf, 82.70.Dd, 78.55.-m

KOLOIDINIŲ METALO NANODALELIŲ NUSODINIMAS ANT CINKO OKSIDO NANOSTRYPELIŲ IR JŲ ĮTAKA REGIMAJAI FOTOLIUMINESCENCIJAI
Dilafruz Kulmatovaa,b, Margarita Baitimirovaa, Uldis Malinovskisa, Chiung-Fen Changc, Yesong Gud, Asta Tamulevičienėe, Donats Ertsa,f, Juris Prikulisa

a Latvijos universiteto Cheminės fizikos institutas, Ryga, Latvija
b Uzbekistano nacionalinis universitetas, Taškentas, Uzbekistanas
c Tunghai universiteto Aplinkos mokslo ir inžinerijos fakultetas, Taichungas, Taivanas
d Tunghai universiteto Chemijos ir medžiagų inžinerijos fakultetas, Taichungas, Taivanas
e Kauno technologijos universiteto Medžiagų mokslo institutas, Kaunas, Lietuva
f Latvijos universiteto Chemijos fakultetas, Ryga, Latvija

Analizuota koloidinių aukso (Au) ir sidabro (Ag) nanodalelių įtaka hidrotermiškai užaugintų ZnO nanostrypelių optinėms savybėms. Individualios 60 nm skersmens nanodalelės ir jų mažos sankaupos išvengiant didelių agregatų buvo nusodintos ant poli-L-lizinu padengtų nanostrypelių nardinimo būdu. Suformuotų ZnO-metalo hibridų morfologija ir optinės savybės buvo įvertintos naudojantis atitinkamai skenuojančiu elektronų mikroskopu bei fotoliuminescencijos ir difuzinio atspindžio spektroskopijomis. Nustatyta, kad Au nanodalelės selektyviai slopina ZnO nanostrypelių fotoliuminescencijos signalą ties 560 nm, kuris susijęs su ZnO paviršiniais defektais. Tuo tarpu vienodo dydžio Ag nanodalelės turėjo tik nežymią įtaką fotoliuminescencijos signalui. Pristatomi rezultatai gali būti naudingi valdant hibridinių medžiagų optines savybes tobulinant jutiklius ar fotovoltinius prietaisus.


References / Nuorodos

[1] J.W. Kemling, A.J. Qavi, R.C. Bailey, and K.S. Sus­lick, Nanostructured substrates for optical sensing, J. Phys. Chem. Lett. 2, 2934 (2011),
https://doi.org/10.1021/jz201147g
[2] R. Viter, Z. Balevicius, A. Abou Chaaya, I. Ba­le­vi­ciute, S. Tumenas, L. Mikoliunaite, A. Ra­ma­na­vi­cius, Z. Gertnere, A. Zalesska, V. Vataman, V. Smyn­tyna, D. Erts, P. Miele, and M. Bechelany, The influence of localized plasmons on the optical properties of Au/ZnO nanostructures, J. Mater. Chem. C 3, 6815 (2015),
https://doi.org/10.1039/C5TC00964B
[3] U. Malinovskis, R. Poplausks, D. Erts, K. Ramser, S. Tamulevičius, A. Tamulevičienė, Y. Gu, and J. Prikulis, High-density plasmonic nanoparticle arrays deposited on nanoporous anodic alumina templates for optical sensor applications, Nanomaterials 9, 531 (2019),
https://doi.org/10.3390/nano9040531
[4] H.H. Mai and E. Janssens, Au nanoparticle-decorated ZnO nanorods as fluorescent non-enzymatic glucose probe, Microchim. Acta 187, 577 (2020),
https://doi.org/10.1007/s00604-020-04563-6
[5] A. Tamashevski, Y. Harmaza, E. Slobozhanina, R. Viter, and I. Iatsunskyi, Photoluminescent detection of human T-lymphoblastic cells by ZnO nanorods, Molecules 25, 3168 (2020),
https://doi.org/10.3390/molecules25143168
[6] F. Zhou, W. Jing, S. Liu, Q. Mao, Y. Xu, F. Han, Z. Wei, and Z. Jiang, Electrodeposition of gold nanoparticles on ZnO nanorods for improved performance of enzymatic glucose sensors, Mater. Sci. Semicond. Process. 105, 104708 (2020),
https://doi.org/10.1016/j.mssp.2019.104708
[7] Z.H. Chen, Y.B. Tang, C.P. Liu, Y.H. Leung, G.D. Yuan, L.M. Chen, Y.Q. Wang, I. Bello, J.A. Zapien, W.J. Zhang, C.S. Lee, and S.T. Lee, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells, J. Phys. Chem. C 113, 13433 (2009),
https://doi.org/10.1021/jp903153w
[8] T. Bora, D. Zoepfl, and J. Dutta, Importance of plasmonic heating on visible light driven photocatalysis of gold nanoparticle decorated zinc oxide nanorods, Sci. Rep. 6, 26913 (2016),
https://doi.org/10.1038/srep26913
[9] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Resh­chi­kov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Mor­koç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301 (2005),
https://doi.org/10.1063/1.1992666
[10] B.K. Meyer, H. Alves, D.M. Hofmann, W. Krieg­seis, D. Forster, F. Bertram, J. Christen, A. Hoff­mann, M. Straßburg, M. Dworzak, U. Haboeck, and A.V. Rodina, Bound exciton and donor-acceptor pair recombinations in ZnO, Phys. Status Solidi 241, 231 (2004),
https://doi.org/10.1002/pssb.200301962
[11] S. Kuriakose, B. Satpati, and S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures, Phys. Chem. Chem. Phys. 17, 25172 (2015),
https://doi.org/10.1039/C5CP01681A
[12] B. Lin, Z. Fu, and Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett. 79, 943 (2001),
https://doi.org/10.1063/1.1394173
[13] Z. Wang, X. Zu, S. Zhu, and L. Wang, Green luminescence originates from surface defects in ZnO nanoparticles, Phys. E Low Dimens. Syst. Nanostruct. 35, 199 (2006),
https://doi.org/10.1016/j.physe.2006.07.022
[14] T. Serevičius and S. Juršėnas, Growth, properties and sensor applications of low temperature grown ZnO nanorods, Lith. J. Phys. 51, 309 (2011),
https://doi.org/10.3952/lithjphys.51409
[15] A. Wei, L. Pan, and W. Huang, Recent progress in the ZnO nanostructure-based sensors, Mater. Sci. Eng. B 176, 1409 (2011),
https://doi.org/10.1016/j.mseb.2011.09.005
[16] A.B. Djurišić, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, and S. Gwo, Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength, Appl. Phys. Lett. 88, 103107 (2006),
https://doi.org/10.1063/1.2182096
[17] L. Yang, Q. Zhao, and M. Willander, Size-controlled growth of well-aligned ZnO nanorod arrays with two-step chemical bath deposition method, J. Alloys Compd. 469, 623 (2009),
https://doi.org/10.1016/j.jallcom.2008.08.002
[18] S. Baruah and J. Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv. Mater. 10, 013001 (2009),
https://doi.org/10.1088/1468-6996/10/1/013001
[19] J. Li, X. Chen, H. Li, M. He, and Z. Qiao, Fabrication of zinc oxide nanorods, J. Cryst. Growth 233, 5 (2001),
https://doi.org/10.1016/S0022-0248(01)01509-3
[20] A. Abou Chaaya, R. Viter, M. Bechelany, Z. Alute, D. Erts, A. Zalesskaya, K. Kovalevskis, V. Rouessac, V. Smyntyna, and P. Miele, Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition, Beilstein J. Nanotechnol. 4, 690 (2013),
https://doi.org/10.3762/bjnano.4.78
[21] A. Kołodziejczak-Radzimska and T. Jesionowski, Zinc oxide - from synthesis to application: A review, Materials (Basel) 7, 2833 (2014),
https://doi.org/10.3390/ma7042833
[22] C.G. Read, E.M.P. Steinmiller, and K.-S. Choi, Atomic plane-selective deposition of gold nanoparticles on metal oxide crystals exploiting preferential adsorption of additives, J. Am. Chem. Soc. 131, 12040 (2009),
https://doi.org/10.1021/ja9036884
[23] K.A. Willets and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58, 267 (2007),
https://doi.org/10.1146/annurev.physchem.58.032806.104607
[24] K. Nakaji, H. Li, T. Kiba, M. Igarashi, S. Samukawa, and A. Murayama, Plasmonic enhancements of photoluminescence in hybrid Si nanostructures with Au fabricated by fully top-down lithography, Nanoscale Res. Lett. 7, 629 (2012),
https://doi.org/10.1186/1556-276X-7-629
[25] U. Malinovskis, R. Poplausks, I. Apsite, R. Meija, J. Prikulis, F. Lombardi, and D. Erts, Ultrathin anodic aluminum oxide membranes for production of dense sub-20 nm nanoparticle arrays, J. Phys. Chem. C 118, 8685 (2014),
https://doi.org/10.1021/jp412689y
[26] J. Prikulis, U. Malinovskis, R. Poplausks, I. Apsite, G. Bergs, and D. Erts, Optical scattering by dense disordered metal nanoparticle arrays, Plasmonics 9, 427 (2014),
https://doi.org/10.1007/s11468-013-9639-2
[27] Q. Zhang, J. Xie, Y. Yu, and J.Y. Lee, Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles, Nanoscale 2, 1962 (2010),
https://doi.org/10.1039/c0nr00155d
[28] U.K. Makhmanov, A. Kokhkharov, S. Bakhramov, and D. Erts, The formation of self-assembled structures of C60 in solution and in the volume of an evaporating drop of a colloidal solution, Lith. J. Phys. 60 (2020),
https://doi.org/10.3952/physics.v60i3.4306
[29] J.M. Romo-Herrera, R.A. Alvarez-Puebla, and L.M. Liz-Marzán, Controlled assembly of plasmonic colloidal nanoparticle clusters, Nanoscale 3, 1304 (2011),
https://doi.org/10.1039/c0nr00804d
[30] U. Malinovskis, A. Berzins, F. Gahbauer, R. Fer­ber, G. Kitenbergs, I. Muiznieks, D. Erts, and J. Pri­kulis, Colloidal nanoparticle sorting and ordering on anodic alumina patterned surfaces using templated capillary force assembly, Surf. Coatings Technol. 326, 264 (2017),
https://doi.org/10.1016/j.surfcoat.2017.07.057
[31] F. Ghilini, M.C. Rodríguez González, A.G. Miñán, D. Pissinis, A.H. Creus, R.C. Salvarezza, and P.L. Schilardi, Highly stabilized nanoparticles on poly-L-lysine-coated oxidized metals: a versatile platform with enhanced antimicrobial activity, ACS Appl. Mater. Interfaces 10, 23657 (2018),
https://doi.org/10.1021/acsami.8b07529
[32] R. Viter, K. Kunene, P. Genys, D. Jevdokimovs, D. Erts, A. Sutka, K. Bisetty, A. Viksna, A. Ra­ma­naviciene, and A. Ramanavicius, Photo­electrochemical bisphenol S sensor based on ZnO-nanoroads modified by molecularly imprinted polypyrrole, Macromol. Chem. Phys. 221(2), 1900232 (2019),
https://doi.org/10.1002/macp.201900232
[33] A. Kumar, E. Villarreal, X. Zhang, and E. Ringe, Micro-extinction spectroscopy (MExS): a versatile optical characterization technique, Adv. Struct. Chem. Imaging 4, 8 (2018),
https://doi.org/10.1186/s40679-018-0057-6
[34] K.-M. Kim, M.-H. Choi, J.-K. Lee, Y.-R. Jeong, J. Kim, M.-K. Kim, S.-M. Paek, and J.-M. Oh, Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes, Int. J. Nanomedicine 9, 41 (2014),
https://doi.org/10.2147/IJN.S57923
[35] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, J. Am. Chem. Soc. 126, 62 (2004),
https://doi.org/10.1021/ja038636o
[36] A.S. Dimitrov and K. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces, Langmuir 12, 1303 (1996),
https://doi.org/10.1021/la9502251
[37] L. Wu, Y. Wu, X. Pan, and F. Kong, Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property, Opt. Mater. (Amst) 28, 418 (2006),
https://doi.org/10.1016/j.optmat.2005.03.007
[38] H.Y. Lin, C.L. Cheng, Y.Y. Chou, L.L. Huang, Y.F. Chen, and K.T. Tsen, Enhancement of band gap emission stimulated by defect loss, Opt. Express 14, 2372 (2006),
https://doi.org/10.1364/OE.14.002372
[39] M. Liu, R. Chen, G. Adamo, K.F. MacDonald, E.J. Sie, T.C. Sum, N.I. Zheludev, H. Sun, and H.J. Fan, Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer, Nanophotonics 2, 153 (2013),
https://doi.org/10.1515/nanoph-2012-0040