Received 18 December 2020; revised 12 April 2021; accepted 15
April 2021
[1] J.W. Kemling, A.J. Qavi, R.C. Bailey, and K.S. Suslick,
Nanostructured substrates for optical sensing, J. Phys. Chem.
Lett.
2, 2934 (2011),
https://doi.org/10.1021/jz201147g
[2] R. Viter, Z. Balevicius, A. Abou Chaaya, I. Baleviciute,
S. Tumenas, L. Mikoliunaite, A. Ramanavicius, Z. Gertnere,
A. Zalesska, V. Vataman, V. Smyntyna, D. Erts, P. Miele, and M.
Bechelany, The influence of localized plasmons on the optical
properties of Au/ZnO nanostructures, J. Mater. Chem. C
3,
6815 (2015),
https://doi.org/10.1039/C5TC00964B
[3] U. Malinovskis, R. Poplausks, D. Erts, K. Ramser, S.
Tamulevičius, A. Tamulevičienė, Y. Gu, and J. Prikulis,
High-density plasmonic nanoparticle arrays deposited on
nanoporous anodic alumina templates for optical sensor
applications, Nanomaterials
9, 531 (2019),
https://doi.org/10.3390/nano9040531
[4] H.H. Mai and E. Janssens, Au nanoparticle-decorated ZnO
nanorods as fluorescent non-enzymatic glucose probe, Microchim.
Acta
187, 577 (2020),
https://doi.org/10.1007/s00604-020-04563-6
[5] A. Tamashevski, Y. Harmaza, E. Slobozhanina, R. Viter, and
I. Iatsunskyi, Photoluminescent detection of human
T-lymphoblastic cells by ZnO nanorods, Molecules
25,
3168 (2020),
https://doi.org/10.3390/molecules25143168
[6] F. Zhou, W. Jing, S. Liu, Q. Mao, Y. Xu, F. Han, Z. Wei, and
Z. Jiang, Electrodeposition of gold nanoparticles on ZnO
nanorods for improved performance of enzymatic glucose sensors,
Mater. Sci. Semicond. Process.
105, 104708 (2020),
https://doi.org/10.1016/j.mssp.2019.104708
[7] Z.H. Chen, Y.B. Tang, C.P. Liu, Y.H. Leung, G.D. Yuan, L.M.
Chen, Y.Q. Wang, I. Bello, J.A. Zapien, W.J. Zhang, C.S. Lee,
and S.T. Lee, Vertically aligned ZnO nanorod arrays sentisized
with gold nanoparticles for Schottky barrier photovoltaic cells,
J. Phys. Chem. C
113, 13433 (2009),
https://doi.org/10.1021/jp903153w
[8] T. Bora, D. Zoepfl, and J. Dutta, Importance of plasmonic
heating on visible light driven photocatalysis of gold
nanoparticle decorated zinc oxide nanorods, Sci. Rep.
6,
26913 (2016),
https://doi.org/10.1038/srep26913
[9] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov,
S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, A comprehensive
review of ZnO materials and devices, J. Appl. Phys.
98,
041301 (2005),
https://doi.org/10.1063/1.1992666
[10] B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D.
Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M.
Dworzak, U. Haboeck, and A.V. Rodina, Bound exciton and
donor-acceptor pair recombinations in ZnO, Phys. Status Solidi
241,
231 (2004),
https://doi.org/10.1002/pssb.200301962
[11] S. Kuriakose, B. Satpati, and S. Mohapatra, Highly
efficient photocatalytic degradation of organic dyes by Cu doped
ZnO nanostructures, Phys. Chem. Chem. Phys.
17, 25172
(2015),
https://doi.org/10.1039/C5CP01681A
[12] B. Lin, Z. Fu, and Y. Jia, Green luminescent center in
undoped zinc oxide films deposited on silicon substrates, Appl.
Phys. Lett.
79, 943 (2001),
https://doi.org/10.1063/1.1394173
[13] Z. Wang, X. Zu, S. Zhu, and L. Wang, Green luminescence
originates from surface defects in ZnO nanoparticles, Phys. E
Low Dimens. Syst. Nanostruct.
35, 199 (2006),
https://doi.org/10.1016/j.physe.2006.07.022
[14] T. Serevičius and S. Juršėnas, Growth, properties and
sensor applications of low temperature grown ZnO nanorods, Lith.
J. Phys.
51, 309 (2011),
https://doi.org/10.3952/lithjphys.51409
[15] A. Wei, L. Pan, and W. Huang, Recent progress in the ZnO
nanostructure-based sensors, Mater. Sci. Eng. B
176,
1409 (2011),
https://doi.org/10.1016/j.mseb.2011.09.005
[16] A.B. Djurišić, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y.
Chen, and S. Gwo, Green, yellow, and orange defect emission from
ZnO nanostructures: Influence of excitation wavelength, Appl.
Phys. Lett.
88, 103107 (2006),
https://doi.org/10.1063/1.2182096
[17] L. Yang, Q. Zhao, and M. Willander, Size-controlled growth
of well-aligned ZnO nanorod arrays with two-step chemical bath
deposition method, J. Alloys Compd.
469, 623 (2009),
https://doi.org/10.1016/j.jallcom.2008.08.002
[18] S. Baruah and J. Dutta, Hydrothermal growth of ZnO
nanostructures, Sci. Technol. Adv. Mater.
10, 013001
(2009),
https://doi.org/10.1088/1468-6996/10/1/013001
[19] J. Li, X. Chen, H. Li, M. He, and Z. Qiao, Fabrication of
zinc oxide nanorods, J. Cryst. Growth
233, 5 (2001),
https://doi.org/10.1016/S0022-0248(01)01509-3
[20] A. Abou Chaaya, R. Viter, M. Bechelany, Z. Alute, D. Erts,
A. Zalesskaya, K. Kovalevskis, V. Rouessac, V. Smyntyna, and P.
Miele, Evolution of microstructure and related optical
properties of ZnO grown by atomic layer deposition, Beilstein J.
Nanotechnol.
4, 690 (2013),
https://doi.org/10.3762/bjnano.4.78
[21] A. Kołodziejczak-Radzimska and T. Jesionowski, Zinc oxide -
from synthesis to application: A review, Materials (Basel)
7,
2833 (2014),
https://doi.org/10.3390/ma7042833
[22] C.G. Read, E.M.P. Steinmiller, and K.-S. Choi, Atomic
plane-selective deposition of gold nanoparticles on metal oxide
crystals exploiting preferential adsorption of additives, J. Am.
Chem. Soc.
131, 12040 (2009),
https://doi.org/10.1021/ja9036884
[23] K.A. Willets and R.P. Van Duyne, Localized surface plasmon
resonance spectroscopy and sensing, Annu. Rev. Phys. Chem.
58,
267 (2007),
https://doi.org/10.1146/annurev.physchem.58.032806.104607
[24] K. Nakaji, H. Li, T. Kiba, M. Igarashi, S. Samukawa, and A.
Murayama, Plasmonic enhancements of photoluminescence in hybrid
Si nanostructures with Au fabricated by fully top-down
lithography, Nanoscale Res. Lett.
7, 629 (2012),
https://doi.org/10.1186/1556-276X-7-629
[25] U. Malinovskis, R. Poplausks, I. Apsite, R. Meija, J.
Prikulis, F. Lombardi, and D. Erts, Ultrathin anodic aluminum
oxide membranes for production of dense sub-20 nm nanoparticle
arrays, J. Phys. Chem. C
118, 8685 (2014),
https://doi.org/10.1021/jp412689y
[26] J. Prikulis, U. Malinovskis, R. Poplausks, I. Apsite, G.
Bergs, and D. Erts, Optical scattering by dense disordered metal
nanoparticle arrays, Plasmonics
9, 427 (2014),
https://doi.org/10.1007/s11468-013-9639-2
[27] Q. Zhang, J. Xie, Y. Yu, and J.Y. Lee, Monodispersity
control in the synthesis of monometallic and bimetallic
quasi-spherical gold and silver nanoparticles, Nanoscale
2,
1962 (2010),
https://doi.org/10.1039/c0nr00155d
[28] U.K. Makhmanov, A. Kokhkharov, S. Bakhramov, and D. Erts,
The formation of self-assembled structures of C60 in solution
and in the volume of an evaporating drop of a colloidal
solution, Lith. J. Phys.
60 (2020),
https://doi.org/10.3952/physics.v60i3.4306
[29] J.M. Romo-Herrera, R.A. Alvarez-Puebla, and L.M.
Liz-Marzán, Controlled assembly of plasmonic colloidal
nanoparticle clusters, Nanoscale
3, 1304 (2011),
https://doi.org/10.1039/c0nr00804d
[30] U. Malinovskis, A. Berzins, F. Gahbauer, R. Ferber, G.
Kitenbergs, I. Muiznieks, D. Erts, and J. Prikulis, Colloidal
nanoparticle sorting and ordering on anodic alumina patterned
surfaces using templated capillary force assembly, Surf.
Coatings Technol.
326, 264 (2017),
https://doi.org/10.1016/j.surfcoat.2017.07.057
[31] F. Ghilini, M.C. Rodríguez González, A.G. Miñán, D.
Pissinis, A.H. Creus, R.C. Salvarezza, and P.L. Schilardi,
Highly stabilized nanoparticles on poly-L-lysine-coated oxidized
metals: a versatile platform with enhanced antimicrobial
activity, ACS Appl. Mater. Interfaces
10, 23657 (2018),
https://doi.org/10.1021/acsami.8b07529
[32] R. Viter, K. Kunene, P. Genys, D. Jevdokimovs, D. Erts, A.
Sutka, K. Bisetty, A. Viksna, A. Ramanaviciene, and A.
Ramanavicius, Photoelectrochemical bisphenol S sensor based on
ZnO-nanoroads modified by molecularly imprinted polypyrrole,
Macromol. Chem. Phys.
221(2), 1900232 (2019),
https://doi.org/10.1002/macp.201900232
[33] A. Kumar, E. Villarreal, X. Zhang, and E. Ringe,
Micro-extinction spectroscopy (MExS): a versatile optical
characterization technique, Adv. Struct. Chem. Imaging
4,
8 (2018),
https://doi.org/10.1186/s40679-018-0057-6
[34] K.-M. Kim, M.-H. Choi, J.-K. Lee, Y.-R. Jeong, J. Kim,
M.-K. Kim, S.-M. Paek, and J.-M. Oh, Physicochemical properties
of surface charge-modified ZnO nanoparticles with different
particle sizes, Int. J. Nanomedicine
9, 41 (2014),
https://doi.org/10.2147/IJN.S57923
[35] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu,
Reversible super-hydrophobicity to super-hydrophilicity
transition of aligned ZnO nanorod films, J. Am. Chem. Soc.
126,
62 (2004),
https://doi.org/10.1021/ja038636o
[36] A.S. Dimitrov and K. Nagayama, Continuous convective
assembling of fine particles into two-dimensional arrays on
solid surfaces, Langmuir
12, 1303 (1996),
https://doi.org/10.1021/la9502251
[37] L. Wu, Y. Wu, X. Pan, and F. Kong, Synthesis of ZnO nanorod
and the annealing effect on its photoluminescence property, Opt.
Mater. (Amst)
28, 418 (2006),
https://doi.org/10.1016/j.optmat.2005.03.007
[38] H.Y. Lin, C.L. Cheng, Y.Y. Chou, L.L. Huang, Y.F. Chen, and
K.T. Tsen, Enhancement of band gap emission stimulated by defect
loss, Opt. Express
14, 2372 (2006),
https://doi.org/10.1364/OE.14.002372
[39] M. Liu, R. Chen, G. Adamo, K.F. MacDonald, E.J. Sie, T.C.
Sum, N.I. Zheludev, H. Sun, and H.J. Fan, Tuning the influence
of metal nanoparticles on ZnO photoluminescence by
atomic-layer-deposited dielectric spacer, Nanophotonics
2,
153 (2013),
https://doi.org/10.1515/nanoph-2012-0040