[PDF]  https://doi.org/10.3952/physics.v61i3.4516

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 169–176 (2021)
 

OPTICAL PROPERTIES OF POWDER AND CERAMICS OF ALUMINIUM OXYNITRIDE OBTAINED BY SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS
Tigran A. Akopdzhanyana, Alex A. Kondakova, Sergey I. Rupasovb, Anna P. Kozlovab, and Vladimir Pankratovc
  a ISMAN, 8 Academician Osipyan Street, Chernogolovka, 142432 Moscow Region, Russia
b NUST MISIS, 4 Leninskiy prospekt, 119049 Moscow, Russia
c Institute of Solid State Physics, University of Latvia, 8 Kengaraga iela, 1063 Riga, Latvia
Email: tigj@yandex.ru

Received 18 December 2020; revised 9 April 2021; accepted 21 April 2021

The synthesis method of aluminium oxynitride (AlON) powders by nitriding of Al/Al2O3 mixture under high-pressure nitrogen is proposed. The novelty of this method consists in adding KClO4 or Mg(ClO4)2 and extra Al into the starting mixture (Al+Al2O3) to cause the exothermal aluminium oxidation reaction, which therefore initiates the aluminium nitriding reaction. The microstructure and phase composition of the AlON powders obtained by self-propagating high-temperature synthesis are demonstrated by means of SEM and XRD analysis. Diffuse reflection spectra of AlON powders have been measured and the values of band-gap energy have been calculated. Optical transmission and reflection characteristics of the AlON ceramic samples sintered from AlON powders at 1930°C have been studied. The influence of the technological parameters of ceramics production on their transparency is revealed – the most transparent sample is obtained from the powders synthesized with the Mg(ClO4)2 additive and sintered for 6 h.
Keywords: aluminium oxynitride, AlON, self-propagating high-temperature synthesis, combustion, optical properties, transparent ceramics
PACS: 81.05.Je, 81.20.Ka, 78.20.-e

SAVAIME SKLINDANČIOS AUKŠTATEMPERATŪRINĖS SINTEZĖS BŪDU GAUTŲ ALIUMINIO OKSINITRIDO MILTELIŲ IR JŲ KERAMIKŲ OPTINĖS SAVYBĖS
Tigran A. Akopdzhanyana, Alex A. Kondakova, Sergey I. Rupasovb, Anna P. Kozlovab, Vladimir Pankratovc

a Rusijos MA Struktūrinės makrokinetikos institutas, Maskvos srtis, Rusija
b Nacionalinis mokslo ir technologijų universitetas Maskvos plieno ir lydinių institutas, Maskva, Rusija
c Latvijos universiteto Kietojo kūno fizikos institutas, Ryga, Latvija



References / Nuorodos

[1] G. Yamaguchi and H. Yanagida, Study on the reductive spinel - a new spinel formula AlN–Al2O3 instead of the previous one Al3O4, Bull. Chem. Soc. Jpn. 32, 1264–1265 (1959),
https://doi.org/10.1246/bcsj.32.1264
[2] J.W. McCauley, A simple model for aluminum oxynitride spinels, J. Am. Ceram. Soc. 61, 372–373 (1978),
https://doi.org/10.1111/j.1151-2916.1978.tb09336.x
[3] N.D. Corbin, Aluminum oxynitride spinel: A review, J. Eur. Ceram. Soc. 5(3), 143–154 (1989),
https://doi.org/10.1016/0955-2219(89)90030-7
[4] F.Y.C. Boey, X.L. Song, Z.Y. Gu, and A. Tok, AlON phase formation in a tape-cast Al2O3/AlN composite, J. Mater. Process. Technol. 89–90, 478–480 (1999),
https://doi.org/10.1016/S0924-0136(99)00134-X
[5] C.T. Warner, T.M. Hartnett, D. Fisher, and W. Sunne, in: Ceramic Armor and Armor Systems II, Ceramic Transactions Volume 178, ed. E. Medvedovski (The American Ceramic Society, Westerville, Ohio, 2006) pp. 19–35
[6] J.W. McCauley, P. Patel, M. Chen, G. Gilde, E. Straßburger, B. Paliwal, K.T. Ramesh, and D.P. Dandekar, AlON: A brief history of its emergence and evolution, J. Eur. Ceram. Soc. 29, 223–236 (2009),
https://doi.org/10.1016/j.jeurceramsoc.2008.03.046
[7] H.X. Willems, M.M.R.M. Hendrix, R. Metselaar, and G. de With, Thermodynamics of Alon I: Stability at lower temperatures, J. Eur. Ceram. Soc. 10, 327–337 (1992),
https://doi.org/10.1016/0955-2219(92)90088-U
[8] J. Zheng and B. Forslund, Carbothermal synthesis of Aluminium Oxynitride (ALON) powder: Influence of starting materials and synthesis parameters, J. Eur. Ceram. Soc. 15, 1087–1100 (1995),
https://doi.org/10.1016/0955-2219(95)00078-9
[9] I.P. Borovinskaya, V.E. Loryan, and V.V. Zakorzhevsky, in: Nitride Ceramics: Combustion Synthesis, Properties, and Applications (Wiley-VCH Verlag, Weinheim, 2015)
[10] E.D. Politova, G.M. Kaleva, A.V. Mosunov, N.V. Sadovskaya, D.A. Kiselev, A.M. Kislyuk, T.S. Ilina, and S.Yu. Stefanovich, Dielectric and local piezoelectric properties of lead-free KNN-based perovskite ceramics, Ferroelectrics 569(1), 201–208 (2020),
https://doi.org/10.1080/00150193.2020.1822677
[11] E.D. Politova, G.M. Kaleva, A.V. Mosunov, N.V. Sadovskaya, D.A. Kiselev, A.M. Kislyuk, T.S. Ilina, and S. Yu. Stefanovich, in: Proceedings of 2019 IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2020),
https://doi.org/10.1109/ISAF43169.2019.9034969
[12] E.D. Politova, N.V. Golubko, G.M. Kaleva, A.V. Mosunov, N.V. Sadovskaya, E.A. Fortalnova, D.A. Kiselev, T.S. Ilina, A.M. Kislyuk, S.Yu. Stefanovich, and P.K. Panda, Ferroelectric and local piezoelectric properties of modified KNN ceramics, Integr. Ferroelectr. 196(1), 52–59 (2019),
https://doi.org/10.1080/10584587.2019.1591955
[13] A. Pille, Development of Optically Transparent Alumina and Spinel Ceramics with Fine Microstructure. Mechanics of Materials [physics.classph], Thesis (Université Sorbonne Paris Cité, 2018)
[14] T.G. Akopdzhanyan and I.P. Borovinskaya, AlON powders by SHS under nitrogen pressure with KClO4 as a booster, Int. J. Self-Propag. High-Temp. Synth. 26, 244–247 (2017),
https://doi.org/10.3103/S1061386217040021
[15] T.G. Akopdzhanyan, I.P. Borovinskaya, and E.A. Chemagina, Aluminum oxynitride by SHS under high pressure of nitrogen gas, Int. J. Self-Propag. High-Temp. Synth. 26, 110–114 (2017),
https://doi.org/10.3103/S1061386217020029
[16] N.S. Kozlova, A.P. Kozlova, E.V. Zabelina, Zh.A. Goreeva, I.S. Didenko, and T. Burt, Spectrophotometric Methods of Refractive Indices Measurement. Measuring the Refractive Index of Single Crystal Optical Materials Using Two Methods, Agilent Application Note (2019),
https://www.agilent.com/cs/library/applications/application-refractive-index-cary-5000-uv-vis-5994-0052en-us-agilent.pdf
[17] V.M. Zolotarev, Photonics Materials Research Methods (ITMO, Saint-Petersburg, 2008) [in Russian]
[18] M.R. Loghman-Estarki, F. Davar, S. Ghorbani, M. Zendehdel, and M.H. Taherian, Synthesis and characterization of aluminum Oxy nitride (AlON) from the nanosized gel precursor, Ceram. Int. 42, 16861–16866 (2016),
https://doi.org/10.1016/j.ceramint.2016.07.180
[19] M.M. Mikhailov and A.C. Verevkin, The variation of band gap width in zirconium oxide powders on grinding, Russ. Phys. J. 47(6), 600–604 (2004),
https://doi.org/10.1023/B:RUPJ.0000047840.56967.3d