[PDF]  https://doi.org/10.3952/physics.v61i3.4519

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 191–204 (2021)
 

EFFECT OF SPRING GRASS FIRES ON INDOOR AIR QUALITY IN AIR-CONDITIONED OFFICE BUILDING
Julija Pauraitėa, Inga Garbarienėa, Agnė Minderytėa, Vadimas Dudoitisa, Gediminas Mainelisb, Lina Davulienėa, Ieva Uogintėa, Kristina Plauškaitėa, and Steigvilė Byčenkienėa
  a Department of Environmental Research, SRI Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
b Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, United States
Email: julija.pauraite@ftmc.lt

Received 20 January 2021; revised 15 April 2021, accepted 16 April 2021

Open biomass burning (OBB) is a significant air pollution source, but it is still not clear to what extent OBB events affect indoor air quality [1]. Outdoor and indoor measurements of submicron particulate matter (PM1) were conducted on 25–29 April (2019) in the capital city Vilnius (Lithuania). Fires from neighbouring countries (Belarus, Ukraine and Russia) and in the vicinity of Vilnius broke out during the measurement campaign. The temporal evolution and transport of OBB plume were investigated by combining the air mass backward trajectory analysis and fire satellite observation (MODIS) database. Measurements of the PM1 chemical composition in real-time were performed using an aerosol chemical speciation monitor (ACSM) and an aethalometer. Organic matter was the clearly dominant component, accounting for >70%, in both indoor and outdoor PM1. The air filtering system of the office building removed approximately up to 55% of PM1. Despite a significantly lower PM1 pollution level in the office, highly acidic indoor PM1 could have harmful effects on the human health. Source apportionment of particulate carbonaceous matter revealed a significant importance of OBB-related particles (average 56%) to indoor air.
Keywords: organic aerosol, black carbon, indoor air quality, biomass burning
PACS: 92.60.Sz, 92.60.Mt, 92.60.hf

PAVASARĮ DEGINAMOS ŽOLĖS POVEIKIS PATALPŲ ORO KOKYBEI
Julija Pauraitėa, Inga Garbarienėa, Agnė Minderytėa, Vadimas Dudoitisa, Gediminas Mainelisb, Lina Davulienėa, Ieva Uogintėa, Kristina Plauškaitėa, Steigvilė Byčenkienėa

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Rutgerso Naujojo Džersio valstijos universitetas, Naujasis Džersis, JAV

Pavasarį deginama žolė tampa oro taršos šaltiniu, tačiau deginimo įtaka pastatų oro kokybei nėra iki galo ištirta. 1 μm skersmens kietųjų dalelių (KD1) masės koncentracija buvo matuojama biuro Vilniuje patalpoje ir pastato išorėje (lauke) atitinkamai balandžio 25–26 ir 26–29 dienomis. Šiomis dienomis dėl žolės deginimo buvo kilę gaisrai kaimyninėse šalyse (Baltarusijoje, Ukrainoje ir Rusijoje), taip pat Vilniaus miesto prieigose esančiose vietovėse. Su gaisrais siejami išmetimai į aplinką buvo tiriami naudojant atgalinių oro masių trajektorijų (HYSPLIT) ir gaisrų žemėlapio (MODIS) metodus. KD1 cheminė sudėtis buvo išmatuota aerozolio cheminės sudėties monitoriumi (ACSM) ir aetalometru. Organinės aerozolio dalelės fiksuotos tiek biure, tiek ir lauke (>70 % viso KD1). Biure oro filtravimo sistema sulaikė iki 55 % KD1 frakcijos masės koncentracijos. Nors KD1 masės koncentracijos biure buvo mažesnės, tačiau nustatytos žemesnio pH aerozolio dalelės galėjo turėti neigiamą poveikį žmogaus sveikatai. Anglies turinčių aerozolio dalelių šaltinių analizė parodė, kad vidutiniškai 56 % šių dalelių masės koncentracijos biure galimai susidarė dėl deginamos žolės.


References / Nuorodos

[1] P. Rajagopalan and N. Goodman, Improving the indoor air quality of residential buildings during bushfire smoke events, Climate 9, 32 (2021),
https://doi.org/10.3390/cli9020032
[2] A. Kocbach Bølling, J. Pagels, K.E. Yttri, L. Barregard, G. Sallsten, P.E. Schwarze, and C. Boman, Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties, Part. Fibre Toxicol. 6(1), 29 (2009),
https://doi.org/10.1186/1743-8977-6-29
[3] T.C. Bond, S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al., Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos. 118(11), 5380–5552 (2013),
https://doi.org/10.1002/jgrd.50171
[4] Ö. Gustafsson, M. Kruså, Z. Zencak, R.J. Sheesley, L. Granat, E. Engström, P.S. Praveen, P.S.P. Rao, C. Leck, and H. Rodhe, Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323(5913), 495 (2009),
https://doi.org/10.1126/science.1164857
[5] J.K. Zhang, M.T. Cheng, D.S. Ji, Z.R. Liu, B. Hu, Y. Sun, and Y.S. Wang, Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China, Sci. Total Environ. 562, 812–821 (2016),
https://doi.org/10.1016/j.scitotenv.2016.04.015
[6] W. Knorr, F. Dentener, J.-F. Lamarque, L. Jiang, and A. Arneth, Wildfire air pollution hazard during the 21st century, Atmos. Chem. Phys. 17, 9223–9236 (2017),
https://doi.org/10.5194/acp-17-9223-2017
[7] Y. Zhang, D. Obrist, B. Zielinska, and A. Gertler, Particulate emissions from different types of biomass burning, Atmos. Environ. 72, 27–35 (2013),
https://doi.org/10.1016/j.atmosenv.2013.02.026
[8] R.J. Yokelson, J.D. Crounse, P.F. DeCarlo, T. Karl, S. Urbanski, E. Atlas, T. Campos, Y. Shinozuka, V. Kapustin, A.D. Clarke, et al., Emissions from biomass burning in the Yucatan, Atmos. Chem. Phys. 9(15), 5785–5812 (2009),
https://doi.org/10.5194/acp-9-5785-2009
[9] A. Piazzalunga, C. Belis, V. Bernardoni, O. Cazzuli, P. Fermo, G. Valli, and R. Vecchi, Estimates of wood burning contribution to PM by the macro-tracer method using tailored emission factors, Atmos. Environ. 45(37), 6642–6649 (2011),
https://doi.org/10.1016/j.atmosenv.2011.09.008
[10] C. Perrino, L. Tofful, S.D. Torre, T. Sargolini, and S. Canepari, Biomass burning contribution to PM10 concentration in Rome (Italy): Seasonal, daily and two-hourly variations, Chemosphere 222, 839–848 (2019),
https://doi.org/10.1016/j.chemosphere.2019.02.019
[11] Q. Zhang, J.L. Jimenez, M.R. Canagaratna, I.M. Ulbrich, N.L. Ng, D.R. Worsnop, and Y. Sun, Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review, Anal. Bioanal. Chem. 401(10), 3045–3067 (2011),
https://doi.org/10.1007/s00216-011-5355-y
[12] N.L. Ng, M.R. Canagaratna, Q. Zhang, J.L. Jimenez, J. Tian, I.M. Ulbrich, J.H. Kroll, K.S. Docherty, P.S. Chhabra, R. Bahreini, et al., Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys. 10(10), 4625–4641 (2010),
https://doi.org/10.5194/acp-10-4625-2010
[13] J. Sandradewi, A.S.H. Prévôt, E. Weingartner, R. Schmidhauser, M. Gysel, and U. Baltensperger, A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer, Atmos. Environ. 42(1), 101–112 (2008),
https://doi.org/10.1016/j.atmosenv.2007.09.034
[14] E. Liakakou, I. Stavroulas, D.G. Kaskaoutis, G. Grivas, D. Paraskevopoulou, U.C. Dumka, M. Tsagkaraki, A. Bougiatioti, K. Oikonomou, J. Sciare, E. Gerasopoulos, and N. Mihalopoulos, Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece, Atmos. Environ. 222, 117137 (2020),
https://doi.org/10.1016/j.atmosenv.2019.117137
[15] V. Ulevicius, S. Byčenkienė, V. Remeikis, A. Garbaras, S. Kecorius, J. Andriejauskienė, D. Jasinevičienė, and G. Mocnik, Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions, Atmos. Res. 98(2), 190–200 (2010),
https://doi.org/10.1016/j.atmosres.2010.03.021
[16] S. Byčenkienė, V. Ulevicius, V. Dudoitis, and J. Pauraitė, Identification and characterization of black carbon aerosol sources in the East Baltic Region, Adv. Meteorol. 2013, 380614 (2013),
https://doi.org/10.1155/2013/380614
[17] V. Ulevicius, S. Byčenkienė, C. Bozzetti, A. Vlachou, K. Plauškaitė, G. Mordas, V. Dudoitis, G. Abbaszade, V. Remeikis, A. Garbaras, et al., Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe, Atmos. Chem. Phys. 16(9), 5513–5529 (2016),
https://doi.org/10.5194/acp-16-5513-2016
[18] S. Byčenkienė, V. Ulevicius, and S. Kecorius, Characteristics of black carbon aerosol mass concentration over the East Baltic region from two-year measurements, J. Environ. Monit. 13(4), 1027–1038 (2011),
https://doi.org/10.1039/c0em00480d
[19] W.M. Kirk, M. Fuchs, Y. Huangfu, N. Lima, P. O’Keeffe, B. Lin, T. Jobson, S. Pressley, V. Walden, D. Cook, and B.K. Lamb, Indoor air quality and wildfire smoke impacts in the Pacific Northwest, Sci. Technol. Build. Environ. 24(2), 149–159 (2018),
https://doi.org/10.1080/23744731.2017.1393256
[20] S. Brasche and W. Bischof, Daily time spent indoors in German homes – Baseline data for the assessment of indoor exposure of German occupants, Int. J. Hyg. Environ. Health 208(4), 247–253 (2005),
https://doi.org/10.1016/j.ijheh.2005.03.003
[21] B.F. Yu, Z.B. Hu, M. Liu, H.L. Yang, Q.X. Kong, and Y.H. Liu, Review of research on air-conditioning systems and indoor air quality control for human health, Int. J. Refrig. 32(1), 3–20 (2009),
https://doi.org/10.1016/j.ijrefrig.2008.05.004
[22] J.L. Adgate, G. Ramachandran, G.C. Pratt, L.A. Waller, and K. Sexton, Spatial and temporal variability in outdoor, indoor, and personal PM2.5 exposure, Atmos. Environ. 36(20), 3255–3265 (2002),
https://doi.org/10.1016/S1352-2310(02)00326-6
[23] L. Kliucininkas, E. Krugly, I. Stasiulaitiene, I. Radziuniene, T. Prasauskas, A. Jonusas, V. Kauneliene, and D. Martuzevicius, Indoor–outdoor levels of size segregated particulate matter and mono/polycyclic aromatic hydrocarbons among urban areas using solid fuels for heating, Atmos. Environ. 97, 83–93 (2014),
https://doi.org/10.1016/j.atmosenv.2014.08.010
[24] J. Zhang and K.R. Smith, Indoor air pollution: a global health concern, Br. Med. Bull. 68(1), 209–225 (2003),
https://doi.org/10.1093/bmb/ldg029
[25] A. Spinazzè, D. Campagnolo, A. Cattaneo, P. Urso, I.A. Sakellaris, D.E. Saraga, C. Mandin, N. Canha, R. Mabilia, E. Perreca, et al., Indoor gaseous air pollutants determinants in office buildings – The OFFICAIR project, Indoor Air 30(1), 76–87 (2020),
https://doi.org/10.1111/ina.12609
[26] L. Du, V. Leivo, T. Prasauskas, M. Täubel, D. Martuzevicius, and U. Haverinen-Shaughnessy, Effects of energy retrofits on Indoor Air Quality in multifamily buildings, Indoor Air 29(4), 686–697 (2019),
https://doi.org/10.1111/ina.12555
[27] I. Stasiulaitiene, E. Krugly, T. Prasauskas, D. Ciuzas, L. Kliucininkas, V. Kauneliene, and D. Martuzevicius, Infiltration of outdoor combustion-generated pollutants to indoors due to various ventilation regimes: A case of a single-family energy efficient building, Build. Environ. 157, 235–241 (2019),
https://doi.org/10.1016/j.buildenv.2019.04.053
[28] B. Kozielska, A. Mainka, M. Żak, D. Kaleta, and W. Mucha, Indoor air quality in residential buildings in Upper Silesia, Poland, Build. Environ. 177, 106914 (2020),
https://doi.org/10.1016/j.buildenv.2020.106914
[29] A. Garbaras, J. Šapolaitė, I. Garbarienė, Ž. Ežerinskis, A. Mašalaitė-Nalivaikė, R. Skipitytė, and A. Plukis, Aerosol source (biomass, traffic and coal emission) apportionment in Lithuania using stable carbon and radiocarbon analysis, Isotopes Environ. Health Stud. 54(5), 1–12 (2018),
https://doi.org/10.1080/10256016.2018.1509074
[30] M. Collaud Coen, E. Weingartner, A. Apituley, D. Ceburnis, R. Fierz-Schmidhauser, H. Flentje, J.S. Henzing, S.G. Jennings, M. Moerman, A. Petzold, O. Schmid, and U. Baltensperger, Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms, Atmos. Meas. Tech. 3(2), 457–474 (2010),
https://doi.org/10.5194/amt-3-457-2010
[31] E. Weingartner, H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger, Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers, J. Aerosol Sci. 34(10), 1445–1463 (2003),
https://doi.org/10.1016/S0021-8502(03)00359-8
[32] J. Sandradewi, A.S.H. Prévôt, S. Szidat, N. Perron, M.R. Alfarra, V.A. Lanz, E. Weingartner, and U. Baltensperger, Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter, Environ. Sci. Technol. 42(9), 3316–3323 (2008),
https://doi.org/10.1021/es702253m
[33] P. Zotter, H. Herich, M. Gysel, I. El-Haddad, Y. Zhang, G. Močnik, C. Hüglin, U. Baltensperger, S. Szidat, and A.S.H. Prévôt, Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol, Atmos. Chem. Phys. 17(6), 4229–4249 (2017),
https://doi.org/10.5194/acp-17-4229-2017
[34] O. Favez, I. El Haddad, C. Piot, A. Boréave, E. Abidi, N. Marchand, J.L. Jaffrezo, J.L. Besombes, M.B. Personnaz, J. Sciare, H. Wortham, C. George, and B. D’Anna, Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France), Atmos. Chem. Phys. 10(12), 5295–5314 (2010),
https://doi.org/10.5194/acp-10-5295-2010
[35] R.M. Harrison, D.C.S. Beddows, A.M. Jones, A. Calvo, C. Alves, and C. Pio, An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations, Atmos. Environ. 80, 540–548 (2013),
https://doi.org/10.1016/j.atmosenv.2013.08.026
[36] P. Paatero, A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis, Chemometr. Intell. Lab. Syst. 38(2), 223–242 (1997),
https://doi.org/10.1016/S0169-7439(97)00031-2
[37] E. Kostenidou, B.-H. Lee, G.J. Engelhart, J.R. Pierce, and S.N. Pandis, Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol, Environ. Sci. Technol. 43(13), 4884–4889 (2009),
https://doi.org/10.1021/es803676g
[38] A.F. Stein, R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D. Cohen, and F. Ngan, NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bull. Am. Meteorol. Soc. 96(12), 2059–2077 (2016),
https://doi.org/10.1175/BAMS-D-14-00110.1
[39] G. Rolph, A. Stein, and B. Stunder, Real-time environmental applications and display sYstem: READY, Environ. Model. Software 95, 210–228 (2017),
https://doi.org/10.1016/j.envsoft.2017.06.025
[40] C. Fountoukis and A. Nenes, ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42––NO3–Cl–H2O aerosols, Atmos. Chem. Phys. 7(17), 4639–4659 (2007),
https://doi.org/10.5194/acp-7-4639-2007
[41] Y. Chen, H. Shen, and A.G. Russell, Current and future responses of aerosol pH and composition in the U.S. to declining SO2 emissions and increasing NH3 emissions, Environ. Sci. Technol. 53(16), 9646–9655 (2019),
https://doi.org/10.1021/acs.est.9b02005
[42] J. Ding, P. Zhao, J. Su, Q. Dong, X. Du, and Y. Zhang, Aerosol pH and its driving factors in Beijing, Atmos. Chem. Phys. 19(12), 7939–7954 (2019),
https://doi.org/10.5194/acp-19-7939-2019
[43] H. Guo, L. Xu, A. Bougiatioti, K.M. Cerully, S.L. Capps, J.R. Hite Jr, A.G. Carlton, S.H. Lee, M.H. Bergin, N.L. Ng, A. Nenes, and R.J. Weber, Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys. 15(9), 5211–5228 (2015),
https://doi.org/10.5194/acp-15-5211-2015
[44] A. Bougiatioti, I. Stavroulas, E. Kostenidou, P. Zarmpas, C. Theodosi, G. Kouvarakis, F. Canonaco, A.S.H. Prévôt, A. Nenes, S.N. Pandis, and N. Mihalopoulos, Processing of biomass-burning aerosol in the eastern Mediterranean during summertime, Atmos. Chem. Phys. 14(9), 4793–4807 (2014),
https://doi.org/10.5194/acp-14-4793-2014
[45] H. Timonen, S. Carbone, M. Aurela, K. Saarnio, S. Saarikoski, N.L. Ng, M.R. Canagaratna, M. Kulmala, V.-M. Kerminen, D.R. Worsnop, and R. Hillamo, Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland, J. Aerosol Sci. 56, 61–77 (2013),
https://doi.org/10.1016/j.jaerosci.2012.06.005
[46] M. Crippa, F. Canonaco, V.A. Lanz, M. Äijälä, J.D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall’Osto, D.A. Day, et al., Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys. 14(12), 6159–6176 (2014),
https://doi.org/10.5194/acp-14-6159-2014
[47] C.J. Hennigan, A.P. Sullivan, J.L. Collett Jr, and A.L. Robinson, Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals, Geophys. Res. Lett. 37(9) (2010),
https://doi.org/10.1029/2010GL043088
[48] S. Zhou, S. Collier, D.A. Jaffe, N.L. Briggs, J. Hee, A.J. Sedlacek III, L. Kleinman, T.B. Onasch, and Q. Zhang, Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric ageing of biomass burning organic aerosol, Atmos. Chem. Phys. 17(3), 2477–2493 (2017),
https://doi.org/10.5194/acp-17-2477-2017
[49] J. Pauraite, K. Plauškaitė, V. Dudoitis, and V. Ulevicius, Relationship between the optical properties and chemical composition of urban aerosol particles in Lithuania, Adv. Meteorol. 2018, 1–10 (2018),
https://doi.org/10.1155/2018/8674173
[50] J.P.S. Wong, M. Tsagkaraki, I. Tsiodra, N. Mihalopoulos, K. Violaki, M. Kanakidou, J. Sciare, A. Nenes, and R.J. Weber, Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning, Atmos. Chem. Phys. 19(11), 7319–7334 (2019),
https://doi.org/10.5194/acp-19-7319-2019