Received 20 January 2021; revised 15 April 2021, accepted 16 April
2021
[1] P. Rajagopalan and N. Goodman, Improving the indoor air
quality of residential buildings during bushfire smoke events,
Climate
9, 32 (2021),
https://doi.org/10.3390/cli9020032
[2] A. Kocbach Bølling, J. Pagels, K.E. Yttri, L. Barregard, G.
Sallsten, P.E. Schwarze, and C. Boman, Health effects of
residential wood smoke particles: the importance of combustion
conditions and physicochemical particle properties, Part. Fibre
Toxicol.
6(1), 29 (2009),
https://doi.org/10.1186/1743-8977-6-29
[3] T.C. Bond, S.J. Doherty, D.W. Fahey, P.M. Forster, T.
Berntsen, B.J. DeAngelo, M.G. Flanner, S. Ghan, B. Kärcher, D.
Koch, et al., Bounding the role of black carbon in the climate
system: A scientific assessment, J. Geophys. Res. Atmos.
118(11),
5380–5552 (2013),
https://doi.org/10.1002/jgrd.50171
[4] Ö. Gustafsson, M. Kruså, Z. Zencak, R.J. Sheesley, L.
Granat, E. Engström, P.S. Praveen, P.S.P. Rao, C. Leck, and H.
Rodhe, Brown clouds over South Asia: biomass or fossil fuel
combustion? Science
323(5913), 495 (2009),
https://doi.org/10.1126/science.1164857
[5] J.K. Zhang, M.T. Cheng, D.S. Ji, Z.R. Liu, B. Hu, Y. Sun,
and Y.S. Wang, Characterization of submicron particles during
biomass burning and coal combustion periods in Beijing, China,
Sci. Total Environ.
562, 812–821 (2016),
https://doi.org/10.1016/j.scitotenv.2016.04.015
[6] W. Knorr, F. Dentener, J.-F. Lamarque, L. Jiang, and A.
Arneth, Wildfire air pollution hazard during the 21st century,
Atmos. Chem. Phys.
17, 9223–9236 (2017),
https://doi.org/10.5194/acp-17-9223-2017
[7] Y. Zhang, D. Obrist, B. Zielinska, and A. Gertler,
Particulate emissions from different types of biomass burning,
Atmos. Environ.
72, 27–35 (2013),
https://doi.org/10.1016/j.atmosenv.2013.02.026
[8] R.J. Yokelson, J.D. Crounse, P.F. DeCarlo, T. Karl, S.
Urbanski, E. Atlas, T. Campos, Y. Shinozuka, V. Kapustin, A.D.
Clarke, et al., Emissions from biomass burning in the Yucatan,
Atmos. Chem. Phys.
9(15), 5785–5812 (2009),
https://doi.org/10.5194/acp-9-5785-2009
[9] A. Piazzalunga, C. Belis, V. Bernardoni, O. Cazzuli, P.
Fermo, G. Valli, and R. Vecchi, Estimates of wood burning
contribution to PM by the macro-tracer method using tailored
emission factors, Atmos. Environ.
45(37), 6642–6649
(2011),
https://doi.org/10.1016/j.atmosenv.2011.09.008
[10] C. Perrino, L. Tofful, S.D. Torre, T. Sargolini, and S.
Canepari, Biomass burning contribution to PM10 concentration in
Rome (Italy): Seasonal, daily and two-hourly variations,
Chemosphere
222, 839–848 (2019),
https://doi.org/10.1016/j.chemosphere.2019.02.019
[11] Q. Zhang, J.L. Jimenez, M.R. Canagaratna, I.M. Ulbrich,
N.L. Ng, D.R. Worsnop, and Y. Sun, Understanding atmospheric
organic aerosols via factor analysis of aerosol mass
spectrometry: a review, Anal. Bioanal. Chem.
401(10),
3045–3067 (2011),
https://doi.org/10.1007/s00216-011-5355-y
[12] N.L. Ng, M.R. Canagaratna, Q. Zhang, J.L. Jimenez, J. Tian,
I.M. Ulbrich, J.H. Kroll, K.S. Docherty, P.S. Chhabra, R.
Bahreini, et al., Organic aerosol components observed in
Northern Hemispheric datasets from Aerosol Mass Spectrometry,
Atmos. Chem. Phys.
10(10), 4625–4641 (2010),
https://doi.org/10.5194/acp-10-4625-2010
[13] J. Sandradewi, A.S.H. Prévôt, E. Weingartner, R.
Schmidhauser, M. Gysel, and U. Baltensperger, A study of wood
burning and traffic aerosols in an Alpine valley using a
multi-wavelength Aethalometer, Atmos. Environ.
42(1),
101–112 (2008),
https://doi.org/10.1016/j.atmosenv.2007.09.034
[14] E. Liakakou, I. Stavroulas, D.G. Kaskaoutis, G. Grivas, D.
Paraskevopoulou, U.C. Dumka, M. Tsagkaraki, A. Bougiatioti, K.
Oikonomou, J. Sciare, E. Gerasopoulos, and N. Mihalopoulos,
Long-term variability, source apportionment and spectral
properties of black carbon at an urban background site in
Athens, Greece, Atmos. Environ.
222, 117137 (2020),
https://doi.org/10.1016/j.atmosenv.2019.117137
[15] V. Ulevicius, S. Byčenkienė, V. Remeikis, A. Garbaras, S.
Kecorius, J. Andriejauskienė, D. Jasinevičienė, and G. Mocnik,
Characterization of pollution events in the East Baltic region
affected by regional biomass fire emissions, Atmos. Res.
98(2),
190–200 (2010),
https://doi.org/10.1016/j.atmosres.2010.03.021
[16] S. Byčenkienė, V. Ulevicius, V. Dudoitis, and J. Pauraitė,
Identification and characterization of black carbon aerosol
sources in the East Baltic Region, Adv. Meteorol.
2013,
380614 (2013),
https://doi.org/10.1155/2013/380614
[17] V. Ulevicius, S. Byčenkienė, C. Bozzetti, A. Vlachou, K.
Plauškaitė, G. Mordas, V. Dudoitis, G. Abbaszade, V. Remeikis,
A. Garbaras, et al., Fossil and non-fossil source contributions
to atmospheric carbonaceous aerosols during extreme spring
grassland fires in Eastern Europe, Atmos. Chem. Phys.
16(9),
5513–5529 (2016),
https://doi.org/10.5194/acp-16-5513-2016
[18] S. Byčenkienė, V. Ulevicius, and S. Kecorius,
Characteristics of black carbon aerosol mass concentration over
the East Baltic region from two-year measurements, J. Environ.
Monit.
13(4), 1027–1038 (2011),
https://doi.org/10.1039/c0em00480d
[19] W.M. Kirk, M. Fuchs, Y. Huangfu, N. Lima, P. O’Keeffe, B.
Lin, T. Jobson, S. Pressley, V. Walden, D. Cook, and B.K. Lamb,
Indoor air quality and wildfire smoke impacts in the Pacific
Northwest, Sci. Technol. Build. Environ.
24(2), 149–159
(2018),
https://doi.org/10.1080/23744731.2017.1393256
[20] S. Brasche and W. Bischof, Daily time spent indoors in
German homes – Baseline data for the assessment of indoor
exposure of German occupants, Int. J. Hyg. Environ. Health
208(4),
247–253 (2005),
https://doi.org/10.1016/j.ijheh.2005.03.003
[21] B.F. Yu, Z.B. Hu, M. Liu, H.L. Yang, Q.X. Kong, and Y.H.
Liu, Review of research on air-conditioning systems and indoor
air quality control for human health, Int. J. Refrig.
32(1),
3–20 (2009),
https://doi.org/10.1016/j.ijrefrig.2008.05.004
[22] J.L. Adgate, G. Ramachandran, G.C. Pratt, L.A. Waller, and
K. Sexton, Spatial and temporal variability in outdoor, indoor,
and personal PM
2.5 exposure, Atmos. Environ.
36(20),
3255–3265 (2002),
https://doi.org/10.1016/S1352-2310(02)00326-6
[23] L. Kliucininkas, E. Krugly, I. Stasiulaitiene, I.
Radziuniene, T. Prasauskas, A. Jonusas, V. Kauneliene, and D.
Martuzevicius, Indoor–outdoor levels of size segregated
particulate matter and mono/polycyclic aromatic hydrocarbons
among urban areas using solid fuels for heating, Atmos. Environ.
97, 83–93 (2014),
https://doi.org/10.1016/j.atmosenv.2014.08.010
[24] J. Zhang and K.R. Smith, Indoor air pollution: a global
health concern, Br. Med. Bull.
68(1), 209–225 (2003),
https://doi.org/10.1093/bmb/ldg029
[25] A. Spinazzè, D. Campagnolo, A. Cattaneo, P. Urso, I.A.
Sakellaris, D.E. Saraga, C. Mandin, N. Canha, R. Mabilia, E.
Perreca, et al., Indoor gaseous air pollutants determinants in
office buildings – The OFFICAIR project, Indoor Air
30(1),
76–87 (2020),
https://doi.org/10.1111/ina.12609
[26] L. Du, V. Leivo, T. Prasauskas, M. Täubel, D.
Martuzevicius, and U. Haverinen-Shaughnessy, Effects of energy
retrofits on Indoor Air Quality in multifamily buildings, Indoor
Air
29(4), 686–697 (2019),
https://doi.org/10.1111/ina.12555
[27] I. Stasiulaitiene, E. Krugly, T. Prasauskas, D. Ciuzas, L.
Kliucininkas, V. Kauneliene, and D. Martuzevicius, Infiltration
of outdoor combustion-generated pollutants to indoors due to
various ventilation regimes: A case of a single-family energy
efficient building, Build. Environ.
157, 235–241 (2019),
https://doi.org/10.1016/j.buildenv.2019.04.053
[28] B. Kozielska, A. Mainka, M. Żak, D. Kaleta, and W. Mucha,
Indoor air quality in residential buildings in Upper Silesia,
Poland, Build. Environ.
177, 106914 (2020),
https://doi.org/10.1016/j.buildenv.2020.106914
[29] A. Garbaras, J. Šapolaitė, I. Garbarienė, Ž. Ežerinskis, A.
Mašalaitė-Nalivaikė, R. Skipitytė, and A. Plukis, Aerosol source
(biomass, traffic and coal emission) apportionment in Lithuania
using stable carbon and radiocarbon analysis, Isotopes Environ.
Health Stud.
54(5), 1–12 (2018),
https://doi.org/10.1080/10256016.2018.1509074
[30] M. Collaud Coen, E. Weingartner, A. Apituley, D. Ceburnis,
R. Fierz-Schmidhauser, H. Flentje, J.S. Henzing, S.G. Jennings,
M. Moerman, A. Petzold, O. Schmid, and U. Baltensperger,
Minimizing light absorption measurement artifacts of the
Aethalometer: evaluation of five correction algorithms, Atmos.
Meas. Tech.
3(2), 457–474 (2010),
https://doi.org/10.5194/amt-3-457-2010
[31] E. Weingartner, H. Saathoff, M. Schnaiter, N. Streit, B.
Bitnar, and U. Baltensperger, Absorption of light by soot
particles: determination of the absorption coefficient by means
of aethalometers, J. Aerosol Sci.
34(10), 1445–1463
(2003),
https://doi.org/10.1016/S0021-8502(03)00359-8
[32] J. Sandradewi, A.S.H. Prévôt, S. Szidat, N. Perron, M.R.
Alfarra, V.A. Lanz, E. Weingartner, and U. Baltensperger, Using
aerosol light absorption measurements for the quantitative
determination of wood burning and traffic emission contributions
to particulate matter, Environ. Sci. Technol.
42(9),
3316–3323 (2008),
https://doi.org/10.1021/es702253m
[33] P. Zotter, H. Herich, M. Gysel, I. El-Haddad, Y. Zhang, G.
Močnik, C. Hüglin, U. Baltensperger, S. Szidat, and A.S.H.
Prévôt, Evaluation of the absorption Ångström exponents for
traffic and wood burning in the Aethalometer-based source
apportionment using radiocarbon measurements of ambient aerosol,
Atmos. Chem. Phys.
17(6), 4229–4249 (2017),
https://doi.org/10.5194/acp-17-4229-2017
[34] O. Favez, I. El Haddad, C. Piot, A. Boréave, E. Abidi, N.
Marchand, J.L. Jaffrezo, J.L. Besombes, M.B. Personnaz, J.
Sciare, H. Wortham, C. George, and B. D’Anna, Inter-comparison
of source apportionment models for the estimation of wood
burning aerosols during wintertime in an Alpine city (Grenoble,
France), Atmos. Chem. Phys.
10(12), 5295–5314 (2010),
https://doi.org/10.5194/acp-10-5295-2010
[35] R.M. Harrison, D.C.S. Beddows, A.M. Jones, A. Calvo, C.
Alves, and C. Pio, An evaluation of some issues regarding the
use of aethalometers to measure woodsmoke concentrations, Atmos.
Environ.
80, 540–548 (2013),
https://doi.org/10.1016/j.atmosenv.2013.08.026
[36] P. Paatero, A weighted non-negative least squares algorithm
for three-way ‘PARAFAC’ factor analysis, Chemometr. Intell. Lab.
Syst.
38(2), 223–242 (1997),
https://doi.org/10.1016/S0169-7439(97)00031-2
[37] E. Kostenidou, B.-H. Lee, G.J. Engelhart, J.R. Pierce, and
S.N. Pandis, Mass spectra deconvolution of low, medium, and high
volatility biogenic secondary organic aerosol, Environ. Sci.
Technol.
43(13), 4884–4889 (2009),
https://doi.org/10.1021/es803676g
[38] A.F. Stein, R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D.
Cohen, and F. Ngan, NOAA’s HYSPLIT atmospheric transport and
dispersion modeling system, Bull. Am. Meteorol. Soc.
96(12),
2059–2077 (2016),
https://doi.org/10.1175/BAMS-D-14-00110.1
[39] G. Rolph, A. Stein, and B. Stunder, Real-time environmental
applications and display sYstem: READY, Environ. Model. Software
95, 210–228 (2017),
https://doi.org/10.1016/j.envsoft.2017.06.025
[40] C. Fountoukis and A. Nenes, ISORROPIA II: a computationally
efficient thermodynamic equilibrium model for K
+–Ca
2+–Mg
2+–NH
4+–Na
+–SO
42––NO
3––Cl
––H
2O
aerosols, Atmos. Chem. Phys.
7(17), 4639–4659 (2007),
https://doi.org/10.5194/acp-7-4639-2007
[41] Y. Chen, H. Shen, and A.G. Russell, Current and future
responses of aerosol pH and composition in the U.S. to declining
SO
2 emissions and increasing NH
3
emissions, Environ. Sci. Technol.
53(16), 9646–9655
(2019),
https://doi.org/10.1021/acs.est.9b02005
[42] J. Ding, P. Zhao, J. Su, Q. Dong, X. Du, and Y. Zhang,
Aerosol pH and its driving factors in Beijing, Atmos. Chem.
Phys. 19(12), 7939–7954 (2019),
https://doi.org/10.5194/acp-19-7939-2019
[43] H. Guo, L. Xu, A. Bougiatioti, K.M. Cerully, S.L. Capps,
J.R. Hite Jr, A.G. Carlton, S.H. Lee, M.H. Bergin, N.L. Ng, A.
Nenes, and R.J. Weber, Fine-particle water and pH in the
southeastern United States, Atmos. Chem. Phys.
15(9),
5211–5228 (2015),
https://doi.org/10.5194/acp-15-5211-2015
[44] A. Bougiatioti, I. Stavroulas, E. Kostenidou, P. Zarmpas,
C. Theodosi, G. Kouvarakis, F. Canonaco, A.S.H. Prévôt, A.
Nenes, S.N. Pandis, and N. Mihalopoulos, Processing of
biomass-burning aerosol in the eastern Mediterranean during
summertime, Atmos. Chem. Phys.
14(9), 4793–4807 (2014),
https://doi.org/10.5194/acp-14-4793-2014
[45] H. Timonen, S. Carbone, M. Aurela, K. Saarnio, S.
Saarikoski, N.L. Ng, M.R. Canagaratna, M. Kulmala, V.-M.
Kerminen, D.R. Worsnop, and R. Hillamo, Characteristics, sources
and water-solubility of ambient submicron organic aerosol in
springtime in Helsinki, Finland, J. Aerosol Sci.
56,
61–77 (2013),
https://doi.org/10.1016/j.jaerosci.2012.06.005
[46] M. Crippa, F. Canonaco, V.A. Lanz, M. Äijälä, J.D. Allan,
S. Carbone, G. Capes, D. Ceburnis, M. Dall’Osto, D.A. Day, et
al., Organic aerosol components derived from 25 AMS data sets
across Europe using a consistent ME-2 based source apportionment
approach, Atmos. Chem. Phys.
14(12), 6159–6176 (2014),
https://doi.org/10.5194/acp-14-6159-2014
[47] C.J. Hennigan, A.P. Sullivan, J.L. Collett Jr, and A.L.
Robinson, Levoglucosan stability in biomass burning particles
exposed to hydroxyl radicals, Geophys. Res. Lett.
37(9)
(2010),
https://doi.org/10.1029/2010GL043088
[48] S. Zhou, S. Collier, D.A. Jaffe, N.L. Briggs, J. Hee, A.J.
Sedlacek III, L. Kleinman, T.B. Onasch, and Q. Zhang, Regional
influence of wildfires on aerosol chemistry in the western US
and insights into atmospheric ageing of biomass burning organic
aerosol, Atmos. Chem. Phys.
17(3), 2477–2493 (2017),
https://doi.org/10.5194/acp-17-2477-2017
[49] J. Pauraite, K. Plauškaitė, V. Dudoitis, and V. Ulevicius,
Relationship between the optical properties and chemical
composition of urban aerosol particles in Lithuania, Adv.
Meteorol.
2018, 1–10 (2018),
https://doi.org/10.1155/2018/8674173
[50] J.P.S. Wong, M. Tsagkaraki, I. Tsiodra, N. Mihalopoulos, K.
Violaki, M. Kanakidou, J. Sciare, A. Nenes, and R.J. Weber,
Atmospheric evolution of molecular-weight-separated brown carbon
from biomass burning, Atmos. Chem. Phys.
19(11),
7319–7334 (2019),
https://doi.org/10.5194/acp-19-7319-2019