Emails: giedrius.zlabys@tfai.vu.lt,
mantas.raciunas@tfai.vu.lt, egidijus.anisimovas@ff.vu.lt
[1] A. Avella and F. Mancini,
Strongly Correlated Systems:
Numerical Methods, Springer Series in Solid-State Sciences
(Springer Berlin Heidelberg, 2015),
https://doi.org/10.1007/978-3-662-44133-6
[2] P.A. Lee, From high temperature superconductivity to quantum
spin liquid: progress in strong correlation physics, Rep. Prog.
Phys.
71, 012501 (2007),
https://doi.org/10.1088/0034-4885/71/1/012501
[3] K. von Klitzing, Quantum Hall effect: Discovery and
application, Annu. Rev. Condens. Matter Phys.
8, 13
(2017),
https://doi.org/10.1146/annurev-conmatphys-031016-025148
[4] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann. Phys.
349,
117 (2014),
https://doi.org/10.1016/j.aop.2014.06.013
[5] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science
355,
602 (2017),
https://doi.org/10.1126/science.aag2302
[6] R.O. Jones, Density functional theory: Its origins, rise to
prominence, and future, Rev. Mod. Phys.
87, 897 (2015),
https://doi.org/10.1103/RevModPhys.87.897
[7] W.M.C. Foulkes, L. Mitas, R.J. Needs, and G. Rajagopal,
Quantum Monte Carlo simulations of solids, Rev. Mod. Phys.
73,
33 (2001),
https://doi.org/10.1103/RevModPhys.73.33
[8]
Computational Many-Particle Physics, eds.
H. Fehske,
R. Schneider, and A. Weiße, Lecture Notes in
Physics (Springer Berlin Heidelberg, 2008),
https://doi.org/10.1007/978-3-540-74686-7
[9] F. Becca and S. Sorella, Correlated models and wave
functions, in: Q
uantum Monte Carlo Approaches for Correlated
Systems (Cambridge University Press, 2017) pp. 3–36,
https://doi.org/10.1017/9781316417041.002
[10] L. Lehtovaara, J. Toivanen, and J. Eloranta, Solution of
time-independent Schrödinger equation by the imaginary time
propagation method, J. Comput. Phys.
221, 148 (2007),
https://doi.org/10.1016/j.jcp.2006.06.006
[11] R. Orús, Tensor networks for complex quantum systems, Nat.
Rev. Phys. 1, 538 (2019),
https://doi.org/10.1038/s42254-019-0086-7
[12] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys.
326, 96
(2011),
https://doi.org/10.1016/j.aop.2010.09.012
[13] H. Saito, Solving the Bose–Hubbard model with machine
learning, J. Phys. Soc. Jpn.
86, 093001 (2017),
https://doi.org/10.7566/JPSJ.86.093001
[14] H. Saito and M. Kato, Solving the Bose–Hubbard model with
machine learning, J. Phys. Soc. Jpn. 87, 014001 (2017),
https://doi.org/10.7566/JPSJ.87.014001
[15] G. Carleo, K. Choo, D. Hofmann, J.E.T. Smith, T.
Westerhout, F. Alet, E.J. Davis, S. Efthymiou, I. Glasser, S.-H.
Lin, et al., NetKet: A machine learning toolkit for many-body
quantum systems, SoftwareX
10, 100311 (2019),
https://doi.org/10.1016/j.softx.2019.100311
[16] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning and
the physical sciences, Rev. Mod. Phys.
91, 045002
(2019),
https://doi.org/10.1103/RevModPhys.91.045002
[17] F. Becca and S. Sorella,
Quantum Monte Carlo Approaches
for Correlated Systems (Cambridge University Press, 2017),
https://doi.org/10.1017/9781316417041
[18] G.E. Hinton and R.R. Salakhutdinov, Reducing the
dimensionality of data with neural networks, Science 313, 504
(2006),
https://doi.org/10.1126/science.1127647
[19] I. Goodfellow, Y. Bengio, and A. Courville,
Deep
Learning (MIT Press, 2016),
https://www.deeplearningbook.org/
[20] M. Lewenstein, A. Sanpera, and V. Ahufinger,
Ultracold
Atoms in Optical Lattices: Simulating Quantum Many-body
Systems (Oxford University Press, 2012),
https://doi.org/10.1093/acprof:oso/9780199573127.001.0001
[21] A. Eckardt, Colloquium: Atomic quantum gases in
periodically driven optical lattices, Rev. Mod. Phys.
89,
011004 (2017),
https://arxiv.org/abs/1606.08041,
https://doi.org/10.1103/RevModPhys.89.011004
[22] E. J. Bergholtz and Z. Liu, Topological flat band models
and fractional Chern insulators, Intl. J. Mod. Phys. B
27,
1330017 (2013),
https://arxiv.org/abs/1308.0343,
https://doi.org/10.1142/S021797921330017X
[23] M. Račiūnas, F.N. Ünal, E. Anisimovas, and A. Eckardt,
Creating, probing, and manipulating fractionally charged
excitations of fractional Chern insulators in optical lattices,
Phys. Rev. A
98, 063621 (2018),
https://doi.org/10.1103/PhysRevA.98.063621
[24] D. Tong, Lectures on the quantum Hall effect (2016),
https://arxiv.org/abs/1606.06687
[25] R. Perline, Zipf’s law, the central limit theorem, and the
random division of the unit interval, Phys. Rev. E
54,
220 (1996),
https://doi.org/10.1103/PhysRevE.54.220
[26] Keras: the Python deep learning library,
https://keras.io
[27] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization (2014),
https://arxiv.org/abs/1412.6980