Received 8 June 2021; revised 12 July 2021; accepted 15 July 2021
[1] L. Shah, M.E. Fermann, J.W. Dawson, and C.P.J. Barty,
Micromachining with a 50 W, 50 μJ, subpicosecond fiber laser
system, Opt. Express
14(25), 12546 (2006),
https://doi.org/10.1364/OE.14.012546
[2] J. Squier and M. Müller, High resolution nonlinear
microscopy: A review of sources and methods for achieving
optimal imaging, Rev. Sci. Instrum.
72(7), 2855–2867
(2001),
https://doi.org/10.1063/1.1379598
[3] R. Berera, R. van Grondelle, and J.T.M. Kennis, Ultrafast
transient absorption spectroscopy: Principles and application to
photosynthetic systems, Photosynth. Res.
101(2–3),
105–118 (2009),
https://doi.org/10.1007/s11120-009-9454-y
[4] D. Strickland and G. Mourou, Compression of amplified
chirped optical pulses, Opt. Commun.
56(3), 219–221
(1985),
https://doi.org/10.1016/0030-4018(85)90120-8
[5] E.B. Treacy, Optical pulse compression with diffraction
gratings, IEEE J. Quantum Electron.
5(9), 454–458
(1969),
https://doi.org/10.1109/JQE.1969.1076303
[6] O.E. Martinez, J.P. Gordon, and R.L. Fork, Negative
group-velocity dispersion using refraction, J. Opt. Soc. Am. A
1(10),
1003 (1984),
https://doi.org/10.1364/JOSAA.1.001003
[7] G. Imeshev, I. Hartl, and M.E. Fermann, Chirped pulse
amplification with a nonlinearly chirped fiber Bragg grating
matched to the Treacy compressor, Opt. Lett.
29(7), 679
(2004),
https://doi.org/10.1364/OL.29.000679
[8] T. Bartulevicius, S. Frankinas, A. Michailovas, R. Vasilyeu,
V. Smirnov, F. Trepanier, and N. Rusteika, Compact fiber CPA
system based on a CFBG stretcher and CVBG compressor with
matched dispersion profile, Opt. Express
25(17), 19856
(2017),
https://doi.org/10.1364/OE.25.019856
[9] I. Kuznetsov, I. Mukhin, O. Palashov, and K.-I. Ueda,
Thin-rod Yb:YAG amplifiers for high average and peak power
lasers, Opt. Lett.
43(16), 3941 (2018),
https://doi.org/10.1364/OL.43.003941
[10] J. Pouysegur, M. Delaigue, C. Hönninger, P. Georges, F.
Druon, and E. Mottay, Generation of 150-fs pulses from a
diode-pumped Yb:KYW nonlinear regenerative amplifier, Opt.
Express
22(8), 9414 (2014),
https://doi.org/10.1364/OE.22.009414
[11] D. Stučinskas, R. Antipenkov, and A. Varanavičius, 30 W
dual active element Yb:KGW regenerative amplifier for
amplification of sub-500fs pulses, Proc. SPIE
6731,
67312Y (2007),
https://doi.org/10.1117/12.753021
[12] C. Krankel, Rare-earth-doped sesquioxides for diode-pumped
high-power lasers in the 1-, 2-, and 3-
μm spectral range,
IEEE J. Sel. Top. Quantum Electron.
21(1), 250–262
(2015),
https://doi.org/10.1109/JSTQE.2014.2346618
[13] F. Druon, F. Balembois, and P. Georges, New materials for
short-pulse amplifiers, IEEE Photonics J.
3(2), 268–273
(2011),
https://doi.org/10.1109/JPHOT.2011.2135845
[14] G. Boulon, Fifty years of advances in solid-state laser
materials, Opt. Mater.
34(3), 499–512 (2012),
https://doi.org/10.1016/j.optmat.2011.04.018
[15] M. Siebold, M. Loeser, F. Roeser, M. Seltmann, G.
Harzendorf, I. Tsybin, S. Linke, S. Banerjee, P.D. Mason, P.J.
Phillips, K. Ertel, J.C. Collier, and U. Schramm, High-energy,
ceramic-disk Yb:LuAG laser amplifier, Opt. Express
20(20),
21992 (2012),
https://doi.org/10.1364/OE.20.021992
[16] Z. Liu, A. Ikesue, and J. Li, Research progress and
prospects of rare-earth doped sesquioxide laser ceramics, J.
Eur. Ceram. Soc.
41(7), 3895–3910 (2021),
https://doi.org/10.1016/j.jeurceramsoc.2021.02.026
[17] P. Albrodt, X. Delen, M. Besbes, F. Lesparre, and P.
Georges, Simulation and experimental investigation of beam
distortions in end-pumped laser rod amplifiers, J. Opt. Soc. Am.
B
35(12), 3004 (2018),
https://doi.org/10.1364/JOSAB.35.003004
[18] A. Starobor and O. Palashov, Peculiarity of the thermally
induced depolarization and methods of depolarization
compensation in square-shaped Yb:YAG active elements, Opt.
Commun.
402(February), 468–471 (2017),
https://doi.org/10.1016/j.optcom.2017.06.067
[19] A. Siegman,
Lasers (University Science Books,
1986),
https://uscibooks.aip.org/books/lasers/
[20] G.L. Bourdet, Theoretical investigation of
quasi-three-level longitudinally pumped continuous wave lasers,
Appl. Opt.
39(6), 966 (2000),
https://doi.org/10.1364/AO.39.000966
[21] R.J. Beach, Optimization of quasi-three level end-pumped
Q-switched lasers, IEEE J. Quantum Electron.
31(9),
1606–1613 (1995),
https://doi.org/10.1109/3.406371
[22] R.J. Beach, CW theory of quasi-three level end-pumped laser
oscillators, Opt. Commun.
123(1–3), 385–393 (1996),
https://doi.org/10.1016/0030-4018(95)00497-1
[23] D.A. Copeland, Optical extraction model and optimal
outcoupling for a CW quasi-three level thin disk laser, Proc.
SPIE
7912, 79120D (2011),
https://doi.org/10.1117/12.876052
[24] J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D.
Kloepfel, R. Seifert, J. Hein, and M.C. Kaluza, Measurement of
temperature-dependent absorption and emission spectra of Yb:YAG,
Yb:LuAG, and Yb:CaF
2 between 20 °C and 200 °C and
predictions on their influence on laser performance, J. Opt.
Soc. Am. B
29(9), 2493 (2012),
https://doi.org/10.1364/JOSAB.29.002493
[25] S. Chénais, F. Druon, S. Forget, F. Balembois, and P.
Georges, On thermal effects in solid-state lasers: The case of
ytterbium-doped materials, Prog. Quantum Electron.
30(4),
89–153 (2006),
https://doi.org/10.1016/j.pquantelec.2006.12.001
[26] O. Svelto,
Principles of Lasers (Springer US,
2010),
https://doi.org/10.1007/978-1-4419-1302-9
[27] W. Koechner,
Solid-State Laser Engineering,
Springer Series in Optical Sciences (Springer New York, 2006),
https://doi.org/10.1007/978-3-662-14105-2
[28] J.J. Morehead, Compensation of laser thermal depolarization
using free space, IEEE J. Sel. Top. Quantum Electron.
13(3),
498–501 (2007),
https://doi.org/10.1109/JSTQE.2007.896616
[29] S. Chénais, F. Druon, S. Forget, F. Balembois, and P.
Georges, On thermal effects in solid-state lasers: The case of
ytterbium-doped materials, Prog. Quantum Electron.
30(4),
89–153 (2006),
https://doi.org/10.1016/j.pquantelec.2006.12.001
[30] H. Furuse, R. Yasuhara, and K. Hiraga, Thermooptic
properties of ceramic YAG at high temperatures, Opt. Mater.
Express
4(9), 1794 (2014),
https://doi.org/10.1364/OME.4.001794
[31] D.C. Brown, J.M. Singley, K. Kowalewski, J. Guelzow, and V.
Vitali, High sustained average power cw and ultrafast Yb:YAG
near-diffraction-limited cryogenic solid-state laser, Opt.
Express
18(24), 24770 (2010),
https://doi.org/10.1364/OE.18.024770
[32] V. Markovic, A. Rohrbacher, P. Hofmann, W. Pallmann, S.
Pierrot, and B. Resan, 160 W 800 fs Yb:YAG single crystal fiber
amplifier without CPA, Opt. Express
23(20), 25883
(2015),
https://doi.org/10.1364/OE.23.025883
[33] J. Fischer, A.-C. Heinrich, S. Maier, J. Jungwirth, D.
Brida, and A. Leitenstorfer, 615 fs pulses with 17 mJ energy
generated by an Yb:thin-disk amplifier at 3 kHz repetition rate,
Opt. Lett.
41(2), 246 (2016),
https://doi.org/10.1364/OL.41.000246