[PDF]  https://doi.org/10.3952/physics.v61i4.4641

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 222–232 (2021)
 

NUMERICAL MODEL OF END-PUMPED Yb:YAG DOUBLE-PASS LASER AMPLIFIER EXPERIMENTALLY VALIDATED AT 129 W OUTPUT POWER
Laurynas Veselisa, Raimundas Burokasb, and Andrejus Michailovasa,b
  a Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
b Ekspla Ltd, Savanorių 237, 02300 Vilnius, Lithuania
Email: lveselis@gmail.com

Received 8 June 2021; revised 12 July 2021; accepted 15 July 2021

In this work, a double-pass end-pumped Yb:YAG amplifier system was investigated experimentally and numerically. The amplifier was seeded by a fibre-CPA based seed laser FemtoLux 30 (Ekspla). The presented laser system produced 129 W average power and 129 μJ energy pulses at 1 MHz pulse repetition rate, with optical-to-optical efficiency of 32% at room temperature (T = 20°C). The resulting beam quality was M2 ∼ 2.1 and the measured depolarization losses were to 17.9%. After the compression, 441 fs pulse duration was achieved. During the work, comprehensive amplifier modelling was performed using the code written in Matlab. The modelling results matched well the experimental data, providing the tool to predict the performance of laser systems based on ytterbium-doped isotropic crystalline, ceramic and glass laser materials prior to designing and manufacturing.
Keywords: solid-state amplifier, thermal effects, depolarization

IŠ GALO KAUPINAMO Yb:IAG DVIGUBO LĖKIO LAZERINIO STIPRINTUVO SKAITMENINIO MODELIO EKSPERIMENTINIS PAGRINDIMAS VEIKIANT 129 W VIDUTINE GALIA
Laurynas Veselisa, Raimundas Burokasb, Andrejus Michailovasa,b

a Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b UAB „Ekspla“, Vilnius, Lietuva

Yb:IAG yra viena iš efektyviausių lazerinio stiprinimo terpių su Yb3+ jonų priemaišomis, kuri pasižymi santykinai dideliu šiluminiu laidumu. Vis dėlto norint pasiekti didelį optinio stiprinimo efektyvumą kambario temperatūroje, stiprinimo terpė neišvengiamai turi būti kaupinama didelio intensyvumo kaupinimo spinduliuote, kuri sukelia nepageidaujamus reiškinius, pavyzdžiui, stiprinamo pluošto kokybės degradaciją ar stiprinamos spinduliuotės galios nuostolius dėl depoliarizacijos reiškinio.
Darbe aprašytas ir eksperimentiškai pagrįstas skaitmeninis modelis, kuris leidžia įvertinti dvigubo lėkio iš galo kaupinamo Yb:IAG lazerinio stiprintuvo pagrindinius parametrus: išėjimo galią, depoliarizacinius nuostolius ir stiprinamos spinduliuotės pluošto kokybės degradaciją. Stiprintuvo aktyvioji terpė, aušinama palaikant T = 20 °C temperatūrą, buvo kaupinama 280 W nuolatinės veikos spinduliuote (940 nm), kuri leido pasiekti 129 W suminę išėjimo galią (1 030 nm) esant 1 MHz impulsų pasikartojimo dažniui, atitinkančią 32 % optinį stiprinimo efektyvumą. Parodyta, kad tokioje sistemoje depoliarizaciniai nuostoliai yra reikšmingi, jie siekė 17,9 %; pluošto kokybė pastebimai suprastėja dėl stiprinimo soties ir terminių aberacijų – pluošto kokybės parametras siekė M2 ∼ 2,1, o pats pluoštas tapo ryškiai astigmatinis. Šie rezultatai sutapo su modeliavimo rezultatais.
Eksperimentiškai parodyta, kad sustiprinti impulsai yra kokybiškai spūdūs bėgant laikui – impulsai buvo suspausti difrakcinės gardelės impulsų spaustuve iki beveik spektriškai ribotos impulsų trukmės, 441 fs. Tokie lazerinės sistemos parametrai galėtų būti patrauklūs daugeliui sričių, pavyzdžiui, apdirbant medžiagas femtosekundiniais lazerio impulsais, jeigu bus išspręstos dvi pagrindinės problemos – galios nuostoliai dėl depoliarizacijos ir pluošto kokybės prastėjimas dėl šiluminių reiškinių. Pristatytas modelis tinka šiam uždaviniui, o pats sistemos tobulinimas numatytas tolimesniuose darbuose.


References / Nuorodos

[1] L. Shah, M.E. Fermann, J.W. Dawson, and C.P.J. Barty, Micromachining with a 50 W, 50 μJ, subpicosecond fiber laser system, Opt. Express 14(25), 12546 (2006),
https://doi.org/10.1364/OE.14.012546
[2] J. Squier and M. Müller, High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging, Rev. Sci. Instrum. 72(7), 2855–2867 (2001),
https://doi.org/10.1063/1.1379598
[3] R. Berera, R. van Grondelle, and J.T.M. Kennis, Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems, Photosynth. Res. 101(2–3), 105–118 (2009),
https://doi.org/10.1007/s11120-009-9454-y
[4] D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun. 56(3), 219–221 (1985),
https://doi.org/10.1016/0030-4018(85)90120-8
[5] E.B. Treacy, Optical pulse compression with diffraction gratings, IEEE J. Quantum Electron. 5(9), 454–458 (1969),
https://doi.org/10.1109/JQE.1969.1076303
[6] O.E. Martinez, J.P. Gordon, and R.L. Fork, Negative group-velocity dispersion using refraction, J. Opt. Soc. Am. A 1(10), 1003 (1984),
https://doi.org/10.1364/JOSAA.1.001003
[7] G. Imeshev, I. Hartl, and M.E. Fermann, Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor, Opt. Lett. 29(7), 679 (2004),
https://doi.org/10.1364/OL.29.000679
[8] T. Bartulevicius, S. Frankinas, A. Michailovas, R. Vasilyeu, V. Smirnov, F. Trepanier, and N. Rusteika, Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile, Opt. Express 25(17), 19856 (2017),
https://doi.org/10.1364/OE.25.019856
[9] I. Kuznetsov, I. Mukhin, O. Palashov, and K.-I. Ueda, Thin-rod Yb:YAG amplifiers for high average and peak power lasers, Opt. Lett. 43(16), 3941 (2018),
https://doi.org/10.1364/OL.43.003941
[10] J. Pouysegur, M. Delaigue, C. Hönninger, P. Georges, F. Druon, and E. Mottay, Generation of 150-fs pulses from a diode-pumped Yb:KYW nonlinear regenerative amplifier, Opt. Express 22(8), 9414 (2014),
https://doi.org/10.1364/OE.22.009414
[11] D. Stučinskas, R. Antipenkov, and A. Varanavičius, 30 W dual active element Yb:KGW regenerative amplifier for amplification of sub-500fs pulses, Proc. SPIE 6731, 67312Y (2007),
https://doi.org/10.1117/12.753021
[12] C. Krankel, Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range, IEEE J. Sel. Top. Quantum Electron. 21(1), 250–262 (2015),
https://doi.org/10.1109/JSTQE.2014.2346618
[13] F. Druon, F. Balembois, and P. Georges, New materials for short-pulse amplifiers, IEEE Photonics J. 3(2), 268–273 (2011),
https://doi.org/10.1109/JPHOT.2011.2135845
[14] G. Boulon, Fifty years of advances in solid-state laser materials, Opt. Mater. 34(3), 499–512 (2012),
https://doi.org/10.1016/j.optmat.2011.04.018
[15] M. Siebold, M. Loeser, F. Roeser, M. Seltmann, G. Harzendorf, I. Tsybin, S. Linke, S. Banerjee, P.D. Mason, P.J. Phillips, K. Ertel, J.C. Collier, and U. Schramm, High-energy, ceramic-disk Yb:LuAG laser amplifier, Opt. Express 20(20), 21992 (2012),
https://doi.org/10.1364/OE.20.021992
[16] Z. Liu, A. Ikesue, and J. Li, Research progress and prospects of rare-earth doped sesquioxide laser ceramics, J. Eur. Ceram. Soc. 41(7), 3895–3910 (2021),
https://doi.org/10.1016/j.jeurceramsoc.2021.02.026
[17] P. Albrodt, X. Delen, M. Besbes, F. Lesparre, and P. Georges, Simulation and experimental investigation of beam distortions in end-pumped laser rod amplifiers, J. Opt. Soc. Am. B 35(12), 3004 (2018),
https://doi.org/10.1364/JOSAB.35.003004
[18] A. Starobor and O. Palashov, Peculiarity of the thermally induced depolarization and methods of depolarization compensation in square-shaped Yb:YAG active elements, Opt. Commun. 402(February), 468–471 (2017),
https://doi.org/10.1016/j.optcom.2017.06.067
[19] A. Siegman, Lasers (University Science Books, 1986),
https://uscibooks.aip.org/books/lasers/
[20] G.L. Bourdet, Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers, Appl. Opt. 39(6), 966 (2000),
https://doi.org/10.1364/AO.39.000966
[21] R.J. Beach, Optimization of quasi-three level end-pumped Q-switched lasers, IEEE J. Quantum Electron. 31(9), 1606–1613 (1995),
https://doi.org/10.1109/3.406371
[22] R.J. Beach, CW theory of quasi-three level end-pumped laser oscillators, Opt. Commun. 123(1–3), 385–393 (1996),
https://doi.org/10.1016/0030-4018(95)00497-1
[23] D.A. Copeland, Optical extraction model and optimal outcoupling for a CW quasi-three level thin disk laser, Proc. SPIE 7912, 79120D (2011),
https://doi.org/10.1117/12.876052
[24] J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M.C. Kaluza, Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance, J. Opt. Soc. Am. B 29(9), 2493 (2012),
https://doi.org/10.1364/JOSAB.29.002493
[25] S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, On thermal effects in solid-state lasers: The case of ytterbium-doped materials, Prog. Quantum Electron. 30(4), 89–153 (2006),
https://doi.org/10.1016/j.pquantelec.2006.12.001
[26] O. Svelto, Principles of Lasers (Springer US, 2010),
https://doi.org/10.1007/978-1-4419-1302-9
[27] W. Koechner, Solid-State Laser Engineering, Springer Series in Optical Sciences (Springer New York, 2006),
https://doi.org/10.1007/978-3-662-14105-2
[28] J.J. Morehead, Compensation of laser thermal depolarization using free space, IEEE J. Sel. Top. Quantum Electron. 13(3), 498–501 (2007),
https://doi.org/10.1109/JSTQE.2007.896616
[29] S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, On thermal effects in solid-state lasers: The case of ytterbium-doped materials, Prog. Quantum Electron. 30(4), 89–153 (2006),
https://doi.org/10.1016/j.pquantelec.2006.12.001
[30] H. Furuse, R. Yasuhara, and K. Hiraga, Thermooptic properties of ceramic YAG at high temperatures, Opt. Mater. Express 4(9), 1794 (2014),
https://doi.org/10.1364/OME.4.001794
[31] D.C. Brown, J.M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser, Opt. Express 18(24), 24770 (2010),
https://doi.org/10.1364/OE.18.024770
[32] V. Markovic, A. Rohrbacher, P. Hofmann, W. Pallmann, S. Pierrot, and B. Resan, 160 W 800 fs Yb:YAG single crystal fiber amplifier without CPA, Opt. Express 23(20), 25883 (2015),
https://doi.org/10.1364/OE.23.025883
[33] J. Fischer, A.-C. Heinrich, S. Maier, J. Jungwirth, D. Brida, and A. Leitenstorfer, 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate, Opt. Lett. 41(2), 246 (2016),
https://doi.org/10.1364/OL.41.000246