[PDF]  https://doi.org/10.3952/physics.v61i4.4642

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 61, 233–250 (2021)
 

PHASE SPACE HOLOGRAPHY WITH NO STRINGS ATTACHED
Dmitri V. Khveshchenko
  Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, U. S. A.
Email: khvesh@physics.unc.edu

Received 20 February 2021; accepted 15 April 2021

We discuss the Wigner function representation from the novel standpoint of establishing a natural holography-like correspondence between the descriptions of a generic quantum system in the phase space (‘bulk’) picture versus its spacetime (‘boundary’) counterpart. In certain cases, the former may reduce to the gravity-like dynamics of a local metric-type variable while the latter takes on the form of some bosonized collective field hydrodynamics. This generic pseudo-holographic duality neither relies on any particular symmetry of the system in question, nor does it require any relation to some underlying ‘string theory’, thus providing a systematic way of constructing practical – as opposed to the previous ‘ad hoc’ – examples of genuine holographic duality.
Keywords: phase space, holographic correspondence, hydrodynamics, effective metric

PAPRASČIAUSIA FAZINĖS ERDVĖS HOLOGRAFIJA
Dmitri V. Khveshchenko

Šiaurės Karolinos universitetas, Čepel Hilas, JAV


References / Nuorodos

[1] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26, 224002 (2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[2] C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[3] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010, 723105 (2010),
https://doi.org/10.1155/2010/723105
[4] S. Sachdev, What can gauge-gravity duality teach us about condensed matter physics? Annu. Rev. Cond. Matt. Phys. 3, 9-33 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[5] J. Zaanen. Y. Liu, Y.-W. Sun, and K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[6] M. Ammon and J. Erdmenger, Gauge/Gravity Duality (Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[7] S.A. Hartnoll, A. Lucas, and S. Sachdev, Holographic Quantum Matter (MIT Press, 2018),
arXiv:1612.07324
https://mitpress.mit.edu/books/holographic-quantum-matter
[8] https://arXiv.org/search/?query=holographic+cond-mat
[9] https://projects.ift.uam-csic.es/holotube/videogallery/
[10] A. Dhar, G. Mandal, and S.R. Wadia, Stringy quantum effects in two-dimensional black hole, Mod. Phys. Lett. A 7, 3703–3715 (1992),
arXiv:hep-th/9210120,
https://doi.org/10.1142/S0217732392003128
[11] A. Dhar, G. Mandal, and S.R. Wadia, Classical Fermi fluid and geometric action for c = 1, Int. J. Mod. Phys. A 8(2), 325–350 (1993),
arXiv:hep-th/9204028,
https://doi.org/10.1142/S0217751X93000138
[12] A. Dhar, G. Mandal, and S.R. Wadia, Non-relativistic fermions, coadjoint orbits of W and string field theory at c = 1, Mod. Phys. Lett. A 7, 3129–3146 (1992),
arXiv:hep-th/9207011,
https://doi.org/10.1142/S0217732392002512
[13] A. Dhar, G. Mandal, and S.R. Wadia, W coherent states and path-integral derivation of bosonization of non-relativistic fermions in one dimension, Mod. Phys. Lett. A 8, 3557–3568 (1993),
arXiv:hep-th/9309028,
https://doi.org/10.1142/S0217732393002294
[14] A. Dhar, G. Mandal, and S.R. Wadia, A time-dependent classical solution of c = 1 string field theory and nonperturbative effects, Int. J. Mod. Phys. A 8, 3811–3828 (1993),
arXiv:hep-th/9212027,
https://doi.org/10.1142/S0217751X93001557
[15] S.R. Das, A. Dhar, G. Mandal, and S.R. Wadia, Bosonization of nonrelativistic fermions and W-infinity algebra, Mod. Phys. Lett. A 7, 71–84 (1992),
arXiv:hep-th/9111021,
https://doi.org/10.1142/S021773239200344X
[16] S.R. Das, A. Dhar, G. Mandal, and S.R. Wadia, W-infinity Ward identities and correlation functions in the c = 1 matrix model, Mod. Phys. Lett. A 7, 937–954 (1992), Erratum–ibid. A 7, 2245 (1992),
arXiv:hep-th/9112052,
https://doi.org/10.1142/S0217732392000835
[17] S.R. Das, D branes in 2d string theory and classical limits,
arXiv:hep-th/0401067
[18] S.R. Das, Non-trivial 2d space-times from matrices,
arXiv:hep-th/0503002
[19] S. Iso, D. Karabali, and B. Sakita, One-dimensional fermions as two-dimensional droplets via Chern-Simons theory, Nucl. Phys. B 388, 700–714 (1992),
arXiv:hep-th/9202012,
https://doi.org/10.1016/0550-3213(92)90560-X
[20] S.R. Das and L.H. Santos, Open string descriptions of space-like singularities in two dimensional string theory, Phys. Rev. D 75, 126001 (2007),
arXiv:hep-th/0702145,
https://doi.org/10.1103/PhysRevD.75.126001
[21] N. Banerjee and S. Dutta, Holographic hydrodynamics: models and methods,
arXiv:1112.5345
[22] S.R. Das and S.D. Mathur, Folds, bosonization and non-triviality of the classical limit of 2D string theory, Phys. Lett. B 365, 79–86 (1996),
arXiv:hep-th/9507141,
https://doi.org/10.1016/0370-2693(95)01307-5
[23] A. Jevicki, in: String Theory, Gauge Theory and Quantum Gravity '93, Proceedings of the Trieste Spring School and Workshop, ICTP, Trieste, Italy, 19–29 April 1993 (World Scientific, 2014) pp. 96–140,
arXiv:hep-th/9309115,
https://doi.org/10.1142/9789814447072_0004
[24] A. Luther, Tomonaga fermions and the Dirac equation in three dimensions, Phys. Rev. B 19, 320 (1979),
https://doi.org/10.1103/PhysRevB.19.320
[25] F.D.M. Haldane, Luttinger's theorem and bosonization of the Fermi surface, in: Proceedings of the International School of Physics 'Enrico Fermi', Course CXXI 'Perspectives in Many-Particle Physics', eds. R.A. Broglia and J.R. Schrieffer (North-Holland, Amsterdam, 1994) pp. 5–29,
arXiv:cond-mat/0505529
[26] D.V. Khveshchenko and P.C.E. Stamp, Low-energy properties of two-dimensional fermions with long-range current-current interactions, Phys. Rev. Lett. 71, 2118 (1993),
https://doi.org/10.1103/PhysRevLett.71.2118
[27] D.V. Khveshchenko and P.C.E. Stamp, Eikonal approximation in the theory of two-dimensional fermions with long-range current-current interactions, Phys. Rev. B 49(8), 5227 (1994),
https://doi.org/10.1103/PhysRevB.49.5227
[28] A.C. Neto and E. Fradkin, Bosonization of the low energy excitations of Fermi liquids, Phys. Rev. Lett 72, 1393 (1994),
https://doi.org/10.1103/PhysRevLett.72.1393
[29] A.C. Neto and E. Fradkin, Bosonization of Fermi liquids, Phys. Rev. B 49, 10877 (1994),
https://doi.org/10.1103/PhysRevB.49.10877
[30] A. Hougton and J.B. Marston, Bosonization and fermion liquids in dimensions greater than one, Phys. Rev. B 48, 7790 (1993),
https://doi.org/10.1103/PhysRevB.48.7790
[31] A. Hougton, H.J. Kwon, and J.B. Marston, Gauge interactions and bosonized fermion liquids, Phys. Rev. Lett. 73, 284 (1994),
https://doi.org/10.1103/PhysRevLett.73.284
[32] A. Hougton, H.J. Kwon, and J.B. Marston, Stability and single-particle properties of bosonized Fermi liquids, Phys. Rev. B 50, 1351 (1994),
https://doi.org/10.1103/PhysRevB.50.1351
[33] A. Hougton, H.J. Kwon, and J.B. Marston, Multidimensional bosonization, Adv. Phys. 49, 141–228 (2000),
https://doi.org/10.1080/000187300243363
[34] D.V. Khveshchenko, R. Hlubina, and T.M. Rice, Non-Fermi-liquid behaviour in two dimensions due to long-ranged current-current interactions, Phys. Rev. B 48, 10766 (1993),
https://doi.org/10.1103/PhysRevB.48.10766
[35] L.B. Ioffe, D. Lidsky, and B.L. Altshuler, Effective lowering of dimensionality in the strongly correlated two dimensional electron gas, Phys. Rev. Lett. 73, 472 (1994),
https://doi.org/10.1103/PhysRevLett.73.472
[36] C. Castellani, C. Di Castro, and W. Metzner, Dimensional crossover from Fermi to Luttinger liquid, Phys. Rev. Lett. 72, 316 (1994),
https://doi.org/10.1103/PhysRevLett.72.316
[37] J. Polchinski, Low-energy dynamics of the spinon-gauge system, Nucl. Phys. B 422, 617 (1994),
https://doi.org/10.1016/0550-3213(94)90449-9
[38] D.V. Khveshchenko, Bosonization of current-current interactions, Phys. Rev. B 49, 16893 (1994),
https://doi.org/10.1103/PhysRevB.49.16893
[39] D.V. Khveshchenko, Towards exact bosonization of the Calogero-Sutherland model, Int. J. Modern Phys. B 9(13–14), 1639–1646 (1995),
arXiv:cond-mat/9404094,
https://doi.org/10.1142/S0217979295000707
[40] D.V. Khveshchenko, Geometrical approach to bosonization of D > 1 dimensional (non)-Fermi liquids, Phys. Rev. B 52, 4833 (1995),
https://doi.org/10.1103/PhysRevB.52.4833
[41] A.M.J. Schakel, Effective field theory of ideal-fluid hydrodynamics, Mod. Phys. Lett. B 10, 999 (1996),
arXiv:cond-mat/9607164,
https://doi.org/10.1142/S0217984996001139
[42] A.G. Abanov and P.B. Wiegmann, Quantum hydrodynamics, the quantum Benjamin-Ono equation, and the Calogero model, Phys. Rev. Lett. 95, 076402 (2005),
arXiv:cond-mat/0504041,
https://doi.org/10.1103/PhysRevLett.95.076402
[43] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Nonlinear dynamics of quantum systems and soliton theory, J. Phys. A 40, F193–F208 (2007),
arXiv:nlin/0605006,
https://doi.org/10.1088/1751-8113/40/8/F02
[44] A.G. Abanov, E. Bettelheim, and P. Wiegmann, Integrable hydrodynamics of Calogero–Sutherland model: bidirectional Benjamin–Ono equation, J. Phys. A 42, 135201 (2009),
arXiv:0810.5327,
https://doi.org/10.1088/1751-8113/42/13/135201
[45] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas, J. Phys. A 41, 392003 (2008),
arXiv:0804.2272,
https://doi.org/10.1088/1751-8113/41/39/392003
[46] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Nonlinear quantum shock waves in fractional quantum Hall edge states, Phys. Rev. Lett. 97, 246402 (2006),
arXiv:cond-mat/0607453,
https://doi.org/10.1103/PhysRevLett.97.246401
[47] P.B. Wiegmann, Nonlinear hydrodynamics and fractionally quantized solitons at the fractional quantum Hall edge, Phys. Rev. Lett. 108, 206810 (2012),
arXiv:1112.0810,
https://doi.org/10.1103/PhysRevLett.108.206810
[48] P.B. Wiegmann, Quantum hydrodynamics of fractional Hall effect: Quantum Kirchhoff equations,
arXiv:1211.5132
[49] E. Bettelheim and P. Wiegmann, Universal Fermi distribution of semiclassical non-equilibrium Fermi states, Phys. Rev. B 84, 085102 (2011),
arXiv:1104.1854,
https://doi.org/10.1103/PhysRevB.84.085102
[50] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Fermi edge resonances in non-equilibrium states of Fermi gases, J. Phys. A 44, 282001 (2011),
arXiv:1103.4236,
https://doi.org/10.1088/1751-8113/44/28/282001
[51] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Gradient catastrophe and Fermi-edge resonances in Fermi gas, Phys. Rev. Lett. 106, 166804 (2011),
arXiv:1011.1993,
https://doi.org/10.1103/PhysRevLett.106.166804
[52] M. Laskin, T. Can, and P. Wiegmann, Collective field theory for quantum Hall states, Phys. Rev. B 92, 235141 (2015),
arXiv:1412.8716,
https://doi.org/10.1103/PhysRevB.92.235141
[53] M. Laskin, Y.H. Chiu, T. Can, and P. Wiegmann, Emergent conformal symmetry of quantum Hall states on singular surfaces, Phys. Rev. Lett. 117, 266803 (2016),
arXiv:1602.04802,
https://doi.org/10.1103/PhysRevLett.117.266803
[54] S. Klevtsov, X. Ma, G. Marinescu, and P. Wiegmann, Quantum Hall effect and Quillen metric, Commun. Math. Phys. 349, 819–855 (2017),
arXiv:1510.06720,
https://doi.org/10.1007/s00220-016-2789-2
[55] M. Pustilnik and K.A. Matveev, Fate of classical solitons in one-dimensional quantum systems, Phys. Rev. B 92, 195146 (2015),
arXiv:1507.05639,
https://doi.org/10.1103/PhysRevB.92.195146
[56] M. Pustilnik and K.A. Matveev, Viscous dissipation in one-dimensional quantum liquids, Phys. Rev. Lett. 119, 036801 (2017),
arXiv:1706.07004,
https://doi.org/10.1103/PhysRevLett.119.036801
[57] M. Pustilnik and K.A. Matveev, Effective mass of elementary excitations in Galilean-invariant integrable models, Phys. Rev. B 94, 115436 (2016),
arXiv:1606.05553,
https://doi.org/10.1103/PhysRevB.94.115436
[58] B. Doyon, H. Spohn, and T. Yoshimura, A geometric viewpoint on generalized hydrodynamics, Nucl. Phys. B 926, 570–583 (2017),
arXiv:1704.04409,
https://doi.org/10.1016/j.nuclphysb.2017.12.002
[59] B. Doyon and T. Yoshimura, A note on generalized hydrodynamics: inhomogeneous fields and other concepts, SciPost Phys. 2, 014 (2017),
arXiv:1611.08225,
https://doi.org/10.21468/SciPostPhys.2.2.014
[60] M. Fagotti, Higher-order generalized hydrodynamics in one dimension: The noninteracting test, Phys. Rev. B 96, 220302 (2017),
arXiv:1708.05383,
https://doi.org/10.1103/PhysRevB.96.220302
[61] A. Bastianello, B. Doyon, G. Watts, and T. Yoshimura, Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model, SciPost Phys. 4, 045 (2018),
arXiv:1712.05687,
https://doi.org/10.21468/SciPostPhys.4.6.045
[62] B. Doyon, Lecture notes on generalised hydrodynamics, SciPost Phys. Lect. Notes 18 (2020),
arXiv:1912.08496,
https://doi.org/10.21468/SciPostPhysLectNotes.18
[63] P. Ruggiero, P. Calabrese, B. Doyon, and J. Dubail, Quantum generalized hydrodynamics, Phys. Rev. Lett. 124, 140603 (2020),
arXiv.org:1910.00570,
https://doi.org/10.1103/PhysRevLett.124.140603
[64] Z.-Y. Shi, C. Gao, and H. Zhai, Idealized hydrodynamics,
arXiv:2011.01415
[65] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr, Nonequilibrium dynamics of noninteracting fermions in a trap, EPL 126, 20006 (2019),
arXiv:1902.02594,
https://doi.org/10.1209/0295-5075/126/20006
[66] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr, Impurities in systems of noninteracting trapped fermions, SciPost Phys. 10, 082 (2021),
arXiv:2012.13958,
https://doi.org/10.21468/SciPostPhys.10.4.082
[67] H. Spohn, Hydrodynamic equations for the Toda lattice,
arXiv:2101.06528
[68] J.R. Klauder, in: Contemporary Problems in Mathematical Physics, Proceedings of the Second International Workshop, Cotonou, Republic of Benin, 28 October – 2 November 2001, eds. J. Govaerts and A.Z. Msezane (World Scientific, 2002) pp. 395–408,
arXiv:quant-ph/0112010
[69] C. Anastopoulos, Generalized coherent states for spinning relativistic particles, J. Phys. A 37, 8619 (2004),
arXiv:quant-ph/0312025,
https://doi.org/10.1088/0305-4470/37/36/004
[70] T. Curtright and D. Fairlie, Extra dimensions and nonlinear equations, J. Math. Phys. 44, 2692-2703 (2003),
arXiv:math-ph/0207008,
https://doi.org/10.1063/1.1543227
[71] T. Curtright and D. Fairlie, Morphing quantum mechanics and fluid dynamics, J. Phys. A 36, 8885–8902 (2003),
arXiv:math-ph/0303003,
https://doi.org/10.1088/0305-4470/36/33/311
[72] R. Carroll, Remarks on the Schrodinger equation,
arXiv:quant-ph/0401082
[73] D.H. Delphenich, The geometric origin of the Madelung potential,
arXiv:gr-qc/0211065
[74] T. Curtright, d-branes in the stream,
arXiv:hep-th/0307121
[75] C. Anastopoulos and N. Savvidou, The role of phase space geometry in Heisenberg's uncertainty relation, Annals Phys. 308, 329–353 (2003),
arXiv:quant-ph/0304049,
https://doi.org/10.1016/S0003-4916(03)00145-3
[76] T.L. Curtright and C.K. Zachos, Quantum mechanics in phase space, APPN 1(1), 37–46 (2012),
arXiv:1104.5269,
https://doi.org/10.1142/S2251158X12000069
[77] V.V. Dodonov and A.V. Dodonov, Energy-time and frequency-time uncertainty relations: exact inequalities,
arXiv:1504.00862
[78] M. Geiller, C. Goeller, and N. Merino, Most general theory of 3d gravity: covariant phase space, dual diffeomorphisms, and more, JHEP 2, 120 (2021),
arXiv:2011.09873,
https://doi.org/10.1007/JHEP02(2021)120
[79] A. Achúcarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180, 89 (1986),
https://doi.org/10.1016/0370-2693(86)90140-1
[80] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121, 351 (1989),
https://doi.org/10.1007/BF01217730
[81] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity, Commun. Math. Phys. 104, 207 (1986),
https://doi.org/10.1007/BF01211590
[82] O. Coussaert, M. Henneaux, and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12, 2961–2966 (1995),
arXiv:grqc/9506019,
https://doi.org/10.1088/0264-9381/12/12/012
[83] R.E. Goldstein and D.M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67, 1991 (3203),
https://doi.org/10.1103/PhysRevLett.67.3203
[84] H. Afshar, S. Detournay, D. Grumiller, and B. Oblak, Near-horizon geometry and warped conformal symmetry, JHEP 2016, 187 (2016),
arXiv:1512.08233,
https://doi.org/10.1007/JHEP03(2016)187
[85] H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo, and R. Troncoso, Soft hairy horizons in three spacetime dimensions, Phys. Rev. D 95, 106005 (2017),
arXiv:1611.09783,
https://doi.org/10.1103/PhysRevD.95.106005
[86] H. Afshar, S. Detournay, D. Grumiller, W. Merbis, A. Perez, D. Tempo, and R. Troncoso, Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93, 101503 (2016),
arXiv:1603.04824,
https://doi.org/10.1103/PhysRevD.93.101503
[87] M. Henneaux, W. Merbis, and A. Ranjbar, Asymptotic dynamics of AdS3 gravity with two asymptotic regions, JHEP 2020, 64 (2020),
arXiv:1912.09465,
https://doi.org/10.1007/JHEP03(2020)064
[88] S. Li, N. Toumbas, and J. Troost, Liouville quantum gravity, Nucl. Phys. B 952, 114913 (2020),
arXiv:1903.06501,
https://doi.org/10.1016/j.nuclphysb.2019.114913
[89] A. Pérez, D. Tempo, and R. Troncoso, Boundary conditions for General Relativity on AdS3 and the KdV hierarchy, JHEP 2016, 103 (2016),
arXiv:1605.04490,
https://doi.org/10.1007/JHEP06(2016)103
[90] O. Fuentealba, J. Matulich, A. Pérez, M. Pino, P. Rodríguez, D. Tempo, and R. Troncoso, Integrable systems with BMS3 Poisson structure and the dynamics of locally flat spacetimes, JHEP 2018, 148 (2018),
arXiv:1711.02646,
https://doi.org/10.1007/JHEP01(2018)148
[91] D. Grumiller and W. Merbis, Near horizon dynamics of three dimensional black holes, SciPost Phys. 8, 010 (2020),
arXiv:1906.10694,
https://doi.org/10.21468/SciPostPhys.8.1.010
[92] E. Ojeda and A. Pérez, Boundary conditions for General Relativity in three-dimensional spacetimes, integrable systems and the KdV/mKdV hierarchies, JHEP 2019, 79 (2019),
arXiv:1906.11226,
https://doi.org/10.1007/JHEP08(2019)079
[93] A. Dymarsky and S. Sugishita, KdV-charged black holes, JHEP 2020, 41 (2020),
arXiv:2002.08368,
https://doi.org/10.1007/JHEP05(2020)041
[94] J. Matulich, S. Prohazka, and J. Salzer, Limits of three-dimensional gravity and metric kinematical Lie algebras in any dimension, JHEP 2019, 118 (2019),
arXiv:1903.09165,
https://doi.org/10.1007/JHEP07(2019)118
[95] J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 2021, 33 (2021),
arXiv:2006.08648,
https://doi.org/10.1007/JHEP04(2021)033
[96] M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin AdS gravity, JHEP 2010, 7 (2010),
arXiv:1008.4579,
https://doi.org/10.1007/JHEP12(2010)007
[97] G. Compère and W. Song, W symmetry and integrability of higher spin black holes, JHEP 2013, 144 (2013),
arXiv:1306.0014,
https://doi.org/10.1007/JHEP09(2013)144
[98] M. Gutperle and Y. Li, Higher spin Lifshitz theory and integrable systems, Phys. Rev. D 91, 046012 (2015),
arXiv:1412.7085,
https://doi.org/10.1103/PhysRevD.91.046012
[99] M. Beccaria, M. Gutperle, Y. Li, and G. Macorini, Higher spin Lifshitz theories and the Korteweg-de Vries hierarchy, Phys. Rev. D 92, 085005 (2015),
arXiv:1504.06555,
https://doi.org/10.1103/PhysRevD.92.085005
[100] D. Grumiller, A. Pérez, S. Prohazka, D. Tempo, and R. Troncoso, Higher spin black holes with soft hair, JHEP 10, 119 (2016),
arXiv:1607.05360,
https://doi.org/10.1007/JHEP10(2016)119
[101] E. Ojeda and A. Pérez, Integrable systems and the boundary dynamics of higher spin gravity on AdS3, JHEP 2020, 89 (2020),
arXiv:2009.07829,
https://doi.org/10.1007/JHEP11(2020)089
[102] P.M. Petropoulos, Gravitational duality, topologically massive gravity and holographic fluids,
arXiv:1406.2328
[103] P.M. Petropoulos and K. Siampos, Integrability, Einstein spaces and holographic fluids,
arXiv:1510.06456
[104] J. Gath, A. Mukhopadhyay, A.C. Petkou, P.M. Petropoulos, and K. Siampos, Petrov classification and holographic reconstruction of spacetime, JHEP 2015, 5 (2015),
arXiv:1506.04813,
https://doi.org/10.1007/JHEP09(2015)005
[105] L. Ciambelli, C. Marteau, A.C. Petkou, P.M. Petropoulos, K. Siampos, Covariant Galilean versus Carrollian hydrodynamics from relativistic fluids, Class. Quantum Grav. 35, 165001 (2018),
arXiv:1802.05286,
https://doi.org/10.1088/1361-6382/aacf1a
[106] L. Ciambelli, C. Marteau, A.C. Petkou, P.M. Petropoulos, and K. Siampos, Flat holography and Carrollian fluids, JHEP 1807, 165 (2018),
arXiv:1802.06809,
https://doi.org/10.1007/JHEP07(2018)165
[107] D. Hansen, J. Hartong, and N.A. Obers, Nonrelativistic gravity and its coupling to matter, JHEP 2020, 145 (2020),
arXiv:2001.10277,
https://doi.org/10.1007/JHEP06(2020)145
[108] J. de Boer and D. Engelhardt, Remarks on thermalization in 2D CFT, Phys. Rev. D 94, 126019 (2016),
arXiv:1604.05327,
https://doi.org/10.1103/PhysRevD.94.126019
[109] M. Rangamani, S.F. Ross, D.T. Son, and E.G. Thompson, Conformal non-relativistic hydrodynamics from gravity, JHEP 2009, 075 (2009),
arXiv:0811.2049,
https://doi.org/10.1088/1126-6708/2009/01/075
[110] A. Campoleoni, L. Ciambelli, C. Marteau, P.M. Petropoulos, and K. Siampos, Two-dimensional fluids and their holographic duals, Nucl. Phys. B 946, 114692 (2019),
arXiv:1812.04019,
https://doi.org/10.1016/j.nuclphysb.2019.114692
[111] M. Kulkarni, G. Manda, and T. Morita, Quantum quench and thermalization of one-dimensional Fermi gas via phase-space hydrodynamics, Phys. Rev. A 98, 043610 (2018),
arXiv:1806.09343,
https://doi.org/10.1103/PhysRevA.98.043610
[112] S.R. Das, S. Hampton, and S. Liu, Quantum quench in c = 1 matrix model and emergent spacetimes, JHEP 2020, 107 (2020),
arXiv:1910.00123,
https://doi.org/10.1007/JHEP04(2020)107
[113] S.R. Das, S. Hampton, and S. Liu, Quantum quench in non-relativistic fermionic field theory: Harmonic traps and 2d string theory, JHEP 2019, 176 (2019),
arXiv:1903.07682,
https://doi.org/10.1007/JHEP08(2019)176
[114] S. Bhattacharyya, V.E. Hubeny, S. Minwalla, and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 2008, 045 (2008),
arXiv:0712.2456,
https://doi.org/10.1088/1126-6708/2008/02/045
[115] S. Bhattacharyya, V.E. Hubeny, R. Loganayagam, G. Mandal, S. Minwalla, T. Morita, M. Rangamani, and HS. Reall, Local fluid dynamical entropy from gravity, JHEP 2008(6), 055 (2008),
arXiv:0803.2526,
https://doi.org/10.1088/1126-6708/2008/06/055
[116] N. Ambrosetti, J. Charbonneau, and S. Weinfurtner, The fluid/gravity correspondence: Lectures notes from the 2008 Summer School on Particles, Fields, and Strings,
arXiv:0810.2631
[117] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam, and P. Surówka, Hydrodynamics from charged black branes, JHEP 2011, 094 (2011),
arXiv:0809.2596,
https://doi.org/10.1007/JHEP01(2011)094
[118] S. Bhattacharyya, S. Minwalla, and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 2009, 59 (2009),
arXiv:0810.1545,
https://doi.org/10.1088/1126-6708/2009/08/059
[119] M. Haack and A. Yarom, Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT, JHEP 2008, 63 (2008),
arXiv:0806.4602,
https://doi.org/10.1088/1126-6708/2008/10/063
[120] S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla, and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 2008(12), 116 (2008),
arXiv:0809.4272,
https://doi.org/10.1088/1126-6708/2008/12/116
[121] M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26, 224003 (2009),
arXiv:0905.4352,
https://doi.org/10.1088/0264-9381/26/22/224003
[122] V.E. Hubeny, S. Minwalla, and M. Rangamani, in: Black Holes in Higher Dimensions (Cambridge University Press, 2012) pp. 348386,
arXiv:1107.5780
[123] N. Banerjee and S. Dutta, Holographic hydrodynamics: models and methods,
arXiv:1112.5345
[124] Y. Bu and M. Lublinsky, Linearized fluid/gravity correspondence: from shear viscosity to all order hydrodynamics, JHEP 2014, 64 (2014),
arXiv:1409.3095,
https://doi.org/10.1007/JHEP11(2014)064
[125] L. Ciambelli, C. Marteau, P.M. Petropoulos, and R. Ruzziconi, Fefferman-Graham and Bondi gauges in the fluid/gravity correspondence,
arXiv:2006.10083
[126] G. Barnich, H.A. González, and P. Salgado-Rebolledo, Geometric actions for three-dimensional gravity, Class. Quantum Grav. 35, 014003 (2018),
arXiv:1707.08887,
https://doi.org/10.1088/1361-6382/aa9806
[127] P. Caputa and J.M. Magan, Quantum computation as gravity, Phys. Rev. Lett. 122, 231302 (2019),
arXiv:1807.04422,
https://doi.org/10.1103/PhysRevLett.122.231302
[128] J.M. Magan, Black holes, complexity and quantum chaos, JHEP 2018, 43 (2018),
arXiv:1805.05839,
https://doi.org/10.1007/JHEP09(2018)043
[129] J. Ergmenter, M. Gerbershagen, and A.-L. Weigel, Complexity measures from geometric actions on Virasoro and Kac-Moody orbits, JHEP 2020(11), 003 (2020),
arXiv:2004.03619,
https://doi.org/10.1007/JHEP11(2020)003
[130] A. Jain, Effective field theory for non-relativistic hydrodynamics, JHEP 2020, 208 (2020),
arXiv:2008.03994,
https://doi.org/10.1007/JHEP10(2020)208
[131] W. Merbis and M. Riegler, Geometric actions and flat space holography, JHEP 2020, 125 (2020),
arXiv:1912.08207,
https://doi.org/10.1007/JHEP02(2020)125
[132] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993),
https://doi.org/10.1103/PhysRevLett.70.3339
[133] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[134] S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[135] A. Kitaev, KITP Seminars, 2015,
http://online.kitp.ucsb.edu/
[136] A. Kitaev, Notes on SL˜\widetilde{\mathrm{SL}} (2,ℝ) representations,
arXiv:1711.08169
[137] A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 2018, 183 (2018),
arXiv:1711.08467,
https://doi.org/10.1007/JHEP05(2018)183
[138] A. Kitaev and S.J. Suh, Statistical mechanics of a two-dimensional black hole, JHEP 2019, 198 (2019),
arXiv:1808.07032,
https://doi.org/10.1007/JHEP05(2019)198
[139] E. Witten, An SYK-like model without disorder,
arXiv:1610.09758
[140] R. Gurau, The complete 1/N expansion of a SYK–like tensor model, Nucl. Phys. B 916, 386–401 (2017),
arXiv:1611.04032,
https://doi.org/10.1016/j.nuclphysb.2017.01.015
[141] R. Gurau, The prescription in the SYK model,
arXiv:1705.08581
[142] I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95, 046004 (2017),
https://doi.org/10.1103/PhysRevD.95.046004
[143] S. Giombi, I.R. Klebanov, and G. Tarnopolsky, Bosonic tensor models at large N and small ε, Phys. Rev. D 96, 106014 (2017),
https://doi.org/10.1103/PhysRevD.96.106014
[144] J. Maldacena, S.H. Shenker, and D. Stanford, A bound on chaos, JHEP 2016(8), 106 (2016),
https://doi.org/10.1007/JHEP08(2016)106
[145] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016),
https://doi.org/10.1103/PhysRevD.94.106002
[146] J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space,
arXiv:1606.01857
[147] D. Stanford and E. Witten, Fermionic localization of the schwarzian theory, JHEP 2017(10), 8 (2017),
https://doi.org/10.1007/JHEP10(2017)008
[148] J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 2016(4), 1 (2016),
https://doi.org/10.1007/JHEP04(2016)001
[149] D.J. Gross and V. Rosenhaus, The bulk dual of SYK: cubic couplings, JHEP 2017(05), 92 (2017),
https://doi.org/10.1007/JHEP05(2017)092
[150] D.J. Gross and V. Rosenhaus, All point correlation functions in SYK, JHEP 2017(12), 148 (2017),
https://doi.org/10.1007/JHEP12(2017)148
[151] G. Sárosi, in: XIII Modave Summer School in Mathematical Physics (Modave2017), Proc. Sci. Vol. 323,
arXiv:1711.08482
[152] H.W. Lin, J. Maldacena, and Y. Zhao, Symmetries near the horizon, JHEP 2019, 49 (2019),
arXiv:1904.12820,
https://doi.org/10.1007/JHEP08(2019)049
[153] Y. Gu, X.-L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 2017, 125 (2017),
https://doi.org/10.1007/JHEP05(2017)125
[154] Y. Gu, A. Lucas, and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys. 2, 018 (2017),
https://doi.org/10.21468/SciPostPhys.2.3.018
[155] Y. Gu, A. Lucas, and X.-L. Qi, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP 2017, 120 (2017),
https://doi.org/10.1007/JHEP09(2017)120
[156] Y. Gu and A. Kitaev, On the relation between the magnitude and exponent of OTOCs, JHEP 2019(2), 75 (2019),
https://doi.org/10.1007/JHEP02(2019)075
[157] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911, 191–205 (2016),
https://doi.org/10.1016/j.nuclphysb.2016.08.002
[158] D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921, 727 (2017),
https://doi.org/10.1016/j.nuclphysb.2017.06.012
[159] T.G. Mertens, G.J. Turiaci, and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP 8, 136 (2017),
https://doi.org/10.1007/JHEP08(2017)136
[160] T.G. Mertens, The Schwarzian theory — origins, JHEP 2018(5), 36 (2018),
https://doi.org/10.1007/JHEP05(2018)036
[161] Z. Yang, The quantum gravity dynamics of near extremal black holes, JHEP 2019(5), 205 (2019),
arXiv:1809.08647,
https://doi.org/10.1007/JHEP05(2019)205
[162] A. Jevicki, K. Suzuki, and J. Yoon, Bi-local holography in the SYK model, JHEP 2016(7), 7 (2016),
https://doi.org/10.1007/JHEP07(2016)007
[163] A. Jevicki and K. Suzuki, Bi-local holography in the SYK model: Perturbations,
arXiv:1608.07567
[164] S.R. Das, A. Jevicki, and K. Suzuki, Three dimensional view of the SYK/AdS duality, JHEP 2017(9), 17 (2017),
https://doi.org/10.1007/JHEP09(2017)017
[165] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Spacetime in the SYK model, JHEP 2018(7), 184 (2018),
https://doi.org/10.1007/JHEP07(2018)184
[166] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Three dimensional view of arbitrary q SYK models, JHEP 2018(2), 162 (2018),
https://doi.org/10.1007/JHEP02(2018)162
[167] G. Mandal, P. Nayak, and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, JHEP 2017(11), 46 (2017),
https://doi.org/10.1007/JHEP11(2017)046
[168] A. Gaikwad, L. Kh Joshi, G. Mandal, and S.R. Wadia, Holographic dual to charged SYK from 3D Gravity and Chern-Simons, JHEP 2020(2), 33 (2020),
arXiv:1802.07746,
https://doi.org/10.1007/JHEP02(2020)033
[169] T.G. Mertens and G.J. Turiaci, Defects in Jackiw-Teitelboim quantum gravity, JHEP 2019(8), 127 (2019),
arXiv:1904.05228,
https://doi.org/10.1007/JHEP08(2019)127
[170] D.V. Khveshchenko, On a (pseudo)holographic nature of the SYK-like models, Lith. J. Phys. 59, 104 (2019),
arXiv:1905.04381,
https://doi.org/10.3952/physics.v59i2.4013
[171] V. Balasubramanian, I. García-Etxebarria, F. Larsen, and J. Simón, Helical Luttinger liquids and three dimensional black holes, Phys. Rev. D 84, 126012 (2011),
arXiv:1012.4363,
https://doi.org/10.1103/PhysRevD.84.126012
[172] D. Maity, S. Sarkar, B. Sathiapalan, R. Shankar, and N. Sircar, Properties of CFTs dual to charged BTZ black-hole, Nucl. Phys. B 839, 526–551 (2010),
arXiv:0909.4051,
https://doi.org/10.1016/j.nuclphysb.2010.06.012
[173] B. Lian, S.L. Sondhi, and Z. Yang, The chiral SYK model, JHEP 2019(9), 067 (2019),
arXiv:1906.03308,
https://doi.org/10.1007/JHEP09(2019)067
[174] M. Banados, Three-dimensional quantum geometry and black holes, AIP Conf. Proc. 484, 147 (1999),
arXiv:hep-th/9901148,
https://doi.org/10.1063/1.59661
[175] R. Li and J.-R. Ren, Dirac particles tunneling from BTZ black hole, Phys. Lett. B 661, 370372 (2008),
arXiv:0802.3954,
https://doi.org/10.1016/j.physletb.2008.01.077
[176] N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57, 367384 (2009),
arXiv:0903.2596,
https://doi.org/10.1002/prop.200900057
[177] A. Dasgupta, Emission of fermions from BTZ black holes, Phys. Lett. B 445, 279286 (1999),
arXiv:hep-th/9808086,
https://doi.org/10.1016/S0370-2693(98)01492-0
[178] D. Maity, S. Sarkar, B. Sathiapalan, R. Shankar, and N. Sircar, Properties of CFTs dual to charged BTZ black hole, Nucl. Phys. B 839, 526551 (2010),
arXiv:0909.4051,
https://doi.org/10.1016/j.nuclphysb.2010.06.012
[179] S.-W. Zhou, X.-X. Zeng, and W.-B. Liu, Hawking radiation from a BTZ black hole viewed as Landauer transport,
arXiv:1106.0559
[180] L.G.C. Gentile, P.A. Grassi, and A. Mezzalira, Fermionic corrections to fluid dynamics from BTZ black hole, JHEP 2015, 153 (2015),
arXiv:1302.5060,
https://doi.org/10.1007/JHEP11(2015)153
[181] T. Faulkner and N. Iqbal, Friedel oscillations and horizon charge in 1D holographic liquids,
arXiv:1207.4208
[182] L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1+1 dimensions, JHEP 2010(1), 114 (2010),
arXiv:0909.3526,
https://doi.org/10.1007/JHEP01(2010)114