Dmitri V. Khveshchenko
[1] S.A. Hartnoll, Lectures on holographic methods for condensed
matter physics, Class. Quant. Grav.
26, 224002 (2009),
https://doi.org/10.1088/0264-9381/26/22/224002
[2] C.P. Herzog, Lectures on holographic superfluidity and
superconductivity, J. Phys. A
42, 343001 (2009),
https://doi.org/10.1088/1751-8113/42/34/343001
[3] J. McGreevy, Holographic duality with a view toward
many-body physics, Adv. High Energy Phys.
2010, 723105
(2010),
https://doi.org/10.1155/2010/723105
[4] S. Sachdev, What can gauge-gravity duality teach us about
condensed matter physics? Annu. Rev. Cond. Matt. Phys.
3,
9-33 (2012),
https://doi.org/10.1146/annurev-conmatphys-020911-125141
[5] J. Zaanen. Y. Liu, Y.-W. Sun, and K. Schalm,
Holographic
Duality in Condensed Matter Physics (Cambridge University
Press, 2015),
https://doi.org/10.1017/CBO9781139942492
[6] M. Ammon and J. Erdmenger,
Gauge/Gravity Duality
(Cambridge University Press, 2015),
https://doi.org/10.1017/CBO9780511846373
[7] S.A. Hartnoll, A. Lucas, and S. Sachdev,
Holographic
Quantum Matter (MIT Press, 2018),
arXiv:1612.07324
https://mitpress.mit.edu/books/holographic-quantum-matter
[8]
https://arXiv.org/search/?query=holographic+cond-mat
[9]
https://projects.ift.uam-csic.es/holotube/videogallery/
[10] A. Dhar, G. Mandal, and S.R. Wadia, Stringy quantum effects
in two-dimensional black hole, Mod. Phys. Lett. A
7,
3703–3715 (1992),
arXiv:hep-th/9210120,
https://doi.org/10.1142/S0217732392003128
[11] A. Dhar, G. Mandal, and S.R. Wadia, Classical Fermi fluid
and geometric action for c = 1, Int. J. Mod. Phys. A
8(2),
325–350 (1993),
arXiv:hep-th/9204028,
https://doi.org/10.1142/S0217751X93000138
[12] A. Dhar, G. Mandal, and S.R. Wadia, Non-relativistic
fermions, coadjoint orbits of W
∞ and string field
theory at c = 1, Mod. Phys. Lett. A
7, 3129–3146 (1992),
arXiv:hep-th/9207011,
https://doi.org/10.1142/S0217732392002512
[13] A. Dhar, G. Mandal, and S.R. Wadia, W
∞ coherent
states and path-integral derivation of bosonization of
non-relativistic fermions in one dimension, Mod. Phys. Lett. A
8,
3557–3568 (1993),
arXiv:hep-th/9309028,
https://doi.org/10.1142/S0217732393002294
[14] A. Dhar, G. Mandal, and S.R. Wadia, A time-dependent
classical solution of c = 1 string field theory and
nonperturbative effects, Int. J. Mod. Phys. A
8,
3811–3828 (1993),
arXiv:hep-th/9212027,
https://doi.org/10.1142/S0217751X93001557
[15] S.R. Das, A. Dhar, G. Mandal, and S.R. Wadia, Bosonization
of nonrelativistic fermions and W-infinity algebra, Mod. Phys.
Lett. A
7, 71–84 (1992),
arXiv:hep-th/9111021,
https://doi.org/10.1142/S021773239200344X
[16] S.R. Das, A. Dhar, G. Mandal, and S.R. Wadia, W-infinity
Ward identities and correlation functions in the c = 1 matrix
model, Mod. Phys. Lett. A
7, 937–954 (1992),
Erratum–ibid. A
7, 2245 (1992),
arXiv:hep-th/9112052,
https://doi.org/10.1142/S0217732392000835
[17] S.R. Das, D branes in 2d string theory and classical
limits,
arXiv:hep-th/0401067
[18] S.R. Das, Non-trivial 2d space-times from matrices,
arXiv:hep-th/0503002
[19] S. Iso, D. Karabali, and B. Sakita, One-dimensional
fermions as two-dimensional droplets via Chern-Simons theory,
Nucl. Phys. B
388, 700–714 (1992),
arXiv:hep-th/9202012,
https://doi.org/10.1016/0550-3213(92)90560-X
[20] S.R. Das and L.H. Santos, Open string descriptions of
space-like singularities in two dimensional string theory, Phys.
Rev. D
75, 126001 (2007),
arXiv:hep-th/0702145,
https://doi.org/10.1103/PhysRevD.75.126001
[21] N. Banerjee and S. Dutta, Holographic hydrodynamics: models
and methods,
arXiv:1112.5345
[22] S.R. Das and S.D. Mathur, Folds, bosonization and
non-triviality of the classical limit of 2D string theory, Phys.
Lett. B
365, 79–86 (1996),
arXiv:hep-th/9507141,
https://doi.org/10.1016/0370-2693(95)01307-5
[23] A. Jevicki, in:
String Theory, Gauge Theory and Quantum
Gravity '93, Proceedings of the Trieste Spring School and
Workshop, ICTP, Trieste, Italy, 19–29 April 1993 (World
Scientific, 2014) pp. 96–140,
arXiv:hep-th/9309115,
https://doi.org/10.1142/9789814447072_0004
[24] A. Luther, Tomonaga fermions and the Dirac equation in
three dimensions, Phys. Rev. B
19, 320 (1979),
https://doi.org/10.1103/PhysRevB.19.320
[25] F.D.M. Haldane, Luttinger's theorem and bosonization of the
Fermi surface, in:
Proceedings of the International School
of Physics 'Enrico Fermi', Course CXXI 'Perspectives in
Many-Particle Physics', eds. R.A. Broglia and J.R.
Schrieffer (North-Holland, Amsterdam, 1994) pp. 5–29,
arXiv:cond-mat/0505529
[26] D.V. Khveshchenko and P.C.E. Stamp, Low-energy properties
of two-dimensional fermions with long-range current-current
interactions, Phys. Rev. Lett.
71, 2118 (1993),
https://doi.org/10.1103/PhysRevLett.71.2118
[27] D.V. Khveshchenko and P.C.E. Stamp, Eikonal approximation
in the theory of two-dimensional fermions with long-range
current-current interactions, Phys. Rev. B
49(8), 5227
(1994),
https://doi.org/10.1103/PhysRevB.49.5227
[28] A.C. Neto and E. Fradkin, Bosonization of the low energy
excitations of Fermi liquids, Phys. Rev. Lett
72, 1393
(1994),
https://doi.org/10.1103/PhysRevLett.72.1393
[29] A.C. Neto and E. Fradkin, Bosonization of Fermi liquids,
Phys. Rev. B
49, 10877 (1994),
https://doi.org/10.1103/PhysRevB.49.10877
[30] A. Hougton and J.B. Marston, Bosonization and fermion
liquids in dimensions greater than one, Phys. Rev. B
48,
7790 (1993),
https://doi.org/10.1103/PhysRevB.48.7790
[31] A. Hougton, H.J. Kwon, and J.B. Marston, Gauge interactions
and bosonized fermion liquids, Phys. Rev. Lett.
73, 284
(1994),
https://doi.org/10.1103/PhysRevLett.73.284
[32] A. Hougton, H.J. Kwon, and J.B. Marston, Stability and
single-particle properties of bosonized Fermi liquids, Phys.
Rev. B
50, 1351 (1994),
https://doi.org/10.1103/PhysRevB.50.1351
[33] A. Hougton, H.J. Kwon, and J.B. Marston, Multidimensional
bosonization, Adv. Phys.
49, 141–228 (2000),
https://doi.org/10.1080/000187300243363
[34] D.V. Khveshchenko, R. Hlubina, and T.M. Rice,
Non-Fermi-liquid behaviour in two dimensions due to long-ranged
current-current interactions, Phys. Rev. B
48, 10766
(1993),
https://doi.org/10.1103/PhysRevB.48.10766
[35] L.B. Ioffe, D. Lidsky, and B.L. Altshuler, Effective
lowering of dimensionality in the strongly correlated two
dimensional electron gas, Phys. Rev. Lett.
73, 472
(1994),
https://doi.org/10.1103/PhysRevLett.73.472
[36] C. Castellani, C. Di Castro, and W. Metzner, Dimensional
crossover from Fermi to Luttinger liquid, Phys. Rev. Lett.
72,
316 (1994),
https://doi.org/10.1103/PhysRevLett.72.316
[37] J. Polchinski, Low-energy dynamics of the spinon-gauge
system, Nucl. Phys. B
422, 617 (1994),
https://doi.org/10.1016/0550-3213(94)90449-9
[38] D.V. Khveshchenko, Bosonization of current-current
interactions, Phys. Rev. B
49, 16893 (1994),
https://doi.org/10.1103/PhysRevB.49.16893
[39] D.V. Khveshchenko, Towards exact bosonization of the
Calogero-Sutherland model, Int. J. Modern Phys. B
9(13–14),
1639–1646 (1995),
arXiv:cond-mat/9404094,
https://doi.org/10.1142/S0217979295000707
[40] D.V. Khveshchenko, Geometrical approach to bosonization of
D > 1 dimensional (non)-Fermi liquids, Phys. Rev. B
52,
4833 (1995),
https://doi.org/10.1103/PhysRevB.52.4833
[41] A.M.J. Schakel, Effective field theory of ideal-fluid
hydrodynamics, Mod. Phys. Lett. B
10, 999 (1996),
arXiv:cond-mat/9607164,
https://doi.org/10.1142/S0217984996001139
[42] A.G. Abanov and P.B. Wiegmann, Quantum hydrodynamics, the
quantum Benjamin-Ono equation, and the Calogero model, Phys.
Rev. Lett.
95, 076402 (2005),
arXiv:cond-mat/0504041,
https://doi.org/10.1103/PhysRevLett.95.076402
[43] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Nonlinear
dynamics of quantum systems and soliton theory, J. Phys. A
40,
F193–F208 (2007),
arXiv:nlin/0605006,
https://doi.org/10.1088/1751-8113/40/8/F02
[44] A.G. Abanov, E. Bettelheim, and P. Wiegmann, Integrable
hydrodynamics of Calogero–Sutherland model: bidirectional
Benjamin–Ono equation, J. Phys. A
42, 135201 (2009),
arXiv:0810.5327,
https://doi.org/10.1088/1751-8113/42/13/135201
[45] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Quantum
hydrodynamics and nonlinear differential equations for
degenerate Fermi gas, J. Phys. A
41, 392003 (2008),
arXiv:0804.2272,
https://doi.org/10.1088/1751-8113/41/39/392003
[46] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Nonlinear
quantum shock waves in fractional quantum Hall edge states,
Phys. Rev. Lett.
97, 246402 (2006),
arXiv:cond-mat/0607453,
https://doi.org/10.1103/PhysRevLett.97.246401
[47] P.B. Wiegmann, Nonlinear hydrodynamics and fractionally
quantized solitons at the fractional quantum Hall edge, Phys.
Rev. Lett.
108, 206810 (2012),
arXiv:1112.0810,
https://doi.org/10.1103/PhysRevLett.108.206810
[48] P.B. Wiegmann, Quantum hydrodynamics of fractional Hall
effect: Quantum Kirchhoff equations,
arXiv:1211.5132
[49] E. Bettelheim and P. Wiegmann, Universal Fermi distribution
of semiclassical non-equilibrium Fermi states, Phys. Rev. B
84,
085102 (2011),
arXiv:1104.1854,
https://doi.org/10.1103/PhysRevB.84.085102
[50] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Fermi edge
resonances in non-equilibrium states of Fermi gases, J. Phys. A
44, 282001 (2011),
arXiv:1103.4236,
https://doi.org/10.1088/1751-8113/44/28/282001
[51] E. Bettelheim, Y. Kaplan, and P. Wiegmann, Gradient
catastrophe and Fermi-edge resonances in Fermi gas, Phys. Rev.
Lett.
106, 166804 (2011),
arXiv:1011.1993,
https://doi.org/10.1103/PhysRevLett.106.166804
[52] M. Laskin, T. Can, and P. Wiegmann, Collective field theory
for quantum Hall states, Phys. Rev. B
92, 235141 (2015),
arXiv:1412.8716,
https://doi.org/10.1103/PhysRevB.92.235141
[53] M. Laskin, Y.H. Chiu, T. Can, and P. Wiegmann, Emergent
conformal symmetry of quantum Hall states on singular surfaces,
Phys. Rev. Lett.
117, 266803 (2016),
arXiv:1602.04802,
https://doi.org/10.1103/PhysRevLett.117.266803
[54] S. Klevtsov, X. Ma, G. Marinescu, and P. Wiegmann, Quantum
Hall effect and Quillen metric, Commun. Math. Phys.
349,
819–855 (2017),
arXiv:1510.06720,
https://doi.org/10.1007/s00220-016-2789-2
[55] M. Pustilnik and K.A. Matveev, Fate of classical solitons
in one-dimensional quantum systems, Phys. Rev. B
92,
195146 (2015),
arXiv:1507.05639,
https://doi.org/10.1103/PhysRevB.92.195146
[56] M. Pustilnik and K.A. Matveev, Viscous dissipation in
one-dimensional quantum liquids, Phys. Rev. Lett.
119,
036801 (2017),
arXiv:1706.07004,
https://doi.org/10.1103/PhysRevLett.119.036801
[57] M. Pustilnik and K.A. Matveev, Effective mass of elementary
excitations in Galilean-invariant integrable models, Phys. Rev.
B
94, 115436 (2016),
arXiv:1606.05553,
https://doi.org/10.1103/PhysRevB.94.115436
[58] B. Doyon, H. Spohn, and T. Yoshimura, A geometric viewpoint
on generalized hydrodynamics, Nucl. Phys. B
926, 570–583
(2017),
arXiv:1704.04409,
https://doi.org/10.1016/j.nuclphysb.2017.12.002
[59] B. Doyon and T. Yoshimura, A note on generalized
hydrodynamics: inhomogeneous fields and other concepts, SciPost
Phys.
2, 014 (2017),
arXiv:1611.08225,
https://doi.org/10.21468/SciPostPhys.2.2.014
[60] M. Fagotti, Higher-order generalized hydrodynamics in one
dimension: The noninteracting test, Phys. Rev. B
96,
220302 (2017),
arXiv:1708.05383,
https://doi.org/10.1103/PhysRevB.96.220302
[61] A. Bastianello, B. Doyon, G. Watts, and T. Yoshimura,
Generalized hydrodynamics of classical integrable field theory:
the sinh-Gordon model, SciPost Phys.
4, 045 (2018),
arXiv:1712.05687,
https://doi.org/10.21468/SciPostPhys.4.6.045
[62] B. Doyon, Lecture notes on generalised hydrodynamics,
SciPost Phys. Lect. Notes
18 (2020),
arXiv:1912.08496,
https://doi.org/10.21468/SciPostPhysLectNotes.18
[63] P. Ruggiero, P. Calabrese, B. Doyon, and J. Dubail, Quantum
generalized hydrodynamics, Phys. Rev. Lett.
124, 140603
(2020),
arXiv.org:1910.00570,
https://doi.org/10.1103/PhysRevLett.124.140603
[64] Z.-Y. Shi, C. Gao, and H. Zhai, Idealized hydrodynamics,
arXiv:2011.01415
[65] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr,
Nonequilibrium dynamics of noninteracting fermions in a trap,
EPL
126, 20006 (2019),
arXiv:1902.02594,
https://doi.org/10.1209/0295-5075/126/20006
[66] D.S. Dean, P. Le Doussal, S.N. Majumdar, and G. Schehr,
Impurities in systems of noninteracting trapped fermions,
SciPost Phys.
10, 082 (2021),
arXiv:2012.13958,
https://doi.org/10.21468/SciPostPhys.10.4.082
[67] H. Spohn, Hydrodynamic equations for the Toda lattice,
arXiv:2101.06528
[68] J.R. Klauder, in:
Contemporary Problems in Mathematical
Physics, Proceedings of the Second International Workshop,
Cotonou, Republic of Benin, 28 October – 2 November 2001,
eds. J. Govaerts and A.Z. Msezane (World Scientific, 2002) pp.
395–408,
arXiv:quant-ph/0112010
[69] C. Anastopoulos, Generalized coherent states for spinning
relativistic particles, J. Phys. A
37, 8619 (2004),
arXiv:quant-ph/0312025,
https://doi.org/10.1088/0305-4470/37/36/004
[70] T. Curtright and D. Fairlie, Extra dimensions and nonlinear
equations, J. Math. Phys.
44, 2692-2703 (2003),
arXiv:math-ph/0207008,
https://doi.org/10.1063/1.1543227
[71] T. Curtright and D. Fairlie, Morphing quantum mechanics and
fluid dynamics, J. Phys. A
36, 8885–8902 (2003),
arXiv:math-ph/0303003,
https://doi.org/10.1088/0305-4470/36/33/311
[72] R. Carroll, Remarks on the Schrodinger equation,
arXiv:quant-ph/0401082
[73] D.H. Delphenich, The geometric origin of the Madelung
potential,
arXiv:gr-qc/0211065
[74] T. Curtright, d-branes in the stream,
arXiv:hep-th/0307121
[75] C. Anastopoulos and N. Savvidou, The role of phase space
geometry in Heisenberg's uncertainty relation, Annals Phys.
308,
329–353 (2003),
arXiv:quant-ph/0304049,
https://doi.org/10.1016/S0003-4916(03)00145-3
[76] T.L. Curtright and C.K. Zachos, Quantum mechanics in phase
space, APPN
1(1), 37–46 (2012),
arXiv:1104.5269,
https://doi.org/10.1142/S2251158X12000069
[77] V.V. Dodonov and A.V. Dodonov, Energy-time and
frequency-time uncertainty relations: exact inequalities,
arXiv:1504.00862
[78] M. Geiller, C. Goeller, and N. Merino, Most general theory
of 3d gravity: covariant phase space, dual diffeomorphisms, and
more, JHEP
2, 120 (2021),
arXiv:2011.09873,
https://doi.org/10.1007/JHEP02(2021)120
[79] A. Achúcarro and P.K. Townsend, A Chern-Simons action for
three-dimensional anti-de Sitter supergravity theories, Phys.
Lett. B
180, 89 (1986),
https://doi.org/10.1016/0370-2693(86)90140-1
[80] E. Witten, Quantum field theory and the Jones polynomial,
Commun. Math. Phys.
121, 351 (1989),
https://doi.org/10.1007/BF01217730
[81] J.D. Brown and M. Henneaux, Central charges in the
canonical realization of asymptotic symmetries: An example from
three dimensional gravity, Commun. Math. Phys.
104, 207
(1986),
https://doi.org/10.1007/BF01211590
[82] O. Coussaert, M. Henneaux, and P. van Driel, The asymptotic
dynamics of three-dimensional Einstein gravity with a negative
cosmological constant, Class. Quant. Grav.
12, 2961–2966
(1995),
arXiv:grqc/9506019,
https://doi.org/10.1088/0264-9381/12/12/012
[83] R.E. Goldstein and D.M. Petrich, The Korteweg-de Vries
hierarchy as dynamics of closed curves in the plane, Phys. Rev.
Lett.
67, 1991 (3203),
https://doi.org/10.1103/PhysRevLett.67.3203
[84] H. Afshar, S. Detournay, D. Grumiller, and B. Oblak,
Near-horizon geometry and warped conformal symmetry, JHEP
2016,
187 (2016),
arXiv:1512.08233,
https://doi.org/10.1007/JHEP03(2016)187
[85] H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo, and
R. Troncoso, Soft hairy horizons in three spacetime dimensions,
Phys. Rev. D
95, 106005 (2017),
arXiv:1611.09783,
https://doi.org/10.1103/PhysRevD.95.106005
[86] H. Afshar, S. Detournay, D. Grumiller, W. Merbis, A. Perez,
D. Tempo, and R. Troncoso, Soft Heisenberg hair on black holes
in three dimensions, Phys. Rev. D
93, 101503 (2016),
arXiv:1603.04824,
https://doi.org/10.1103/PhysRevD.93.101503
[87] M. Henneaux, W. Merbis, and A. Ranjbar, Asymptotic dynamics
of AdS
3 gravity with two asymptotic regions, JHEP
2020,
64 (2020),
arXiv:1912.09465,
https://doi.org/10.1007/JHEP03(2020)064
[88] S. Li, N. Toumbas, and J. Troost, Liouville quantum
gravity, Nucl. Phys. B
952, 114913 (2020),
arXiv:1903.06501,
https://doi.org/10.1016/j.nuclphysb.2019.114913
[89] A. Pérez, D. Tempo, and R. Troncoso, Boundary conditions
for General Relativity on AdS
3 and the KdV hierarchy,
JHEP
2016, 103 (2016),
arXiv:1605.04490,
https://doi.org/10.1007/JHEP06(2016)103
[90] O. Fuentealba, J. Matulich, A. Pérez, M. Pino, P.
Rodríguez, D. Tempo, and R. Troncoso, Integrable systems with
BMS
3 Poisson structure and the dynamics of locally
flat spacetimes, JHEP
2018, 148 (2018),
arXiv:1711.02646,
https://doi.org/10.1007/JHEP01(2018)148
[91] D. Grumiller and W. Merbis, Near horizon dynamics of three
dimensional black holes, SciPost Phys.
8, 010 (2020),
arXiv:1906.10694,
https://doi.org/10.21468/SciPostPhys.8.1.010
[92] E. Ojeda and A. Pérez, Boundary conditions for General
Relativity in three-dimensional spacetimes, integrable systems
and the KdV/mKdV hierarchies, JHEP
2019, 79 (2019),
arXiv:1906.11226,
https://doi.org/10.1007/JHEP08(2019)079
[93] A. Dymarsky and S. Sugishita, KdV-charged black holes, JHEP
2020, 41 (2020),
arXiv:2002.08368,
https://doi.org/10.1007/JHEP05(2020)041
[94] J. Matulich, S. Prohazka, and J. Salzer, Limits of
three-dimensional gravity and metric kinematical Lie algebras in
any dimension, JHEP
2019, 118 (2019),
arXiv:1903.09165,
https://doi.org/10.1007/JHEP07(2019)118
[95] J. Cotler and K. Jensen, AdS
3 gravity and random
CFT, JHEP
2021, 33 (2021),
arXiv:2006.08648,
https://doi.org/10.1007/JHEP04(2021)033
[96] M. Henneaux and S.-J. Rey, Nonlinear W
∞ as
asymptotic symmetry of three-dimensional higher spin AdS
gravity, JHEP
2010, 7 (2010),
arXiv:1008.4579,
https://doi.org/10.1007/JHEP12(2010)007
[97] G. Compère and W. Song, W symmetry and integrability of
higher spin black holes, JHEP
2013, 144 (2013),
arXiv:1306.0014,
https://doi.org/10.1007/JHEP09(2013)144
[98] M. Gutperle and Y. Li, Higher spin Lifshitz theory and
integrable systems, Phys. Rev. D
91, 046012 (2015),
arXiv:1412.7085,
https://doi.org/10.1103/PhysRevD.91.046012
[99] M. Beccaria, M. Gutperle, Y. Li, and G. Macorini, Higher
spin Lifshitz theories and the Korteweg-de Vries hierarchy,
Phys. Rev. D
92, 085005 (2015),
arXiv:1504.06555,
https://doi.org/10.1103/PhysRevD.92.085005
[100] D. Grumiller, A. Pérez, S. Prohazka, D. Tempo, and R.
Troncoso, Higher spin black holes with soft hair, JHEP
10,
119 (2016),
arXiv:1607.05360,
https://doi.org/10.1007/JHEP10(2016)119
[101] E. Ojeda and A. Pérez, Integrable systems and the boundary
dynamics of higher spin gravity on AdS
3, JHEP
2020,
89 (2020),
arXiv:2009.07829,
https://doi.org/10.1007/JHEP11(2020)089
[102] P.M. Petropoulos, Gravitational duality, topologically
massive gravity and holographic fluids,
arXiv:1406.2328
[103] P.M. Petropoulos and K. Siampos, Integrability, Einstein
spaces and holographic fluids,
arXiv:1510.06456
[104] J. Gath, A. Mukhopadhyay, A.C. Petkou, P.M. Petropoulos,
and K. Siampos, Petrov classification and holographic
reconstruction of spacetime, JHEP
2015, 5 (2015),
arXiv:1506.04813,
https://doi.org/10.1007/JHEP09(2015)005
[105] L. Ciambelli, C. Marteau, A.C. Petkou, P.M. Petropoulos,
K. Siampos, Covariant Galilean versus Carrollian hydrodynamics
from relativistic fluids, Class. Quantum Grav.
35,
165001 (2018),
arXiv:1802.05286,
https://doi.org/10.1088/1361-6382/aacf1a
[106] L. Ciambelli, C. Marteau, A.C. Petkou, P.M. Petropoulos,
and K. Siampos, Flat holography and Carrollian fluids, JHEP
1807,
165 (2018),
arXiv:1802.06809,
https://doi.org/10.1007/JHEP07(2018)165
[107] D. Hansen, J. Hartong, and N.A. Obers, Nonrelativistic
gravity and its coupling to matter, JHEP
2020, 145
(2020),
arXiv:2001.10277,
https://doi.org/10.1007/JHEP06(2020)145
[108] J. de Boer and D. Engelhardt, Remarks on thermalization in
2D CFT, Phys. Rev. D
94, 126019 (2016),
arXiv:1604.05327,
https://doi.org/10.1103/PhysRevD.94.126019
[109] M. Rangamani, S.F. Ross, D.T. Son, and E.G. Thompson,
Conformal non-relativistic hydrodynamics from gravity, JHEP
2009,
075 (2009),
arXiv:0811.2049,
https://doi.org/10.1088/1126-6708/2009/01/075
[110] A. Campoleoni, L. Ciambelli, C. Marteau, P.M. Petropoulos,
and K. Siampos, Two-dimensional fluids and their holographic
duals, Nucl. Phys. B
946, 114692 (2019),
arXiv:1812.04019,
https://doi.org/10.1016/j.nuclphysb.2019.114692
[111] M. Kulkarni, G. Manda, and T. Morita, Quantum quench and
thermalization of one-dimensional Fermi gas via phase-space
hydrodynamics, Phys. Rev. A
98, 043610 (2018),
arXiv:1806.09343,
https://doi.org/10.1103/PhysRevA.98.043610
[112] S.R. Das, S. Hampton, and S. Liu, Quantum quench in
c
= 1 matrix model and emergent spacetimes, JHEP
2020, 107
(2020),
arXiv:1910.00123,
https://doi.org/10.1007/JHEP04(2020)107
[113] S.R. Das, S. Hampton, and S. Liu, Quantum quench in
non-relativistic fermionic field theory: Harmonic traps and 2d
string theory, JHEP
2019, 176 (2019),
arXiv:1903.07682,
https://doi.org/10.1007/JHEP08(2019)176
[114] S. Bhattacharyya, V.E. Hubeny, S. Minwalla, and M.
Rangamani, Nonlinear fluid dynamics from gravity, JHEP
2008,
045 (2008),
arXiv:0712.2456,
https://doi.org/10.1088/1126-6708/2008/02/045
[115] S. Bhattacharyya, V.E. Hubeny, R. Loganayagam, G. Mandal,
S. Minwalla, T. Morita, M. Rangamani, and HS. Reall, Local fluid
dynamical entropy from gravity, JHEP
2008(6), 055
(2008),
arXiv:0803.2526,
https://doi.org/10.1088/1126-6708/2008/06/055
[116] N. Ambrosetti, J. Charbonneau, and S. Weinfurtner, The
fluid/gravity correspondence: Lectures notes from the 2008
Summer School on Particles, Fields, and Strings,
arXiv:0810.2631
[117] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta,
R. Loganayagam, and P. Surówka, Hydrodynamics from charged black
branes, JHEP
2011, 094 (2011),
arXiv:0809.2596,
https://doi.org/10.1007/JHEP01(2011)094
[118] S. Bhattacharyya, S. Minwalla, and S.R. Wadia, The
incompressible non-relativistic Navier-Stokes equation from
gravity, JHEP
2009, 59 (2009),
arXiv:0810.1545,
https://doi.org/10.1088/1126-6708/2009/08/059
[119] M. Haack and A. Yarom, Nonlinear viscous hydrodynamics in
various dimensions using AdS/CFT, JHEP
2008, 63 (2008),
arXiv:0806.4602,
https://doi.org/10.1088/1126-6708/2008/10/063
[120] S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla,
and A. Sharma, Conformal nonlinear fluid dynamics from gravity
in arbitrary dimensions, JHEP
2008(12), 116 (2008),
arXiv:0809.4272,
https://doi.org/10.1088/1126-6708/2008/12/116
[121] M. Rangamani, Gravity and hydrodynamics: lectures on the
fluid-gravity correspondence, Class. Quant. Grav.
26,
224003 (2009),
arXiv:0905.4352,
https://doi.org/10.1088/0264-9381/26/22/224003
[122] V.E. Hubeny, S. Minwalla, and M. Rangamani, in:
Black
Holes in Higher Dimensions (Cambridge University Press,
2012) pp. 348
–386,
arXiv:1107.5780
[123] N. Banerjee and S. Dutta, Holographic hydrodynamics:
models and methods,
arXiv:1112.5345
[124] Y. Bu and M. Lublinsky, Linearized fluid/gravity
correspondence: from shear viscosity to all order hydrodynamics,
JHEP
2014, 64 (2014),
arXiv:1409.3095,
https://doi.org/10.1007/JHEP11(2014)064
[125] L. Ciambelli, C. Marteau, P.M. Petropoulos, and R.
Ruzziconi, Fefferman-Graham and Bondi gauges in the
fluid/gravity correspondence,
arXiv:2006.10083
[126] G. Barnich, H.A. González, and P. Salgado-Rebolledo,
Geometric actions for three-dimensional gravity, Class. Quantum
Grav.
35, 014003 (2018),
arXiv:1707.08887,
https://doi.org/10.1088/1361-6382/aa9806
[127] P. Caputa and J.M. Magan, Quantum computation as gravity,
Phys. Rev. Lett.
122, 231302 (2019),
arXiv:1807.04422,
https://doi.org/10.1103/PhysRevLett.122.231302
[128] J.M. Magan, Black holes, complexity and quantum chaos,
JHEP
2018, 43 (2018),
arXiv:1805.05839,
https://doi.org/10.1007/JHEP09(2018)043
[129] J. Ergmenter, M. Gerbershagen, and A.-L. Weigel,
Complexity measures from geometric actions on Virasoro and
Kac-Moody orbits, JHEP
2020(11), 003 (2020),
arXiv:2004.03619,
https://doi.org/10.1007/JHEP11(2020)003
[130] A. Jain, Effective field theory for non-relativistic
hydrodynamics, JHEP
2020, 208 (2020),
arXiv:2008.03994,
https://doi.org/10.1007/JHEP10(2020)208
[131] W. Merbis and M. Riegler, Geometric actions and flat space
holography, JHEP
2020, 125 (2020),
arXiv:1912.08207,
https://doi.org/10.1007/JHEP02(2020)125
[132] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a
random quantum Heisenberg magnet, Phys. Rev. Lett.
70,
3339 (1993),
https://doi.org/10.1103/PhysRevLett.70.3339
[133] S. Sachdev, Holographic metals and the fractionalized
Fermi liquid, Phys. Rev. Lett.
105, 151602 (2010),
https://doi.org/10.1103/PhysRevLett.105.151602
[134] S. Sachdev, Bekenstein-Hawking entropy and strange metals,
Phys. Rev. X
5, 041025 (2015),
https://doi.org/10.1103/PhysRevX.5.041025
[135] A. Kitaev, KITP Seminars, 2015,
http://online.kitp.ucsb.edu/
[136] A. Kitaev, Notes on
(2,ℝ)
representations,
arXiv:1711.08169
[137] A. Kitaev and S.J. Suh, The soft mode in the
Sachdev-Ye-Kitaev model and its gravity dual, JHEP
2018,
183 (2018),
arXiv:1711.08467,
https://doi.org/10.1007/JHEP05(2018)183
[138] A. Kitaev and S.J. Suh, Statistical mechanics of a
two-dimensional black hole, JHEP
2019, 198 (2019),
arXiv:1808.07032,
https://doi.org/10.1007/JHEP05(2019)198
[139] E. Witten, An SYK-like model without disorder,
arXiv:1610.09758
[140] R. Gurau, The complete 1/
N expansion of a SYK–like
tensor model, Nucl. Phys. B
916, 386–401 (2017),
arXiv:1611.04032,
https://doi.org/10.1016/j.nuclphysb.2017.01.015
[141] R. Gurau, The prescription in the SYK model,
arXiv:1705.08581
[142] I.R. Klebanov and G. Tarnopolsky, Uncolored random
tensors, melon diagrams, and the Sachdev-Ye-Kitaev models, Phys.
Rev. D
95, 046004 (2017),
https://doi.org/10.1103/PhysRevD.95.046004
[143] S. Giombi, I.R. Klebanov, and G. Tarnopolsky, Bosonic
tensor models at large
N and small
ε, Phys. Rev.
D
96, 106014 (2017),
https://doi.org/10.1103/PhysRevD.96.106014
[144] J. Maldacena, S.H. Shenker, and D. Stanford, A bound on
chaos, JHEP
2016(8), 106 (2016),
https://doi.org/10.1007/JHEP08(2016)106
[145] J. Maldacena and D. Stanford, Remarks on the
Sachdev-Ye-Kitaev model, Phys. Rev. D
94, 106002 (2016),
https://doi.org/10.1103/PhysRevD.94.106002
[146] J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry
and its breaking in two dimensional nearly Anti-de-Sitter space,
arXiv:1606.01857
[147] D. Stanford and E. Witten, Fermionic localization of the
schwarzian theory, JHEP
2017(10), 8 (2017),
https://doi.org/10.1007/JHEP10(2017)008
[148] J. Polchinski and V. Rosenhaus, The spectrum in the
Sachdev-Ye-Kitaev model, JHEP
2016(4), 1 (2016),
https://doi.org/10.1007/JHEP04(2016)001
[149] D.J. Gross and V. Rosenhaus, The bulk dual of SYK: cubic
couplings, JHEP
2017(05), 92 (2017),
https://doi.org/10.1007/JHEP05(2017)092
[150] D.J. Gross and V. Rosenhaus, All point correlation
functions in SYK, JHEP
2017(12), 148 (2017),
https://doi.org/10.1007/JHEP12(2017)148
[151] G. Sárosi, in:
XIII Modave Summer School in
Mathematical Physics (Modave2017), Proc. Sci. Vol.
323,
arXiv:1711.08482
[152] H.W. Lin, J. Maldacena, and Y. Zhao, Symmetries near the
horizon, JHEP
2019, 49 (2019),
arXiv:1904.12820,
https://doi.org/10.1007/JHEP08(2019)049
[153] Y. Gu, X.-L. Qi, and D. Stanford, Local criticality,
diffusion and chaos in generalized Sachdev-Ye-Kitaev models,
JHEP
2017, 125 (2017),
https://doi.org/10.1007/JHEP05(2017)125
[154] Y. Gu, A. Lucas, and X.-L. Qi, Energy diffusion and the
butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains,
SciPost Phys.
2, 018 (2017),
https://doi.org/10.21468/SciPostPhys.2.3.018
[155] Y. Gu, A. Lucas, and X.-L. Qi, Spread of entanglement in a
Sachdev-Ye-Kitaev chain, JHEP
2017, 120 (2017),
https://doi.org/10.1007/JHEP09(2017)120
[156] Y. Gu and A. Kitaev, On the relation between the magnitude
and exponent of OTOCs, JHEP
2019(2), 75 (2019),
https://doi.org/10.1007/JHEP02(2019)075
[157] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev
model as Liouville quantum mechanics, Nucl. Phys. B
911,
191–205 (2016),
https://doi.org/10.1016/j.nuclphysb.2016.08.002
[158] D. Bagrets, A. Altland and A. Kamenev, Power-law out of
time order correlation functions in the SYK model, Nucl. Phys. B
921, 727 (2017),
https://doi.org/10.1016/j.nuclphysb.2017.06.012
[159] T.G. Mertens, G.J. Turiaci, and H.L. Verlinde, Solving the
Schwarzian via the conformal bootstrap, JHEP
8, 136
(2017),
https://doi.org/10.1007/JHEP08(2017)136
[160] T.G. Mertens, The Schwarzian theory — origins, JHEP
2018(5),
36 (2018),
https://doi.org/10.1007/JHEP05(2018)036
[161] Z. Yang, The quantum gravity dynamics of near extremal
black holes, JHEP
2019(5), 205 (2019),
arXiv:1809.08647,
https://doi.org/10.1007/JHEP05(2019)205
[162] A. Jevicki, K. Suzuki, and J. Yoon, Bi-local holography in
the SYK model, JHEP
2016(7), 7 (2016),
https://doi.org/10.1007/JHEP07(2016)007
[163] A. Jevicki and K. Suzuki, Bi-local holography in the SYK
model: Perturbations,
arXiv:1608.07567
[164] S.R. Das, A. Jevicki, and K. Suzuki, Three dimensional
view of the SYK/AdS duality, JHEP
2017(9), 17 (2017),
https://doi.org/10.1007/JHEP09(2017)017
[165] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Spacetime
in the SYK model, JHEP
2018(7), 184 (2018),
https://doi.org/10.1007/JHEP07(2018)184
[166] S.R. Das, A. Ghosh, A. Jevicki, and K. Suzuki, Three
dimensional view of arbitrary
q SYK models, JHEP
2018(2),
162 (2018),
https://doi.org/10.1007/JHEP02(2018)162
[167] G. Mandal, P. Nayak, and S.R. Wadia, Coadjoint orbit
action of Virasoro group and two-dimensional quantum gravity
dual to SYK/tensor models, JHEP
2017(11), 46 (2017),
https://doi.org/10.1007/JHEP11(2017)046
[168] A. Gaikwad, L. Kh Joshi, G. Mandal, and S.R. Wadia,
Holographic dual to charged SYK from 3D Gravity and
Chern-Simons, JHEP
2020(2), 33 (2020),
arXiv:1802.07746,
https://doi.org/10.1007/JHEP02(2020)033
[169] T.G. Mertens and G.J. Turiaci, Defects in
Jackiw-Teitelboim quantum gravity, JHEP
2019(8), 127
(2019),
arXiv:1904.05228,
https://doi.org/10.1007/JHEP08(2019)127
[170] D.V. Khveshchenko, On a (pseudo)holographic nature of the
SYK-like models, Lith. J. Phys.
59, 104 (2019),
arXiv:1905.04381,
https://doi.org/10.3952/physics.v59i2.4013
[171] V. Balasubramanian, I. García-Etxebarria, F. Larsen, and
J. Simón, Helical Luttinger liquids and three dimensional black
holes, Phys. Rev. D
84, 126012 (2011),
arXiv:1012.4363,
https://doi.org/10.1103/PhysRevD.84.126012
[172] D. Maity, S. Sarkar, B. Sathiapalan, R. Shankar, and N.
Sircar, Properties of CFTs dual to charged BTZ black-hole, Nucl.
Phys. B
839, 526–551 (2010),
arXiv:0909.4051,
https://doi.org/10.1016/j.nuclphysb.2010.06.012
[173] B. Lian, S.L. Sondhi, and Z. Yang, The chiral SYK model,
JHEP
2019(9), 067 (2019),
arXiv:1906.03308,
https://doi.org/10.1007/JHEP09(2019)067
[174] M. Banados, Three-dimensional quantum geometry and black
holes, AIP Conf. Proc.
484, 147 (1999),
arXiv:hep-th/9901148,
https://doi.org/10.1063/1.59661
[175] R. Li and J.-R. Ren, Dirac particles tunneling from BTZ
black hole, Phys. Lett. B
661, 370
–372 (2008),
arXiv:0802.3954,
https://doi.org/10.1016/j.physletb.2008.01.077
[176] N. Iqbal and H. Liu, Real-time response in AdS/CFT with
application to spinors, Fortsch. Phys.
57, 367
–384 (2009),
arXiv:0903.2596,
https://doi.org/10.1002/prop.200900057
[177] A. Dasgupta, Emission of fermions from BTZ black holes,
Phys. Lett. B
445, 279
–286
(1999),
arXiv:hep-th/9808086,
https://doi.org/10.1016/S0370-2693(98)01492-0
[178] D. Maity, S. Sarkar, B. Sathiapalan, R. Shankar, and N.
Sircar, Properties of CFTs dual to charged BTZ black hole, Nucl.
Phys. B
839, 526
–551
(2010),
arXiv:0909.4051,
https://doi.org/10.1016/j.nuclphysb.2010.06.012
[179] S.-W. Zhou, X.-X. Zeng, and W.-B. Liu, Hawking radiation
from a BTZ black hole viewed as Landauer transport,
arXiv:1106.0559
[180] L.G.C. Gentile, P.A. Grassi, and A. Mezzalira, Fermionic
corrections to fluid dynamics from BTZ black hole, JHEP
2015,
153 (2015),
arXiv:1302.5060,
https://doi.org/10.1007/JHEP11(2015)153
[181] T. Faulkner and N. Iqbal, Friedel oscillations and horizon
charge in 1D holographic liquids,
arXiv:1207.4208
[182] L.-Y. Hung and A. Sinha, Holographic quantum liquids in
1+1 dimensions, JHEP
2010(1), 114 (2010),
arXiv:0909.3526,
https://doi.org/10.1007/JHEP01(2010)114