[1] S. Iijima, Helical microtubules of graphitic carbon, Nature
354, 6348 (1991),
https://doi.org/10.1038/354056a0
[2] S. Tennant, On two metals, found in the black powder
remaining after the solution of platina, Philos. Trans. R. Soc.
Lond.
94, 1776–1886 (1804),
https://doi.org/10.1098/rstl.1804.0018
[3] P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme
oxygen sensitivity of electronic properties of carbon nanotubes,
Science
287, 5459 (2000),
https://doi.org/10.1126/science.287.5459.1801
[4] S. Ratso, I. Krussenberg, M. Vikkisk, U. Joost, E. Shulga,
I. Kink, T. Kallio, and K. Tammeveski, Highly active
nitrogen-doped few-layer graphene/carbon nanotube composite
electrocatalyst for oxygen reduction reaction in alkaline media,
Carbon
73, 361–370 (2014),
https://doi.org/10.1016/j.carbon.2014.02.076
[5] K. Yokoyama, S. Yokoyama, Y. Sato, K. Hirano, S. Hashiguchi,
K. Motomiya, H. Ohta, H. Takahashi, K. Tohji, and Y. Sato,
Efficiency and long-term durability of a nitrogen-doped
single-walled carbon nanotube electrocatalyst synthesized by
defluronation-assisted nanotube-substitution for oxygen
reduction reaction, J. Phys. Chem. A
4, 9184–9195
(2016),
https://doi.org/10.1039/C6TA02722A
[6] D.J. Li, U.N. Maiti, J. Lim, D.S. Choi, W.J. Lee, Y. Oh,
G.Y. Lee, and S.O. Kim, Molybdenum sulfide/N-doped CNT forest
hybrid catalysts for high-performance hydrogen evolution
reaction, Nano Lett.
14(3), 1228–1233 (2014),
https://doi.org/10.1021/nl404108a
[7] J.-J. Adjizian, R. Leghrib, A.A. Koos, I. Suarez-Martinez,
A. Crossley, Ph. Wagner, N. Grobert, E. Lobet, and Ch.P. Ewels,
Boron- and nitrogen-doped multi-wall carbon nanotubes for gas
detection, Carbon
66, 662–673 (2014),
https://doi.org/10.1016/j.carbon.2013.09.064
[8] F.G. Pacheco, A.A.C. Cotta, H.F. Gorgulho, A.P. Santos,
W.A.A. Macedo, and C.A. Furtado, Comparative temporal analysis
of multiwalled carbon nanotube oxidation reactions: Evaluating
chemical modifications on true nanotube surface, Appl. Surf.
Sci.
357, 1015–1023 (2015),
https://doi.org/10.1016/j.apsusc.2015.09.054
[9] L. Brownlie and J. Shapter, Advances in carbon nanotube
n-type doping: Methods, analysis and applications, Carbon
126,
257–270 (2018),
https://doi.org/10.1016/j.carbon.2017.09.107
[10] B. Bauerhenne, E.S. Zijlstra, A. Kalitsov, and M.E. Garcia,
Controlling three laser-excited coherent phonon modes in boron
nitride nanotubes to produce ultrashort shaped terahertz pulses:
implications for memory devices, ACS Appl. Nano Mater.
1(12),
6932–6937 (2018),
https://doi.org/10.1021/acsanm.8b01716
[11] Y. Nonoguchi, K. Ohashi, R. Kanazawa, K. Ashiba, K. Hata,
T. Nakagawa, Ch. Adachi, T. Tanase, and T. Kawai, Systematic
conversion of single walled carbon nanotubes into n-type
thermoelectric materials by molecular dopants, Sci. Rep.
3,
3344 (2013),
https://doi.org/10.1038/srep03344
[12] R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley,
R. Kamalakaran, N. Grobert, H. Terrones, D. Teklea, P.M. Ajayan,
W. Blau, M. Rühle, and D.L. Carroll, Identification of electron
donor states in n-doped carbon nanotubes, Nano Lett.
1(9),
457–460 (2001),
https://doi.org/10.1021/nl015549q
[13] H. Cui, X. Zhang, J. Zhang, and M.A. Mehmood, Interaction
of CO and CH
4 adsorption with noble metal (Rh, Pd,
and Pt)-decorated N
3-CNTs: A first-principles study,
ACS Omega
3(12), 16892–16898 (2018),
https://doi.org/10.1021/acsomega.8b02578
[14] X. Zhang, X. Yin, J. Luo, X. Zheng, H. Wang, J. Wang, Z.
Xi, X. Liao, J. Ong’achwa Machuki, K. Guo, and F. Gao, Novel
hierarchical nitrogen-doped multiwalled carbon
nanotubes/cellulose/nanohydroxyapatite nanocomposite as an
osteoinductive scaffold for enhancing bone regeneration, ACS
Biomater. Sci. Eng.
5(1), 294–3071 (2019),
https://doi.org/10.1021/acsbiomaterials.8b00908
[15] D. Maiti, X. Tong, X. Mou, and K. Yang, Carbon-based
nanomaterials for biomedical applications: A recent study,
Front. Pharmacol.
9, 1401 (2019),
https://doi.org/10.3389/fphar.2018.01401
[16] D.C. Higgins, D. Meza, and Z. Chen, Nitrogen-doped carbon
nanotubes as platinum catalyst supports for oxygen reduction
reaction in proton exchange membrane fuel cells, J. Phys. Chem.
C
114, 21982–21988 (2010),
https://doi.org/10.1021/jp106814j
[17] C.K. Acharya and C.H. Turner, Effect of an electric field
on the adsorption of metal clusters on boron-doped carbon
surfaces, J. Phys. Chem.
111, 14804–14812 (2007),
https://doi.org/10.1021/jp073643a
[18] W. Zhang, X. Zhang, L. Chen, J. Dai, Y. Ding, L. Ji, J.
Zhao, M. Yan, F. Yang, Ch.-R. Chang, and S. Guo, Single-walled
carbon nanotube induced optimized electron polarization of
rhodium nanocrystals to develop an interface catalyst for highly
efficient electrocatalysis, ACS Catal.
8(9), 8092–8099
(2018),
https://doi.org/10.1021/acscatal.8b02016
[19] Z. Wang, S. Peng, Y. Hu, L. Li, T. Yan, G. Yang, D. Ji, S.
Madhavi, Z. Pan, and S. Ramakrishna, Cobalt nanoparticles
encapsulated in carbon nanotube-grafted nitrogen and sulfur
co-doped multichannel carbon fibers as efficient bifunctional
oxygen electrocatalysts, J. Mat. Chem.
5(10), 4949–4961
(2017),
https://doi.org/10.1039/C6TA10291C
[20] R. Arrigo, M.E. Schuster, Z. Xie, Y. Yi, G. Wowsnick, L.L.
Sun, K.E. Hermann, M. Friedrich, P. Kast, M. Hävecker, A.
Knop-Gericke, and R. Schlögl, Nature of the N–Pd interaction in
nitrogen-doped carbon nanotube catalysts, ACS Catal.
5(5),
2740–2753 (2015),
https://doi.org/10.1021/acscatal.5b00094
[21] H. Li, P. Tao, Y. Xu, X. Zhang, S. Liu, and Q. Zhao,
Solution-processable high-efficiency bis(trifluoromethyl)phenyl
functionalized phosphorescent neutral iridium (III) complex for
greenish yellow electroluminescence, Tetrahedron Lett.
59,
1748–1751 (2018),
https://doi.org/10.1016/j.tetlet.2018.03.073
[22] W. Lei, W. Xiao, J. Li, G. Li, Z. Wu, C. Xuan, D. Luo,
Y.-P. Deng, D. Wang, and Z. Chen, Highly nitrogen-doped
three-dimensional carbon fibers network with superior sodium
storage capacity, ACS Appl. Mater. Interfaces
9(34),
28604–28611 (2017),
https://doi.org/10.1021/acsami.7b08704
[23] W.-K. Hua, S.-H. Li, X.-F. Ma, S.-X. Zhou, Q.-F. Zhang,
J.-Y. Xu, P. Shi, B.-H. Tong, M.-K. Fung, and L. Fu,
Blue-to-green electrophosphorescence from iridium (III)
complexes with cyclometalated pyrimidine ligands, Dyes Pigm.
150,
284–292 (2018),
https://doi.org/10.1016/j.dyepig.2017.12.020
[24] L. Gao, P. Tao, Y. Miao, W. Jia, Y. Zhao, H. Wanga, and B.
Xu, Sky-blue phosphorescent organic light-emitting diode with
superior performance based on novel chlorine functionalized
iridium (III) complex, Tetrahedron Lett.
59, 2095–2098
(2018),
https://doi.org/10.1016/j.tetlet.2018.04.053
[25] Q. Zhao, Z. Xu, Y. Hu, F. Ding, and J. Zhang, Chemical
vapor deposition synthesis of near-zigzag single-walled carbon
nanotubes with stable tube-catalyst interface, Sci. Adv.
2,
e1501729–e1501729 (2016),
https://doi.org/10.1126/sciadv.1501729
[26] J. Robertson, G. Zhong, S. Esconjauregui, C. Zhang, M.
Fouquet, and S. Hofmann, Chemical vapor deposition of carbon
nanotube forests, Phys. Status Solidi B
249(12),
2315–2322 (2012),
https://doi.org/10.1002/pssb.201200134
[27] B. Chen, C. Zhang, S. Esconjauregui, R. Xie, G. Zhong, S.
Bhardwaj, C. Cepek, and J. Robertson, Carbon nanotube forests
growth using catalysts from atomic layer deposition, J. Appl.
Phys.
115, 144303 (2014),
https://doi.org/10.1063/1.4870951
[28] S. Dörfler, A. Meier, S. Thieme, P. Németh, H. Althues, and
S. Kaskel, Wet-chemical catalyst deposition for scalable
synthesis of vertical aligned carbon nanotubes on metal
substrates, Chem. Phys. Let.
511, 288–293 (2011),
https://doi.org/10.1016/j.cplett.2011.06.027
[29] C. Liu and H.M. Cheng, Carbon nanotubes: controlled growth
and application, Mat. Today
16, 19–28 (2013),
https://doi.org/10.1016/j.mattod.2013.01.019
[30] M. Zhang and J. Li, Carbon nanotube in different shapes,
Mat. Today
12(6), 12–18 (2009),
https://doi.org/10.1016/S1369-7021(09)70176-2
[31] E.-X. Ding, Q. Zhang, N. Wei, A.T. Khan, and E.I.
Kauppinen, High-performance single-walled carbon nanotube
transparent conducting film fabricated by using low feeding rate
of ethanol solution, R. Soc. Open Sci.
5, 180392 (2018),
https://doi.org/10.1016/j.jmst.2019.07.011
[32] Z. Zhao, Z. Yang, Y. Hu, J. Li, and X. Fan, Multiple
functionalization of multi-walled carbon nanotubes with carboxyl
and amino groups, Appl. Phys. Sci.
276, 476–481 (2013),
https://doi.org/10.1016/j.apsusc.2013.03.119
[33] A.J. Pool, S.K. Jain, and G.T. Barkema, Structural
characterization of carbon nanotubes via the vibrational density
of states, Carbon
118, 58–65 (2017),
https://doi.org/10.1016/j.carbon.2017.03.030
[34] N. Soin, S.S. Roy, S.C. Ray, and J.A. McLaughlin,
Excitation energy dependence of Raman bands in multiwalled
carbon nanotubes, J. Raman Spectrosc.
41(10), 1227–1233
(2010),
https://doi.org/10.1002/jrs.2594
[35] Z. Li, R. Little, E. Dervishi, V. Saini, Y. Xu, and A.R.
Biris, Micro-Raman spectroscopy analysis of catalyst morphology
for carbon nanotubes synthesis, Chem. Phys.
353, 25–31
(2008),
https://doi.org/10.1016/j.chemphys.2008.07.013
[36] S. Thanawala, D.G. Georgiev, R.J. Baird, and G. Auner,
Characterization of iridium oxide thin films deposited by
pulsed-direct-current reactive sputtering, Thin Solid Films
515,
7059–7065 (2007),
https://doi.org/10.1016/j.tsf.2007.02.090
[37] R.K. Kawar, P.S. Chigare, and P.S. Patil, Substrate
temperature dependent structural, optical and electrical
properties of spray deposited iridium oxide thin films, Appl.
Surf. Sci.
206, 90–101 (2003),
https://doi.org/10.1016/S0169-4332(02)01191-1