[1] U. Pisipati, I.M. Almakrami, and A. Joshi, Cavity quantum
electrodynamics of a two-level atom with modulated fields, Am.
J. Phys.
80(7), 612–620 (2012),
https://doi.org/10.1119/1.3703016
[2] R. Salah, A.M. Farouk, A. Farouk, M. Abdel-Aty, H. Eleuch,
and A.-S.F. Obada, Entanglement control of two-level atoms in
dissipative cavities, Appl. Sci.
10(4), 1510 (2020),
https://doi.org/10.3390/app10041510
[3] T. Abebe, D. Jobir, C. Gashu, and E. Mosisa, Interaction of
two-level atom with squeezed vacuum reservoir, Adv. Math. Phys.
2021(3), 6696253 (2021),
https://doi.org/10.1155/2021/6696253
[4] M.S. Abdalla, M.M.A. Ahmed, E.M. Khalil, and A.-S.F. Obada,
Dynamics of an adiabatically effective two-level atom
interacting with a star-like system, Prog. Theor. Exp. Phys.
2014(7),
073A02 (2014),
https://doi.org/10.1093/ptep/ptu091
[5] D.X. Li and X.Q. Shao, Rapid population transfer of a
two-level system by a polychromatic driving field, Sci. Rep.
9,
9023 (2019),
https://doi.org/10.1038/s41598-019-45558-5
[6] G. Yu, Z. Xian, Y.Z. Yong, J.B. Hao, and X.S. Jin, Geometric
phase in a two energy level Jaynes-Cummings model with imaginary
photon process, Int. J. Theor. Phys.
47(9), 2279–2284
(2008),
https://doi.org/10.1007/s10773-008-9660-y
[7] J.H. Eberly, N.B. Narozhny, and J.J. Sanchez-Mondragon,
Periodic spontaneous collapse and revival in a simple quantum
model, Phys. Rev. Lett.
44(20), 1323–1326 (1980),
https://doi.org/10.1103/PhysRevLett.44.1323
[8] N.B. Narozhny, J.J. Sanchez-Mondragon, and J.H. Eberly,
Coherence versus incoherence: Collapse and revival in a simple
quantum model, Phys. Rev. A
23(1), 236–247 (1981),
https://doi.org/10.1103/PhysRevA.23.236
[9] T. Moradi, M.B. Harouni, and M.H. Naderi, Photon
antibunching control in a quantum dot and metallic nanoparticle
hybrid system with non-Markovian dynamics, Sci. Rep.
8,
12435 (2018),
https://doi.org/10.1038/s41598-018-29799-4
[10] K. Wodkiewicz, P.L. Knight, S.J. Buckle, and S.M. Barnett,
Squeezing and superposition states, Phys. Rev. A
35(6),
2567–2577 (1987),
https://doi.org/10.1103/PhysRevA.35.2567
[11] A. Imamoğlu and S.E. Harris, Lasers without inversion:
interference of dressed lifetime-broadened states, Opt. Lett.
14(24),
1344–1346 (1989),
https://doi.org/10.1364/OL.14.001344
[12] C. Wang, X. Jiang, G. Zhao, M. Zhang, C.W. Hsu, B. Peng,
A.D. Stone, L. Jiang, and L. Yang, Electromagnetically induced
transparency at a chiral exceptional point, Nature Phys.
16,
334–340 (2020),
https://doi.org/10.1038/s41567-019-0746-7
[13] B. Peng, Ş.K. Özdemir, W. Chen, F. Nori, and L. Yang, What
is and what is not electromagnetically induced transparency in
whispering-gallery microcavities, Nature Commun.
5, 5082
(2014),
https://doi.org/10.1038/ncomms6082
[14] E.M. Khalil, K. Berrada, S. Abdel-Khalek, A. Al-Barakaty,
and J. Peřina, Entanglement and entropy squeezing in the system
of two qubits interacting with a two-mode field in the context
of power low potentials, Sci. Rep.
10, 19600 (2020),
https://doi.org/10.1038/s41598-020-76059-5
[15] T. Sowiński, Two-level atom at finite temperature, Acta
Phys. Polonica A
116(6), 994–1005 (2009),
https://doi.org/10.12693/APhysPolA.116.994
[16] M.-L. Hu, Teleporting the one-qubit state via two-level
atoms with spontaneous emission, J. Phys. B
44(9),
095502 (2011),
https://doi.org/10.1088/0953-4075/44/9/095502
[17] E.T. Jaynes and F.W. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam
maser, Proc. IEEE
51(1), 89 (1963),
https://doi.org/10.1109/PROC.1963.1664
[18] P. Meystre and M.S. Zubairy, Squeezed states in the
Jaynes-Cummings model, Phys. Lett. A
89(8), 390–392
(1982),
https://doi.org/10.1016/0375-9601(82)90330-9
[19] R. Short and L. Mandel, Observation of sub-Poissonian
photon statistics, Phys. Rev. Lett.
51(5), 384–387
(1983),
https://doi.org/10.1103/PhysRevLett.51.384
[20] J. Eiselt and H. Risken, Quasiprobability distributions for
the Jaynes-Cummings model with cavity damping, Phys. Rev. A
43(1),
346–360 (1991),
https://doi.org/10.1103/PhysRevA.43.346
[21] M. Hillery and R.J. Schwartz, Time-averaged properties of
the Jaynes-Cummings model: Effects of detuning, Phys. Rev. A
43(3),
1506–1511 (1991),
https://doi.org/10.1103/PhysRevA.43.1506
[22] C.A. Miller, J. Hilsenbeck, and H. Risken, Asymptotic
approximations for the Q function in the Jaynes-Cummings model,
Phys. Rev. A
46(7), 4323–4334 (1992),
https://doi.org/10.1103/physreva.46.4323
[23] K. Matsuo, Origin of splits in Q functions for the
Jaynes-Cummings model, Phys. Rev. A
50(1), 649–657
(1994),
https://doi.org/10.1103/PhysRevA.50.649
[24] G.S. Agarwal, Master-equation approach to spontaneous
emission, Phys. Rev. A
2(5), 2038–2046 (1970),
https://doi.org/10.1103/PhysRevA.2.2038
[25] Z.X. Yu and Z.Y. Jiao, Geometric phase in a generalized
Jaynes-Cummings model with double mode operators and phase
operators, Int. J. Theor. Phys.
49(3), 506–511 (2010),
https://doi.org/10.1007/s10773-009-0229-1
[26] A.D. Greentree, J. Koch, and J. Larson, Fifty years of
Jaynes-Cummings physics, J. Phys. B
46(22),
220201 (2013),
https://doi.org/10.1088/0953-4075/46/22/220201
[27] J. Liu, J.Y. Cao, G. Chen, and Z.Y. Xue, Faithful
simulation and detection of quantum spin Hall effect on
superconducting circuits, Quantum Eng.
3(1), e61 (2021),
https://doi.org/10.1002/que2.61
[28] S.L. Yang, Y. Zhou, D.Y. Lü, M. Ma, Q.L. Wang, and X.Q.
Zhang, Adiabatic preparation of maximum entanglement in hybrid
quantum systems with the
Z2 symmetry,
Quantum. Eng.
3(2), e65 (2021),
https://doi.org/10.1002/que2.65
[29] X. Xiao, Q.H. Liao, N.R. Zhou, W.J. Nie, and Y.C. Liu,
Tunable optical second-order sideband effects in a parity-time
symmetric optomechanical system, Sci. China Phys. Mech. Astron.
63, 114211 (2020),
https://doi.org/10.1007/s11433-020-1559-4
[30] H.R. Lewis, Jr. and W.B. Riesenfeld, Class of exact
invariants for classical and quantum time-dependent harmonic
oscillators, J. Math. Phys.
9(11), 1976–1986 (1968),
https://doi.org/10.1063/1.1664532
[31] H.R. Lewis, Jr. and W.B. Riesenfeld, An exact quantum
theory of the time-dependent harmonic oscillator and of a
charged particle in a time-dependent electromagnetic field, J.
Math. Phys.
10(8), 1458–1473 (1969),
https://doi.org/10.1063/1.1664991
[32] A.-L. Wang, F.-P. Liu, and Z.-X. Yu, Imaginary photon field
effect in the interaction system of multi-atom with single-mode
photon field, Int. J. Theor. Phys.
49(1), 218–223
(2010),
https://doi.org/10.1007/s10773-009-0196-6
[33] Y.-X. Qiao, and Z.-X. Yu, Geometric phase in an imaginary
photon process, Mod. Phys.
7(4), 148–154 (2017),
https://doi.org/10.12677/MP.2017.74016
[34] J.Q. Shen, H.Y. Zhu, and H. Mao, An approach to exact
solutions of the time-dependent supersymmetric two-level
three-photon Jaynes-Cummings model, J. Phys. Soc. Jpn.
71(6),
1440–1444 (2002),
https://doi.org/10.1143/JPSJ.71.1440
[35] S.S. Mizrahi, The geometrical phase: An approach through
the use of invariants, Phys. Lett A
138(9), 465–468
(1989),
https://doi.org/10.1016/0375-9601(89)90746-9
[36] Y. Jiao, C.H. Bai, D.Y. Wang, S. Zhang, and H.F. Wang,
Optical nonreciprocal response and conversion in a
Tavis-Cummings coupling optomechanical system, Quantum Eng.
2(2),
e39 (2020),
https://doi.org/10.1002/que2.39
[37] I.W. Sudiarta and D.J.W. Geldart, Solving the Schrödinger
equation using the finite difference time domain method, J.
Phys. A
40(8), 1885–1896 (2007),
https://doi.org/10.1088/1751-8113/40/8/013
[38] G.L. Long, General quantum interference principle and
duality computer, Commun. Theor.Phys.
45(5), 825–844
(2006),
https://doi.org/10.1088/0253-6102/45/5/013
[39] S. Gudder, Mathematical theory of duality quantumcomputers,
Quantum Inf. Process.
6(1), 37–48 (2007),
https://doi.org/10.1007/s11128-006-0040-3
[40] Y. Zhang, H.X. Cao, and L. Li, Realization of allowable
qeneralized quantum gates, Sci. China Phys. Mech.
53(10),
1878–1883 (2010),
https://doi.org/10.1007/s11433-010-4078-y
[41] C. Shao, Y. Li, and H. Li, Quantum algorithm design:
techniques and applications, J. Syst. Sci. Complex.
32(1),
375–452 (2019),
https://doi.org/10.1007/s11424-019-9008-0
[42] P. Wittek and C. Gogolin, Quantum enhanced inference in
Markov logic networks, Sci. Rep.
7(1), 45672 (2017),
https://doi.org/10.1038/srep45672
[43] S. Wei, H. Li, and G. Long, A full quantum eigensolver for
quantum chemistry simulations, Research
2020, 1486935
(2020),
https://doi.org/10.34133/2020/1486935