[1] U. Pisipati, I.M. Almakrami, and A. Joshi, Cavity quantum
        electrodynamics of a two-level atom with modulated fields, Am.
        J. Phys. 
80(7), 612–620 (2012), 
        
https://doi.org/10.1119/1.3703016
        [2] R. Salah, A.M. Farouk, A. Farouk, M. Abdel-Aty, H. Eleuch,
        and A.-S.F. Obada, Entanglement control of two-level atoms in
        dissipative cavities, Appl. Sci. 
10(4), 1510 (2020), 
        
https://doi.org/10.3390/app10041510
        [3] T. Abebe, D. Jobir, C. Gashu, and E. Mosisa, Interaction of
        two-level atom with squeezed vacuum reservoir, Adv. Math. Phys.
        
2021(3), 6696253 (2021), 
        
https://doi.org/10.1155/2021/6696253
        [4] M.S. Abdalla, M.M.A. Ahmed, E.M. Khalil, and A.-S.F. Obada,
        Dynamics of an adiabatically effective two-level atom
        interacting with a star-like system, Prog. Theor. Exp. Phys. 
2014(7),
        073A02 (2014), 
        
https://doi.org/10.1093/ptep/ptu091
        [5] D.X. Li and X.Q. Shao, Rapid population transfer of a
        two-level system by a polychromatic driving field, Sci. Rep. 
9,
        9023 (2019), 
        
https://doi.org/10.1038/s41598-019-45558-5
        [6] G. Yu, Z. Xian, Y.Z. Yong, J.B. Hao, and X.S. Jin, Geometric
        phase in a two energy level Jaynes-Cummings model with imaginary
        photon process, Int. J. Theor. Phys. 
47(9), 2279–2284
        (2008), 
        
https://doi.org/10.1007/s10773-008-9660-y
        [7] J.H. Eberly, N.B. Narozhny, and J.J. Sanchez-Mondragon,
        Periodic spontaneous collapse and revival in a simple quantum
        model, Phys. Rev. Lett. 
44(20), 1323–1326 (1980), 
        
https://doi.org/10.1103/PhysRevLett.44.1323
        [8] N.B. Narozhny, J.J. Sanchez-Mondragon, and J.H. Eberly,
        Coherence versus incoherence: Collapse and revival in a simple
        quantum model, Phys. Rev. A 
23(1), 236–247 (1981), 
        
https://doi.org/10.1103/PhysRevA.23.236
        [9] T. Moradi, M.B. Harouni, and M.H. Naderi, Photon
        antibunching control in a quantum dot and metallic nanoparticle
        hybrid system with non-Markovian dynamics, Sci. Rep. 
8,
        12435 (2018), 
        
https://doi.org/10.1038/s41598-018-29799-4
        [10] K. Wodkiewicz, P.L. Knight, S.J. Buckle, and S.M. Barnett,
        Squeezing and superposition states, Phys. Rev. A 
35(6),
        2567–2577 (1987), 
        
https://doi.org/10.1103/PhysRevA.35.2567
        [11] A. Imamoğlu and S.E. Harris, Lasers without inversion:
        interference of dressed lifetime-broadened states, Opt. Lett. 
14(24),
        1344–1346 (1989), 
        
https://doi.org/10.1364/OL.14.001344
        [12] C. Wang, X. Jiang, G. Zhao, M. Zhang, C.W. Hsu, B. Peng,
        A.D. Stone, L. Jiang, and L. Yang, Electromagnetically induced
        transparency at a chiral exceptional point, Nature Phys. 
16,
        334–340 (2020), 
        
https://doi.org/10.1038/s41567-019-0746-7
        [13] B. Peng, Ş.K. Özdemir, W. Chen, F. Nori, and L. Yang, What
        is and what is not electromagnetically induced transparency in
        whispering-gallery microcavities, Nature Commun. 
5, 5082
        (2014), 
        
https://doi.org/10.1038/ncomms6082
        [14] E.M. Khalil, K. Berrada, S. Abdel-Khalek, A. Al-Barakaty,
        and J. Peřina, Entanglement and entropy squeezing in the system
        of two qubits interacting with a two-mode field in the context
        of power low potentials, Sci. Rep. 
10, 19600 (2020), 
        
https://doi.org/10.1038/s41598-020-76059-5
        [15] T. Sowiński, Two-level atom at finite temperature, Acta
        Phys. Polonica A 
116(6), 994–1005 (2009), 
        
https://doi.org/10.12693/APhysPolA.116.994
        [16] M.-L. Hu, Teleporting the one-qubit state via two-level
        atoms with spontaneous emission, J. Phys. B 
44(9),
        095502 (2011), 
        
https://doi.org/10.1088/0953-4075/44/9/095502
        [17] E.T. Jaynes and F.W. Cummings, Comparison of quantum and
        semiclassical radiation theories with application to the beam
        maser, Proc. IEEE 
51(1), 89 (1963), 
        
https://doi.org/10.1109/PROC.1963.1664
        [18] P. Meystre and M.S. Zubairy, Squeezed states in the
        Jaynes-Cummings model, Phys. Lett. A 
89(8), 390–392
        (1982), 
        
https://doi.org/10.1016/0375-9601(82)90330-9
        [19] R. Short and L. Mandel, Observation of sub-Poissonian
        photon statistics, Phys. Rev. Lett. 
51(5), 384–387
        (1983), 
        
https://doi.org/10.1103/PhysRevLett.51.384
        [20] J. Eiselt and H. Risken, Quasiprobability distributions for
        the Jaynes-Cummings model with cavity damping, Phys. Rev. A 
43(1),
        346–360 (1991), 
        
https://doi.org/10.1103/PhysRevA.43.346
        [21] M. Hillery and R.J. Schwartz, Time-averaged properties of
        the Jaynes-Cummings model: Effects of detuning, Phys. Rev. A 
43(3),
        1506–1511 (1991), 
        
https://doi.org/10.1103/PhysRevA.43.1506
        [22] C.A. Miller, J. Hilsenbeck, and H. Risken, Asymptotic
        approximations for the Q function in the Jaynes-Cummings model,
        Phys. Rev. A 
46(7), 4323–4334 (1992), 
        
https://doi.org/10.1103/physreva.46.4323
        [23] K. Matsuo, Origin of splits in Q functions for the
        Jaynes-Cummings model, Phys. Rev. A 
50(1), 649–657
        (1994), 
        
https://doi.org/10.1103/PhysRevA.50.649
        [24] G.S. Agarwal, Master-equation approach to spontaneous
        emission, Phys. Rev. A 
2(5), 2038–2046 (1970), 
        
https://doi.org/10.1103/PhysRevA.2.2038
        [25] Z.X. Yu and Z.Y. Jiao, Geometric phase in a generalized
        Jaynes-Cummings model with double mode operators and phase
        operators, Int. J. Theor. Phys. 
49(3), 506–511 (2010), 
        
https://doi.org/10.1007/s10773-009-0229-1
        [26] A.D. Greentree, J. Koch, and J. Larson, Fifty years of
        Jaynes-Cummings physics, J. Phys. B 
46(22), 
        220201 (2013), 
        
https://doi.org/10.1088/0953-4075/46/22/220201
        [27] J. Liu, J.Y. Cao, G. Chen, and Z.Y. Xue, Faithful
        simulation and detection of quantum spin Hall effect on
        superconducting circuits, Quantum Eng. 
3(1), e61 (2021),
        
        
https://doi.org/10.1002/que2.61
        [28] S.L. Yang, Y. Zhou, D.Y. Lü, M. Ma, Q.L. Wang, and X.Q.
        Zhang, Adiabatic preparation of maximum entanglement in hybrid
        quantum systems with the 
Z2 symmetry,
        Quantum. Eng. 
3(2), e65 (2021), 
        
https://doi.org/10.1002/que2.65
        [29] X. Xiao, Q.H. Liao, N.R. Zhou, W.J. Nie, and Y.C. Liu,
        Tunable optical second-order sideband effects in a parity-time
        symmetric optomechanical system, Sci. China Phys. Mech. Astron.
        
63, 114211 (2020), 
        
https://doi.org/10.1007/s11433-020-1559-4
        [30] H.R. Lewis, Jr. and W.B. Riesenfeld, Class of exact
        invariants for classical and quantum time-dependent harmonic
        oscillators, J. Math. Phys. 
9(11), 1976–1986 (1968), 
        
https://doi.org/10.1063/1.1664532
        [31] H.R. Lewis, Jr. and W.B. Riesenfeld, An exact quantum
        theory of the time-dependent harmonic oscillator and of a
        charged particle in a time-dependent electromagnetic field, J.
        Math. Phys. 
10(8), 1458–1473 (1969), 
        
https://doi.org/10.1063/1.1664991
        [32] A.-L. Wang, F.-P. Liu, and Z.-X. Yu, Imaginary photon field
        effect in the interaction system of multi-atom with single-mode
        photon field, Int. J. Theor. Phys. 
49(1), 218–223
        (2010), 
        
https://doi.org/10.1007/s10773-009-0196-6
        [33] Y.-X. Qiao, and Z.-X. Yu, Geometric phase in an imaginary
        photon process, Mod. Phys. 
7(4), 148–154 (2017), 
        
https://doi.org/10.12677/MP.2017.74016
        [34] J.Q. Shen, H.Y. Zhu, and H. Mao, An approach to exact
        solutions of the time-dependent supersymmetric two-level
        three-photon Jaynes-Cummings model, J. Phys. Soc. Jpn. 
71(6),
        1440–1444 (2002), 
        
https://doi.org/10.1143/JPSJ.71.1440
        [35] S.S. Mizrahi, The geometrical phase: An approach through
        the use of invariants, Phys. Lett A 
138(9), 465–468
        (1989), 
        
https://doi.org/10.1016/0375-9601(89)90746-9
        [36] Y. Jiao, C.H. Bai, D.Y. Wang, S. Zhang, and H.F. Wang,
        Optical nonreciprocal response and conversion in a
        Tavis-Cummings coupling optomechanical system, Quantum Eng. 
2(2),
        e39 (2020), 
        
https://doi.org/10.1002/que2.39
        [37] I.W. Sudiarta and D.J.W. Geldart, Solving the Schrödinger
        equation using the finite difference time domain method, J.
        Phys. A 
40(8), 1885–1896 (2007), 
        
https://doi.org/10.1088/1751-8113/40/8/013
        [38] G.L. Long, General quantum interference principle and
        duality computer, Commun. Theor.Phys. 
45(5), 825–844
        (2006), 
        
https://doi.org/10.1088/0253-6102/45/5/013
        [39] S. Gudder, Mathematical theory of duality quantumcomputers,
        Quantum Inf. Process. 
6(1), 37–48 (2007), 
        
https://doi.org/10.1007/s11128-006-0040-3
        [40] Y. Zhang, H.X. Cao, and L. Li, Realization of allowable
        qeneralized quantum gates, Sci. China Phys. Mech. 
53(10),
        1878–1883 (2010), 
        
https://doi.org/10.1007/s11433-010-4078-y
        [41] C. Shao, Y. Li, and H. Li, Quantum algorithm design:
        techniques and applications, J. Syst. Sci. Complex. 
32(1),
        375–452 (2019), 
        
https://doi.org/10.1007/s11424-019-9008-0
        [42] P. Wittek and C. Gogolin, Quantum enhanced inference in
        Markov logic networks, Sci. Rep. 
7(1), 45672 (2017), 
        
https://doi.org/10.1038/srep45672
        [43] S. Wei, H. Li, and G. Long, A full quantum eigensolver for
        quantum chemistry simulations, Research 
2020, 1486935
        (2020), 
        
https://doi.org/10.34133/2020/1486935