[PDF]  https://doi.org/10.3952/physics.v62i1.4694

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 1–9 (2022)
 

QUANTUM JAYNES–CUMMINGS MODEL FOR A TWO-LEVEL SYSTEM WITH EFFECTS OF PARAMETRIC TIME-DEPENDENCES
Mounira Berrehaila, Nadjet Benchiheuba, Salah Menouarb, and Jeong Ryeol Choic
  a Department of Material Sciences, University of Bordj Bou Arreridj, Bordj Bou Arreridj 34000, Algeria
b Laboratory of Optoelectronics and Compounds (LOC), Department of Physics, Faculty of Science,
University of Ferhat Abbas Setif 1, Setif 19000, Algeria
c Department of Nanoengineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Republic of Korea
Email: choiardor@hanmail.net

Received 20 December 2021; accepted 15 February 2022

An approach to exact quantum solutions of the time-dependent two energy level Jaynes–Cummings model with an imaginary photon process is represented in this work. The Lewis–Riesenfeld invariant treatment and the unitary transformation method are used for this purpose. The original Schrödinger equation is reduced to an equivalent solvable one through unitary transformations by using suitable unitary operators. The reduced equation corresponds to a simpler Hamiltonian which is written as a linear combination of the generators of the reduced-dimensional SU(2) algebra. A Hermitian invariant operator is constructed based on the same algebraic formulation and its instantaneous eigenfunctions are obtained. By utilizing such eigenfunctions, the complete quantum wave functions of the system are evaluated. Such wave functions are necessary when we analyze the quantum characteristics of the system.
Keywords: time-dependent two-level atom, Jaynes–Cummings model, unitary transformation, invariant theory, SU(2) algebra
PACS: 03.65.Ge, 03.65.Ca, 03.65.Fd


KVANTINIS JAYNES–CUMMINGS MODELIS DVIEJŲ LYGMENŲ SISTEMAI SU PARAMETRINIŲ LAIKINIŲ PRIKLAUSOMYBIŲ REIŠKINIAIS
Mounira Berrehaila, Nadjet Benchiheuba, Salah Menouarb, Jeong Ryeol Choic

a Bordž Bu Areridžo universiteto Medžiagų mokslo departamentas, Alžyras
b Setifo Ferhato Abaso universiteto Mokslo fakultetas, Alžyras
c Kiongi universiteto Nanoinžinerijos departamentas, Korėjos Respublika



References / Nuorodos

[1] U. Pisipati, I.M. Almakrami, and A. Joshi, Cavity quantum electrodynamics of a two-level atom with modulated fields, Am. J. Phys. 80(7), 612–620 (2012),
https://doi.org/10.1119/1.3703016
[2] R. Salah, A.M. Farouk, A. Farouk, M. Abdel-Aty, H. Eleuch, and A.-S.F. Obada, Entanglement control of two-level atoms in dissipative cavities, Appl. Sci. 10(4), 1510 (2020),
https://doi.org/10.3390/app10041510
[3] T. Abebe, D. Jobir, C. Gashu, and E. Mosisa, Interaction of two-level atom with squeezed vacuum reservoir, Adv. Math. Phys. 2021(3), 6696253 (2021),
https://doi.org/10.1155/2021/6696253
[4] M.S. Abdalla, M.M.A. Ahmed, E.M. Khalil, and A.-S.F. Obada, Dynamics of an adiabatically effective two-level atom interacting with a star-like system, Prog. Theor. Exp. Phys. 2014(7), 073A02 (2014),
https://doi.org/10.1093/ptep/ptu091
[5] D.X. Li and X.Q. Shao, Rapid population transfer of a two-level system by a polychromatic driving field, Sci. Rep. 9, 9023 (2019),
https://doi.org/10.1038/s41598-019-45558-5
[6] G. Yu, Z. Xian, Y.Z. Yong, J.B. Hao, and X.S. Jin, Geometric phase in a two energy level Jaynes-Cummings model with imaginary photon process, Int. J. Theor. Phys. 47(9), 2279–2284 (2008),
https://doi.org/10.1007/s10773-008-9660-y
[7] J.H. Eberly, N.B. Narozhny, and J.J. Sanchez-Mondragon, Periodic spontaneous collapse and revival in a simple quantum model, Phys. Rev. Lett. 44(20), 1323–1326 (1980),
https://doi.org/10.1103/PhysRevLett.44.1323
[8] N.B. Narozhny, J.J. Sanchez-Mondragon, and J.H. Eberly, Coherence versus incoherence: Collapse and revival in a simple quantum model, Phys. Rev. A 23(1), 236–247 (1981),
https://doi.org/10.1103/PhysRevA.23.236
[9] T. Moradi, M.B. Harouni, and M.H. Naderi, Photon antibunching control in a quantum dot and metallic nanoparticle hybrid system with non-Markovian dynamics, Sci. Rep. 8, 12435 (2018),
https://doi.org/10.1038/s41598-018-29799-4
[10] K. Wodkiewicz, P.L. Knight, S.J. Buckle, and S.M. Barnett, Squeezing and superposition states, Phys. Rev. A 35(6), 2567–2577 (1987),
https://doi.org/10.1103/PhysRevA.35.2567
[11] A. Imamoğlu and S.E. Harris, Lasers without inversion: interference of dressed lifetime-broadened states, Opt. Lett. 14(24), 1344–1346 (1989),
https://doi.org/10.1364/OL.14.001344
[12] C. Wang, X. Jiang, G. Zhao, M. Zhang, C.W. Hsu, B. Peng, A.D. Stone, L. Jiang, and L. Yang, Electromagnetically induced transparency at a chiral exceptional point, Nature Phys. 16, 334–340 (2020),
https://doi.org/10.1038/s41567-019-0746-7
[13] B. Peng, Ş.K. Özdemir, W. Chen, F. Nori, and L. Yang, What is and what is not electromagnetically induced transparency in whispering-gallery microcavities, Nature Commun. 5, 5082 (2014),
https://doi.org/10.1038/ncomms6082
[14] E.M. Khalil, K. Berrada, S. Abdel-Khalek, A. Al-Barakaty, and J. Peřina, Entanglement and entropy squeezing in the system of two qubits interacting with a two-mode field in the context of power low potentials, Sci. Rep. 10, 19600 (2020),
https://doi.org/10.1038/s41598-020-76059-5
[15] T. Sowiński, Two-level atom at finite temperature, Acta Phys. Polonica A 116(6), 994–1005 (2009),
https://doi.org/10.12693/APhysPolA.116.994
[16] M.-L. Hu, Teleporting the one-qubit state via two-level atoms with spontaneous emission, J. Phys. B 44(9), 095502 (2011),
https://doi.org/10.1088/0953-4075/44/9/095502
[17] E.T. Jaynes and F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51(1), 89 (1963),
https://doi.org/10.1109/PROC.1963.1664
[18] P. Meystre and M.S. Zubairy, Squeezed states in the Jaynes-Cummings model, Phys. Lett. A 89(8), 390–392 (1982),
https://doi.org/10.1016/0375-9601(82)90330-9
[19] R. Short and L. Mandel, Observation of sub-Poissonian photon statistics, Phys. Rev. Lett. 51(5), 384–387 (1983),
https://doi.org/10.1103/PhysRevLett.51.384
[20] J. Eiselt and H. Risken, Quasiprobability distributions for the Jaynes-Cummings model with cavity damping, Phys. Rev. A 43(1), 346–360 (1991),
https://doi.org/10.1103/PhysRevA.43.346
[21] M. Hillery and R.J. Schwartz, Time-averaged properties of the Jaynes-Cummings model: Effects of detuning, Phys. Rev. A 43(3), 1506–1511 (1991),
https://doi.org/10.1103/PhysRevA.43.1506
[22] C.A. Miller, J. Hilsenbeck, and H. Risken, Asymptotic approximations for the Q function in the Jaynes-Cummings model, Phys. Rev. A 46(7), 4323–4334 (1992),
https://doi.org/10.1103/physreva.46.4323
[23] K. Matsuo, Origin of splits in Q functions for the Jaynes-Cummings model, Phys. Rev. A 50(1), 649–657 (1994),
https://doi.org/10.1103/PhysRevA.50.649
[24] G.S. Agarwal, Master-equation approach to spontaneous emission, Phys. Rev. A 2(5), 2038–2046 (1970),
https://doi.org/10.1103/PhysRevA.2.2038
[25] Z.X. Yu and Z.Y. Jiao, Geometric phase in a generalized Jaynes-Cummings model with double mode operators and phase operators, Int. J. Theor. Phys. 49(3), 506–511 (2010),
https://doi.org/10.1007/s10773-009-0229-1
[26] A.D. Greentree, J. Koch, and J. Larson, Fifty years of Jaynes-Cummings physics, J. Phys. B 46(22),
220201 (2013),
https://doi.org/10.1088/0953-4075/46/22/220201
[27] J. Liu, J.Y. Cao, G. Chen, and Z.Y. Xue, Faithful simulation and detection of quantum spin Hall effect on superconducting circuits, Quantum Eng. 3(1), e61 (2021),
https://doi.org/10.1002/que2.61
[28] S.L. Yang, Y. Zhou, D.Y. Lü, M. Ma, Q.L. Wang, and X.Q. Zhang, Adiabatic preparation of maximum entanglement in hybrid quantum systems with the Z2 symmetry, Quantum. Eng. 3(2), e65 (2021),
https://doi.org/10.1002/que2.65
[29] X. Xiao, Q.H. Liao, N.R. Zhou, W.J. Nie, and Y.C. Liu, Tunable optical second-order sideband effects in a parity-time symmetric optomechanical system, Sci. China Phys. Mech. Astron. 63, 114211 (2020),
https://doi.org/10.1007/s11433-020-1559-4
[30] H.R. Lewis, Jr. and W.B. Riesenfeld, Class of exact invariants for classical and quantum time-dependent harmonic oscillators, J. Math. Phys. 9(11), 1976–1986 (1968),
https://doi.org/10.1063/1.1664532
[31] H.R. Lewis, Jr. and W.B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field, J. Math. Phys. 10(8), 1458–1473 (1969),
https://doi.org/10.1063/1.1664991
[32] A.-L. Wang, F.-P. Liu, and Z.-X. Yu, Imaginary photon field effect in the interaction system of multi-atom with single-mode photon field, Int. J. Theor. Phys. 49(1), 218–223 (2010),
https://doi.org/10.1007/s10773-009-0196-6
[33] Y.-X. Qiao, and Z.-X. Yu, Geometric phase in an imaginary photon process, Mod. Phys. 7(4), 148–154 (2017),
https://doi.org/10.12677/MP.2017.74016
[34] J.Q. Shen, H.Y. Zhu, and H. Mao, An approach to exact solutions of the time-dependent supersymmetric two-level three-photon Jaynes-Cummings model, J. Phys. Soc. Jpn. 71(6), 1440–1444 (2002),
https://doi.org/10.1143/JPSJ.71.1440
[35] S.S. Mizrahi, The geometrical phase: An approach through the use of invariants, Phys. Lett A 138(9), 465–468 (1989),
https://doi.org/10.1016/0375-9601(89)90746-9
[36] Y. Jiao, C.H. Bai, D.Y. Wang, S. Zhang, and H.F. Wang, Optical nonreciprocal response and conversion in a Tavis-Cummings coupling optomechanical system, Quantum Eng. 2(2), e39 (2020),
https://doi.org/10.1002/que2.39
[37] I.W. Sudiarta and D.J.W. Geldart, Solving the Schrödinger equation using the finite difference time domain method, J. Phys. A 40(8), 1885–1896 (2007),
https://doi.org/10.1088/1751-8113/40/8/013
[38] G.L. Long, General quantum interference principle and duality computer, Commun. Theor.Phys. 45(5), 825–844 (2006),
https://doi.org/10.1088/0253-6102/45/5/013
[39] S. Gudder, Mathematical theory of duality quantumcomputers, Quantum Inf. Process. 6(1), 37–48 (2007),
https://doi.org/10.1007/s11128-006-0040-3
[40] Y. Zhang, H.X. Cao, and L. Li, Realization of allowable qeneralized quantum gates, Sci. China Phys. Mech. 53(10), 1878–1883 (2010),
https://doi.org/10.1007/s11433-010-4078-y
[41] C. Shao, Y. Li, and H. Li, Quantum algorithm design: techniques and applications, J. Syst. Sci. Complex. 32(1), 375–452 (2019),
https://doi.org/10.1007/s11424-019-9008-0
[42] P. Wittek and C. Gogolin, Quantum enhanced inference in Markov logic networks, Sci. Rep. 7(1), 45672 (2017),
https://doi.org/10.1038/srep45672
[43] S. Wei, H. Li, and G. Long, A full quantum eigensolver for quantum chemistry simulations, Research 2020, 1486935 (2020),
https://doi.org/10.34133/2020/1486935