[PDF]  https://doi.org/10.3952/physics.v62i1.4695

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 10–20 (2022)
 

INVESTIGATION OF A WIDELY-TUNABLE SUBNANOSECOND BBO-BASED OPTICAL PARAMETRIC AMPLIFIER
Gabrielė Stanionytė, Viktorija Tamulienė, Rimantas Grigonis, and Julius Vengelis
  Laser Research Center, Vilnius University, Saulėtekio 10, 10223 Vilnius, Lithuania
Email: julius.vengelis@ff.vu.lt

Received 17 January 2022; revised 21 February 2022; accepted 22 February 2022

We report an experimental realization of a subnanosecond optical parametric amplifier (OPA) system in a beta barium borate (BBO) crystal pumped by the third harmonic of a passively Q-switched Nd:YAG microlaser system and seeded by the continuum generated in a photonic crystal fibre (PCF). It yields broadband continuous signal wavelength tunability in the visible spectrum range from 470 to 660 nm and the idler wavelength from 768 to 1450 nm. Besides the experimental data, the numerical simulation results of the BBO optical parametric amplifier are presented. The maximum output power of the subnanosecond BBO OPA is limited by laser induced damage in the BBO crystal by the pump radiation and seed radiation spectral power density. We also notice and discuss the effect of seed radiation on BBO OPA output radiation characteristics. The numerical simulations qualitatively agree with the experimental data.
Keywords: nonlinear optics, optical parametric oscillators and amplifiers, subnanoseconds pulses, continuum seed, beta barium borate crystal
PACS: 42.65.-k, 42.65.Yj, 42.81.-i, 42.70.Mp


SUBNANOSEKUNDINIO PLAČIOJE SPEKTRO SRITYJE DERINAMO BBO OPTINIO PARAMETRINIO STIPRINTUVO TYRIMAS
Gabrielė Stanionytė, Viktorija Tamulienė, Rimantas Grigonis, Julius Vengelis

Vilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva

Taikymuose, reikalaujančiuose tolygiai derinamo dažnio lazerinės spinduliuotės, naudojami parametriniai šviesos generatoriai ir stiprintuvai. Didelis tokių prietaisų poreikis lėmė spartų su jais susijusių technologijų tobulėjimą ir pritaikymą veikti kaupinant tiek nuolatinės veikos, tiek įvairių trukmių lazerio spinduliuote. Vis dėlto subnanosekundinių trukmių (100 ps – 1 ns) intervale parametrinių šviesos generatorių ir stiprintuvų realizavimas yra labai komplikuotas dėl subnanosekundinių trukmių intervale santykinai žemo lazerio indukuotos pažaidos slenksčio daugelyje medžiagų. Šiame darbe pristatomas, autorių žiniomis, pirmasis subnanosekundinis plačioje spektro srityje derinamas optinis parametrinis šviesos stiprintuvas, kai netiesinėje terpėje naudojamas beta bario borato (BBO) kristalas. Signalinės bangos ilgio derinimo sritis siekė 470–660 nm ir iš esmės buvo apribota užkrato spinduliuotės spektro pločio. Užkratu parametriniam stiprinimui pasirinkta kontinuumo spinduliuotė generuota fotoninių kristalų šviesolaidyje. Nustatyta, kad ne tik spektrinės, bet ir energinės užkrato charakteristikos iš esmės lemia generuotos spinduliuotės savybes. Maksimalus parametrinio keitimo efektyvumas iš kaupinimo į signalinę bangą buvo labai nedidelis (1,15 %) dėl erdvinio nunešimo efekto BBO kristale ir lazerio indukuotos pažaidos lemiamo kaupinimo spinduliuotės intensyvumo apribojimo. Jį padidinti būtų galima naudojant didesnio intensyvumo užkrato spinduliuotę arba papildomas parametrinio stiprinimo pakopas. Signalinės bangos trukmės skirtingiems signalinės bangos ilgiams taip pat buvo subnanosekundinių trukmių intervale (168–303 ps). Skaitinio modeliavimo rezultatai kokybiškai atitiko eksperimentinius duomenis.


References / Nuorodos

[1] K. Thyagarajan and A. Ghatak, Lasers: Fundamentals and Applications (Springer Science & Business Media, London, 2010),
https://doi.org/10.1007/978-1-4419-6442-7
[2] J.G. Haub, M.J. Johnson, and B.J. Orr, Spectroscopic and nonlinear-optical applications of a tunable β-barium borate optical parametric oscillator, J. Opt. Soc. Am. B 10(9), 1765–1777 (1993),
https://doi.org/10.1364/JOSAB.10.001765
[3] D.D. Arslanov, M.P. Castro, N.A. Creemers, A.H. Neerincx, M. Spunei, J. Mandon, S.M. Cristescu, P.J. Merkus, and F.J. Harren, Optical parametric oscillator-based photoacoustic detection of hydrogen cyanide for biomedical applications, J. Biomed. Opt. 18(10), 1–9 (2013), .
https://doi.org/10.1117/1.JBO.18.10.107002
[4] K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Mid-infrared difference-frequency generation in periodically poled KTiOAsO4 and application to gas sensing, Opt. Lett. 25(10), 743 (2000),
https://doi.org/10.1364/OL.25.000743
[5] S. Cussat-Blanc, A. Ivanov, D. Lupinski, and E. Freysz, KTiOPO4, KTiOAsO4, and KNbO3 crystals for mid-infrared femtosecond optical parametric amplifiers: Analysis and comparison, Appl. Phys. B 70(Suppl. 1), 247–252 (2000),
https://doi.org/10.1007/s003400000313
[6] K.A. Tillman, R.R. Maier, D.T. Reid, and E.D. McNaghten, Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate, J. Opt. A Pure Appl. Opt. 7(6), S408–S414 (2005),
https://doi.org/10.1088/1464-4258/7/6/023
[7] V. Andresen, S. Alexander, W.M. Heupel, M. Hirschberg, R.M. Hoffman, and P. Friedl, Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging, Curr. Opin. Biotechnol. 20(1), 54–62 (2009),
https://doi.org/10.1016/j.copbio.2009.02.008
[8] M.H. Dunn and M. Ebrahimzadeh, Parametric generation of tunable light from continuous-wave to femtosecond pulses, Science 286(5444), 1513–1517 (1999),
https://doi.org/10.1126/science.286.5444.1513
[9] G. Cerullo and S. De Silvestri, Ultrafast optical parametric amplifiers, Rev. Sci. Instrum. 74(1), 1–18 (2003),
https://doi.org/10.1063/1.1523642
[10] D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers, J. Opt. A Pure Appl. Opt. 12(1), 013001 (2010),
https://doi.org/10.1088/2040-8978/12/1/013001
[11] M. Ebrahimzadeh, Parametric light generation, Philos. Trans. R. Soc. A 361(1813), 2731–2750 (2003),
https://doi.org/10.1098/rsta.2003.1284
[12] D.T. Reid, C.M. Heyl, R.R. Thomson, R. Trebino, G. Steinmeyer, H.H. Fielding, R. Holzwarth, Z. Zhang, P. Del'Haye, T. Südmeyer, G. Mourou, T. Tajima, D. Faccio, F.J. Harren, and G. Cerullo, Roadmap on ultrafast optics, J. Opt. 18(9), 1–32 (2016),
https://doi.org/10.1088/2040-8978/18/9/093006
[13] M. Ebrahim-Zadeh, S.C. Kumar, A. Esteban-Martin, and G.K. Samanta, Breakthroughs in photonics 2012: Breakthroughs in optical parametric oscillators, IEEE Photonics J. 5(2), 10–15 (2013),
https://doi.org/10.1109/JPHOT.2013.2255268
[14] U. Bäder, J.-P. Meyn, J. Bartschke, T. Weber, A. Borsutzky, R. Wallenstein, R.G. Batchko, M.M. Fejer, and R.L. Byer, Nanosecond periodically poled lithium niobate optical parametric generator pumped at 532 nm by a single-frequency passively Q-switched Nd:YAG laser, Opt. Lett. 24(22), 1608 (1999),
https://doi.org/10.1364/OL.24.001608
[15] M.S. Webb, P.F. Moulton, J.J. Kasinski, R.L. Burnham, G. Loiacono, and R. Stolzenberger, High-average-power KTiOAsO4 optical parametric oscillator, Opt. Lett. 23(15), 1161 (1998),
https://doi.org/10.1364/OL.23.001161
[16] I. Pipinytė, V. Tamulienė, J. Vengelis, R. Grigonis, and V. Sirutkaitis, Temporal characteristics of a synchronously pumped optical parametric oscillator at different conditions of cavity losses, J. Opt. Soc. Am. B 36(10), 2735 (2019),
https://doi.org/10.1364/JOSAB.36.002735
[17] F. Ruebel, G. Anstett, and J.A. L'huillier, Synchronously pumped mid-infrared optical parametric oscillator with an output power exceeding 1 W at 4.5 μm, Appl. Phys. B 102(4), 751–755 (2011),
https://doi.org/10.1007/s00340-010-4342-x
[18] B. Teng, S. Dong, Y. Ding, Z. Wang, J. Wang, R. Mao, Z. Zhai, Z. Yu, X. Sun, and P. Ma, BiB3O6 nanosecond optical parametric oscillator, Opt. Lett. 28(10), 1998–2001 (2008).,
https://doi.org/10.3788/AOS20082810.1998
[19] J. Vengelis, I. Stasevičius, K. Stankevičiutė, V. Jarutis, R. Grigonis, M. Vengris, and V. Sirutkaitis, Characteristics of optical parametric oscillators synchronously pumped by second harmonic of femtosecond Yb:KGW laser, Opt. Commun. 338, 277–287 (2015),
https://doi.org/10.1016/j.optcom.2014.10.054
[20] Y. Stepanenko and C. Radzewicz, Multipass noncollinear optical parametric amplifier for femtosecond pulses, Opt. Express 14(2), 779 (2006),
https://doi.org/10.1364/OPEX.14.000779
[21] L.J. Bromley, A. Guy, and D.C. Hanna, Synchronously pumped optical parametric oscillation in beta-barium borate, Opt. Commun. 67, 316–320 (1988),
https://doi.org/10.1016/0030-4018(88)90157-5
[22] L. Lefort, K. Puech, S.D. Butterworth, G.W. Ross, P.G. Smith, D.C. Hanna, and D.H. Jundt, Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 μm to 5.3 μm range, Opt. Commun. 152(1–3), 55–58 (1998),
https://doi.org/10.1016/S0030-4018(98)00133-3
[23] B. Ruffing, A. Nebel, and R. Wallenstein, High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range, Appl. Phys. B 72(2), 137–149 (2001),
https://doi.org/10.1007/s003400000443
[24] J.Y. Huang, J.Y. Zhang, and Y.R. Shen, High-power, widely tunable, picosecond coherent source from optical parametric amplification in barium borate, Appl. Phys. Lett. 57(19), 1961–1963 (1990),
https://doi.org/10.1063/1.103980
[25] J.Y. Zhang, J.Y. Huang, Y.R. Shen, C. Chen, and B. Wu, Picosecond optical parametric amplification in lithium triborate, Appl. Phys. Lett. 58(3), 213–215 (1991),
https://doi.org/10.1063/1.104692
[26] M.D. Cocuzzi, K.L. Schepler, and P.E. Powers, Narrow-bandwidth, subnanosecond, infrared pulse generation in PPLN pumped by a fiber amplifier-microchip oscillator, IEEE J. Sel. Top. Quant. Electron. 15(2), 372–376 (2009),
https://doi.org/10.1109/JSTQE.2008.2011285
[27] H. Ishizuki and T. Taira, Mid-Infrared optical-parametric generation pumped by sub-nanosecond microchip laser,in: Advanced Solid State Lasers, ASSL 2015 (2015), 4–6,
https://doi.org/10.1364/ASSL.2015.AM3A.4
[28] L. Liu, H.Y. Wang, Y. Ning, C. Shen, L. Si, Y. Yang,Q.L. Bao, and G. Ren, Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser, Laser Phys. 27(5), 055403 (2017),
https://doi.org/10.1088/1555-6611/aa6589
[29] J.-P. Fève, B. Boulanger, B. Ménaert, andO. Pacaud, Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal, Opt. Lett. 28(12), 1028 (2003),
https://doi.org/10.1364/OL.28.001028
[30] G. Marchev, P. Dallocchio, F. Pirzio, A. Agnesi, G. Reali, V. Petrov, A. Tyazhev, V. Pasiskevicius, N. Thilmann, and F. Laurell, Sub-nanosecond, 1–10 kHz, low-threshold, noncritical OPOs based on periodically poled KTP crystal pumped at 1,064 nm, Appl. Phys. B 109(2), 211–214 (2012),
https://doi.org/10.1007/s00340-012-5177-4
[31] D.V. O'Connor and D. Phillips, Time-correlated Single Photon Counting (Academic Press, Orlando, 1984),
https://doi.org/10.1016/B978-0-12-524140-3.X5001-1
[32] D.N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, Ireland, 2005),
https://doi.org/10.1007/b138685
[33] M.S. Wartak, Computational Photonics: An Introduction with MATLAB (Cambridge University Press, United Kingdom, 2013),
https://www.cambridge.org/ec/academic/subjects/physics/optics-optoelectronics-and-photonics/computational-photonics-introduction-matlab