[PDF]  https://doi.org/10.3952/physics.v62i1.4645

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 21–43 (2022)
 

INTERPRETATION OF THE ANOMALOUS GROUNDWATERCHEMISTRY AND 234U/238U ACTIVITY RATIO DISEQUILIBRIUM IN THE NORTHERN PART OF THE BALTIC REGION
Robert Mokrik and Vytautas Samalavičius
  aInstitute of Geosciences at Vilnius University, Čiurlionio 21/27, 03101 Vilnius, Lithuania
Email: robert.mokrik@gf.vu.lt; vytautas.samalavicius@chgf.vu.lt

Received 24 January 2021; revised 1 June 2021; accepted 21 September 2021

The anomalous isotope-hydrogeochemistry phenomena in the groundwater of Estonian Cambrian-Vendian (Ediacaran) and Ordovician-Cambrian aquifer systems were formed in the Late-Middle Pleistocene. In the periglacial environment, in northern and northwestern Estonia, these aquifer systems with fracture porose crystalline basement are connected to hydraulically joint unit characterized by high radioactivity groundwater. A significant alteration of groundwater occurred by series of isotope and chemistry facies fractionation. In this study, uranium isotopes activity ratio (234U/238U), 4He content, isotope-hydrogeochemistry and adjusted 14C ages are coupled for a new prospect of the estimation of northern Baltic Basin groundwater evolution. Analyzing radiocarbon and 4He groundwater residence time results and uranium isotope activity ratio distribution suggests a prolonged periglacial environment in which groundwater evolved. Stable isotope ratios of δ18O and δ2H correlation and hydrochemical composition changes support the cryogenic origin of groundwater. Pleistocene glaciations cyclically affect groundwater in multiple ways: permafrost isotope-geochemistry partitioning; periodically changing reversed flow directions of recharge and discharge areas; oscillations of the sea, river system, and periglacial lakes level, surface and sub-permafrost water mixing via taliks and fractured basement rocks. These processes lead to forming the sequence of isotope-hydrogeochemistry types and specific zoning; in general, two separate groundwater fractions – brackish in the lower part and freshened above. An extensive groundwater exploitation on the northern coast sites influenced a sharp dysfunction in the groundwater body, destabilizing the natural equilibrium state formed in the Holocene and Pleistocene.
Keywords: Estonian Homocline, periglacial permafrost, cryogenic groundwater, isotope-geochemistry, groundwater dating
PACS: 91.67. Qr, 91.67.Rx, 92.40.Kf

ŠIAURINĖS BALTIJOS REGIONO POŽEMINIO VANDENS CHEMINĖS SUDĖTIES IR 234U/238U IZOTOPŲ SANTYKIO PUSIAUSVYROS ANOMALIJOS INTERPRETACIJA
Robert Mokrik, Vytautas Samalavičius

Vilniaus universiteto Geomokslų institutas, Vilnius, Lietuva

Estijos kambro–vendo (ediakaro) (Cm-V) ir ordoviko–kambro (O-Cm) vandeninguose sluoksniuose yra aptinkamas anomalios izotopinės ir cheminės sudėties požeminis vanduo, susiformavęs pleistoceno laikotarpiu. Minėti vandeningi sluoksniai ir viršutinė kristalinio pamato dalis buvo hidrauliškai susieti periglacialinėje aplinkoje ir sudarė vieningą hidrogeologinę sistemą. Požeminio vandens sudėtis buvo reikšmingai pakeista vykstant izotopiniam ir geocheminiam frakcionavimuisi dėl užšalimo. Šiame tyrime panaudotas urano izotopų santykis (234U/238U), helio koncentracija, izotopinė ir cheminė sudėtis ir koreguotas 14C amžius siekiant iš naujo įvertinti šiaurinės Baltijos baseino dalies požeminio vandens evoliuciją. Urano izotopų santykio ir mineralizacijos diagrama leido naujai nustatyti kraštinių narių (Baltijos jūros, modernaus ir in situ sluoksnio vandens) įtaką Talino srityje esančio požeminio vandens formavimuisi. Vandens amžiaus rezultatų ir urano santykių analizė atskleidė, kad požeminis vanduo buvo ilgai veikiamas periglacialinės aplinkos, todėl įvyko jo sudėties pokyčiai. Stabiliųjų izotopų (δ18O ir δD) ir hidrogeocheminiai parametrai indikuoja kriogeninę vandens kilmę.
Pagrindiniai veiksniai, lėmę požeminio vandens anomalijų atsiradimą pleistoceno laikotarpiu, yra daugiamečio įšalo sukelta izotopinės ir cheminės sudėties kaita, periodiška mitybos ir iškrovos zonų inversija, jūros ir periglacialinių ežerų lygio svyravimai, skirtingos kilmės vandenų maišymasis talikuose ir kristaliname pamate. Dėl šių procesų susidaro specifinė vandens cheminių tipų seka ir zoniškumas, taip pat dvi atskiros požeminio vandens frakcijos – apatinė koncentruota ir viršutinė nugėlinta. Požeminio vandens eksploatacija destabilizavo natūralią pusiausvyros būseną, susidariusią holoceno ir pleistoceno laikotarpiais.


References / Nuorodos

[1] M. Lehmann and U. Siegenthaler, Equilibrium oxygen-and hydrogen-isotope fractionation between ice and water, J. Glaciol. 37(125), 23–26 (1991),
https://doi.org/10.3189/S0022143000042751
[2] I. Clark and P. Fritz, Environmental Isotopes in Hydrogeology (Lewis Publishers, Boca Raton, 1997) p. 28,
https://doi.org/10.1201/9781482242911
[3] J.R. O’Neil, Hydrogen and oxygen isotope fractionation between ice and water, J. Phys. Chem. 72(10), 3683–3684 (1968),
https://doi.org/10.1021/j100856a060
[4] T. Suzuoki and T. Kimura, D/H and 18O/16O fractionation in ice-water system, J. Mass Spectrom. Soc. Jpn. 21, 229–233 (1973),
https://doi.org/10.5702/massspec1953.21.229
[5] R. Gragnani, M. Guglielmin, A. Longinelli, B. Stenni, C. Smiraglia, and L. Cimino, in: Proceedings of the Seventh International Conference on Permafrost, Collection Nordiana No 55 (Yellowknife, Canada, 1998) pp. 335–340,
[PDF]
[6] R. Souchez, J.‐L. Tison, and J. Jouzel, Freezing rate determination by the isotopic composition of the ice, Geophys. Res. Lett. 14(6), 599–602 (1987),
https://doi.org/10.1029/GL014i006p00599
[7] L.S. Brosius, K.M. Walter Anthony, G. Grosse, J.P. Chanton, L.M. Farquharson, P.P. Overduin, and H. Meyer, Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation, J. Geophys. Res. Biogeosci. 117, G01002 (2012),
https://doi.org/10.1029/2011JG001810
[8] R.L. Stotler, S.K. Frape, T. Ruskeeniemi, P. Pitkänen, and D.W. Blowes, The interglacial-glacial cycle and geochemical evolution of Canadian and Fennoscandian Shield groundwaters, Geochim. Cosmochim. Acta 76, 45–67 (2012),
https://doi.org/10.1016/j.gca.2011.10.006
[9] S.V. Alexeev and L.P. Alexeeva, Ground ice in the sedimentary rocks and kimberlites of Yakutia, Russia, Permafr. Periglac. Processes 13(1), 53–59 (2002),
https://doi.org/10.1002/ppp.408
[10] S.V. Alexeev and L.P. Alexeeva, Hydrogeochemistry of the permafrost zone in the central part of the Yakutian diamond-bearing province, Russia, Hydrogeol. J. (2003),
https://doi.org/10.1007/s10040-003-0270-8
[11] S. Jessen, H.D. Holmslykke, K. Rasmussen, N. Richardt, and P.E. Holm, Hydrology and pore water chemistry in a permafrost wetland, Ilulissat, Greenland, Water Resourc. Res. 50(6), 4760–4774 (2014),
https://doi.org/10.1002/2013WR014376
[12] R. Kononova, in: Problems of Theoretical and Regional Hydrogeochemistry (1979) pp. 119–123 [in Russian]
[13] D. Lacelle, B. Lauriol, and I.D. Clark, Effect of chemical composition of water on the oxygen-18 and carbon-13 signature preserved in cryogenic carbonates, Arctic Canada: Implications in paleoclimatic studies, Chem. Geol. 234(1–2), 1–16 (2006),
https://doi.org/10.1016/j.chemgeo.2006.04.001
[14] T. McEwen and G. Marsily, The Potential Significance of Permafrost to the Behaviour of a Deep Radioactive Waste Repository, SKI Technical Report 91: 8 (Swedish Nuclear Power Inspectorate SKI, 1991),
[PDF]
[15] A. Starinsky and A. Katz, The formation of natural cryogenic brines, Geochim. Cosmochim. Acta 67(8), 1475–1484 (2003),
https://doi.org/10.1016/S0016-7037(02)01295-4
[16] R. Mokrik and R. Vaikmäe, in: Isotope Geochemistry Research in Baltic and Belarus (1988) pp.133–143 [in Russian]
[17] R. Mokrik, Peculiarities of the formation of the isotopic composition of underground waters on the southern slope of the Baltic shield, Geologija 19, 16–25 (1996)
[18] R. Mokrik, The Palaeohydrogeology of the Baltic Basin. Vendian and Cambrian (Tartu University Press, 1997)
[19] M. Yezhova, V. Polyakov, A. Tkachenko, L. Savitski, and V. Belkina, Paleowaters of North Estonia and their influence on changes of resources and quality of fresh groundwaters of large coastal water supplies, Geologija 19, 37–40 (1996)
[20] J. Banys, V. Juodkazis, and R. Mokrik, Regional regularities of radiocarbon distribution in groundwaters of the Baltic artesian basin, Water Res. 6(2), 243–248 (1979) [in Russian],
[PDF]
[21] J. Pärn, S. Affolter, J. Ivask, et al., Redox zonation and organic matter oxidation in palaeogroundwater of glacial origin from the Baltic Artesian Basin, Chem. Geol. 488, 149–161 (2018),
https://doi.org/10.1016/j.chemgeo.2018.04.027
[22] J.Pärna, K. Walraevens, M. van Camp, V. Raidla, W. Aeschbach, R. Friedrich, J. Ivask, E. Kaup, T. Martma, J. Mažeika, R. Mokrik, T. Weissbach, and R. Vaikmäe, Dating of glacial palaeogroundwater in the Ordovician-Cambrian aquifer system, northern Baltic Artesian Basin, Appl. Geochem. 102, 64–76 (2019),
https://doi.org/10.1016/j.apgeochem.2019.01.004
[23] V. Raidla, K. Kirsimäe, R. Vaikmäe, E. Kaup, and T. Martma, Carbon isotope systematics of the Cambrian-Vendian aquifer system in the northern Baltic Basin: Implications to the age and evolution of groundwater, Appl. Geochem. 27(10), 2042–2052 (2012),
https://doi.org/10.1016/j.apgeochem.2012.06.005
[24] A. Babre, A. Kalvāns, K. Popovs, I. Retiķe, A. Dēliņa, R. Vaikmäe, and T. Martma, Pleistocene age paleo-groundwater inferred from water-stable isotope values in the central part of the Baltic Artesian Basin, Isotopes Environ. Health Studies 52(6), 706–725 (2016),
https://doi.org/10.1080/10256016.2016.1168411
[25] Highlights of Groundwater Research in the Baltic Artesian Basin, eds. A. Dēliņa, A. Kalvāns, T. Saks, U. Bethers, and V. Vircavs (University of Latvia, Riga, 2012),
[PDF]
[26] V. Raidla, J. Pärn, W. Aeschbach, G. Czuppon, J. Ivask, M. Kiisk, R. Mokrik, V. Samalavičius, S. Suursoo, S. Tarros, and T. Weissbach, Intrusion of saline water into a coastal aquifer containing palaeogroundwater in the Viimsi Peninsula in Estonia, Geosciences 9(1), 47 (2019),
https://doi.org/10.3390/geosciences9010047
[27] A. Sterckx, J.M. Lemieux, and R. Vaikmäe, Representing glaciations and subglacial processes in hydrogeological models: A numerical investigation, Geofluids 2017, 4598902 (2017),
https://doi.org/10.1155/2017/4598902
[28] A. Sterckx, J.-M. Lemieux, and R. Vaikmäe, Assessment of paleo-recharge under the Fennoscandian Ice Sheet and its impact on regional groundwater flow in the northern Baltic Artesian Basin using a numerical model, Hydrogeol. J. 26(8), 2793–2810 (2018),
https://doi.org/10.1007/s10040-018-1838-7
[29] R. Vaikmäe, L. Vallner, H.H. Loosli, P.C. Blaser, and M. Juillard-Tardent, Palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia, Geol. Soc. London, Special Publications 189, 17–27 (2001),
https://doi.org/10.1144/GSL.SP.2001.189.01.03
[30] M. Gregorauskas, R. Mokrik, and L. Savitski, Formation of available groundwater resources on the northern Baltic coast, Sov. Geol. 11, 80–88 (1988) [in Russian]
[31] V .Raidla, J. Pärn, S. Schloemer, W. Aeschbach, G. Czuppon, J. Ivask, A. Marandi, H. Sepp, R. Vaikmäe, and K. Kirsimäe, Origin and formation of methane in groundwater of glacial origin from the Cambrian-Vendian aquifer system in Estonia, Geochim. Cosmochim. Acta 251, 247–264 (2019),
https://doi.org/10.1016/j.gca.2019.02.029
[32] V. Raidla, K. Kirsimäe, R. Vaikmäe, A. Jõeleht, E.Karro, A.Marandi, and L. Savitskaja, Geochemical evolution of groundwater in the Cambrian-Vendian aquifer system of the Baltic Basin, Chem. Geol. 258(3–4), 219–231 (2009),
https://doi.org/10.1016/j.chemgeo.2008.10.007
[33] V. Raidla, Chemical and Isotope Evolution of Groundwater in the Cambrian-Vendian Aquifer System in Estonia, Doctoral Thesis (Tartu University Press, 2010),
[PDF]
[34] V. Petersell, G. Åkerblom, B.-M. Ek, M. Enel, V. Mõttus, and K. Täht, Radon Risk Map of Estonia: Explanatory Text to the Radon Risk Map Set of Estonia at Scale of 1:500 000, SSI Report 2005: 16 – SGU Dnr. 08-466/2002 (Geological Survey of Estonia, 2005),
http://www.digar.ee/id/nlib-digar:15627
[35] R. Raudsep, in: Geology and Mineral Resources of Estonia, eds. A. Raukas and A. Teedumäe (Estonian Academy Publishers, Tallinn, 1997) p. 436,
https://geoloogia.info/geology/start.html
[36] A. Soesoo, J. Vind, and S. Hade, Uranium and thorium resources of Estonia, Minerals 10(9), 798 (2020),
https://doi.org/10.3390/min10090798
[37] R. Mokrik, The Paleohydrogeology of the Baltic Basin (Vilnius University Publishing House, Vilnius, 2003)
[38] J. Pärn, V. Raidla, R. Vaikmäe, T. Martma, J. Ivask, R. Mokrik, and K. Erg, The recharge of glacial meltwater and its influence on the geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system, northern part of the Baltic Artesian Basin, Appl. Geochem. 72, 125–135 (2016),
https://doi.org/10.1016/j.apgeochem.2016.07.007
[39] M. Forte, L. Bagnato, E. Caldognetto, S. Risica, F. Trotti, and R. Rusconi, Radium isotopes in Estonian groundwater: measurements, analytical correlations, population dose and a proposal for a monitoring strategy, J Radiol. Prot. 30(4), 761–780 (2010),
https://doi.org/10.1088/0952-4746/30/4/009
[40] R. Mokrik, E. Karro, L. Savitskaja, and G. Drevaliene, The origin of barium in the Cambrian-Vendian aquifer system, North Estonia, Est. J. Earth Sci. 58(3), 193–208 (2009),
https://doi.org/10.3176/earth.2009.3.04
[41] J. Mažeika, Regularities of Radionuclide Migration and Transformation in Lithuanian Geological Environment, Habilitation Thesis (1999)
[42] A. Zuzevicius, J. Mažeika, and V. Baltrunas, A model of Brakish groundwater formation in the Nemunas River Valley, Geologija 60, 63–75 (2007)
[43] J. Mažeika, T. Martma, R. Petrošius, V. Jakimavičiūtė-Maselienė, and Z. Skuratovič, Radiocarbon and other environmental isotopes in the groundwater of the sites for a planned new nuclear power, Radiocarbon 55(3), 951–962 (2013),
https://doi.org/10.2458/azu_js_rc.55.16318
[44] C. Gerber, R. Vaikmäe, W. Aeschbach, A. Babre, Wei Jiang, M. Leuenberger, Zheng-Tian Lue, R. Mokrik, P. Müller, V. Raidla,  et al., Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale, Geochim. Cosmochim. Acta 205, 187–210 (2017),
https://doi.org/10.1016/j.gca.2017.01.033
[45] R. Vaikmäe, T. Martma, J. Ivask, E. Kaup, V. Raidla, R. Rajamäe, L. Vallner, R. Mokrik, V. Samalavičius, A. Kalvāns, et al., Baltic Groundwater Isotope-Geochemistry Database (Department of Geology, Tallinn University of Technology, Tallinn, 2020),
https://doi.org/10.15152/GEO.488
[46] J.-M. Punning, M. Toots, and R. Vaikmae, Oxygen-18 in Estonian natural waters, Isot. Environ. Health Stud. 23, 232–234 (2008),
https://doi.org/10.1080/10256018708623797
[47] J.-M. Punning, M. Toots, and R. Vaikmäe, in: Proceedings of the Fourth Working Meeting, Isotopes in Nature, ed. G. Strauch (Central Institute of Isotope and Radiation Research, Leipzig, 1987) pp. 542–552
[48] T. Weißbach, Noble Gases in Palaeogroundwater of Glacial Origin in the Cambrian-Vendian Aquifer System, Estonia, Master’s Thesis, University of Heidelberg (Heidelberg, 2014), 116 pp.
[49] A.I. Malov, Evolution of uranium isotopic compositions of the groundwater and rock in a sandy clayey aquifer, Water 9(12), 910 (2017),
https://doi.org/10.3390/w9120910
[50] A.I. Malov and I.V. Tokarev, Using stable isotopes to characterize the conditions of groundwater formation on the eastern slope of the Baltic Shield (NW Russia), J. Hydrol. 578, 124130 (2019),
https://doi.org/10.1016/j.jhydrol.2019.124130
[51] A.I. Malov, I.N. Bolotov, O.S. Pokrovsky, S.B. Zykov, I.V. Tokarev, Kh.A. Arslanov, S.V. Druzhinin, A.A. Lyubas, M.Y. Gofarov, I.A. Kostikova, et al., Modeling past and present activity of a subarctic hydrothermal system using O, H, C, U and Th isotopes, Appl. Geochem. 63, 93–104 (2015),
https://doi.org/10.1016/j.apgeochem.2015.07.003
[52] IAEA, Isotope Methods for Dating Old Groundwater (IAEA, Vienna, 2013),
[PDF]
[53] S.J. Goldstein and C.H. Stirling, Techniques for measuring uranium-series nuclides 1992–2002, Rev. Miner. Geochem. 52, 23–57 (2003)
[54] G. Bondarenko, I. Gudzenko, and N. Kovalyukh, Formation of Radioactive and Stable Isotope Front in Disharge Area of Artesian Basin (Nauka, 1981) pp. 157–164 [in Russian]
[55] V. Juodkazis and K. Tibar, Helium in groundwater on the northern flank of the Baltic Artesian Basin, Int. Geol. Rev. 31(7), 736–743 (1989)
[56] R. Mokrik, V. Puura, T. Floden, and R. Petkevičius, Peculiarities of helium distribution in the Baltic Basin, Litosfera 6, 121–123 (2002)
[57] J.L. Druhan, S.T. Brown, and C. Huber, Isotopic gradients across fluid-mineral boundaries, Rev. Mineral. Geochem. 80(1), 355–391 (2015),
https://doi.org/10.2138/rmg.2015.80.11
[58] K. Kigoshi, Alpha-recoil thorium-234: Dissolution into water and the uranium-234/uranium-238 disequilibrium in nature, Science 173(3991), 47–48 (1971),
https://doi.org/10.1126/science.173.3991.47
[59] P.I. Chalov, Isotopic Fractionation of Natural Uranium (Frunze, Ilim, 1975) [in Russian]
[60] V.V. Cherdyncev and P.I. Chalov, in: Discoveries in USSR (Moscow, 1977) pp. 28–31 [in Russian]
[61] J.K. Osmond and J.B. Cowart, The theory and uses of natural uranium isotopic variations in hydrology, Atom. Energy Rev. 14(4), 621–679 (1976),
https://inis.iaea.org/search/search.aspx?orig_q=RN:8327949
[62] M.B. Andersen, C.H. Stirling, D. Porcelli, A.N. Halliday, P.S. Andersson, and M. Baskaran, The tracing of riverine U in Arctic seawater with very precise 234U/238U measurements, Earth Planet. Sci. Lett. 259(1–2), 171–185 (2007),
https://doi.org/10.1016/j.epsl.2007.04.051
[63] L.F. Robinson, N.S. Belshaw, and G.M. Henderson, U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas, Geochim. Cosmochim. Acta 68(8), 1777–1789 (2004),
https://doi.org/10.1016/j.gca.2003.10.005
[64] R.L. Fleischer and O.G. Raabe, Recoiling alpha-emitting nuclei. Mechanisms for uranium-series disequilibrium, Geochim. Cosmochim. Acta 42(7), 973–978 (1978),
https://doi.org/10.1016/0016-7037(78)90286-7
[65] V.E. Lee, D.J. DePaolo, and J.N. Christensen, Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan, Earth Planet. Sci. Lett. 296(3–4), 244–254 (2010),
https://doi.org/10.1016/j.epsl.2010.05.005
[66] M.B. Andersen, Y. Erel, and B. Bourdon, Experimental evidence for 234U-238U fractionation during granite weathering with implications for 234U/238U in natural waters, Geochim. Cosmochim. Acta 73(14), 4124–4141 (2009),
https://doi.org/10.1016/j.gca.2009.04.020
[67] E. Yakovlev, G. Kiselev, S. Druzhinin, and S. Zykov, Uranium isotopic fractionation (234U, 238U) in the formation of ice crystals, Vestnik of Northern (Arctic) Federal University. Series Natural Sciences 3, 15–23 (2016) [in Russian],
https://doi.org/10.17238/issn2227-6572.2016.3.15
[68] S.T. Brown, A. Basu, J.N. Christensen, P. Reimus, J. Heikoop, A. Simmons, G. Woldegabriel, K. Maher, K. Weaver, J.T. Clay, and D. LePaolo, Isotopic evidence for reductive immobilization of uranium across a roll-front mineral deposit, Environ. Sci. Technol. 50(12), 6189–6198 (2016),
https://doi.org/10.1021/acs.est.6b00626
[69] J.K. Osmond and J.B. Cowart, in: Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd ed., eds. M. Ivanovic and R.S. Harmon (Clarendon Press, Oxford, 1992),
http://inis.iaea.org/search/search.aspx?orig_q=RN:25065862
[70] M. Gascoyne, in: Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, 2nd ed., eds. M. Ivanovic and R.S. Harmon (Clarendon Press, Oxford, 1992),
http://inis.iaea.org/search/search.aspx?orig_q=RN:25065862
[71] J.N. Andrews, I.S. Giles, R.L.F. Kay, D.J. Lee, J.K. Osmond, J.B. Cowart, P. Fritz, J.F. Barker, and J. Gale, Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden, Geochim. Cosmochim. Acta 46(9), 1533–1543 (1982),
https://doi.org/10.1016/0016-7037(82)90312-X
[72] M.A. Walvoord and B.L. Kurylyk, Hydrologic impacts of thawing permafrost – A review, Vadose Zone J. 15(6), 1–20 (2016),
https://doi.org/10.2136/vzj2016.01.0010
[73] B.L. Kurylyk, K.T.B. MacQuarrie, and J.M. McKenzie, Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools, Earth Sci. Rev. 138, 313–334 (2014),
https://doi.org/10.1016/j.earscirev.2014.06.006
[74] P. Glynn, C. Voss, and A. Provost, in: Use of Hydrogeochemical Information in Testing Groundwater Flow Models: Workshop Proceedings, Borgholm, Sweden, 1–3 September, 1997 (Nuclear Energy Agency, Issy-les-Moulineaux, 1999) pp. 201–241,
https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=30023489
[75] O. Landström, E.-L. Tullborg, G. Eriksson, and Y. Sandell, Effects of Glacial/Post-glacial Weathering Compared with Hydrothermal Alteration – Implications for Matrix diffusion. Results from Drillcore Studies in Porphyritic Quartz Monzodiorite from Äspöe SE Sweden, SKB Rapport R-01-37 (SKB, Stockholm, 2001),
[PDF]
[76] P. Mejean, D.L. Pinti, B. Ghaleb, and M. Larocque, Fracturing-induced release of radiogenic 4He and 234U into groundwater during the last deglaciation: An alternative source to crustal helium fluxes in periglacial aquifers, J. Am. Water Resourc. Assoc. 53(7), 5677–5689 (2017),
https://doi.org/10.1002/2016WR020014
[77] G.P. Kiselev, E.Y. Yakovlev, S.V. Druzhinin, and A.S. Galkin, Distribution of radioactive isotopes in rock and ore of Arkhangelskaya pipe from the Arkhangelsk diamond province, Geol. Ore Dep. 59(5), 391–406 (2017),
https://doi.org/10.1134/S1075701517050014
[78] V.I. Ferronsky and V.A. Polyakov, The Hydrosphere Isotopes (Nauka Publishing House, Moscow, 1983) [in Russian]
[79] M.E. Räsänen, J.V. Huitti, S. Bhattarai, J. Harvey, and S. Huttunen, The SE sector of the MiddleWeichselian Eurasian Ice Sheet was much smaller than assumed, Quat. Sci. Rev. 122, 131–141 (2015),
https://doi.org/10.1016/j.quascirev.2015.05.019
[80] V. Kalm, A. Raukas, M. Rattas, and K. Lasberg, Chapter 8 - Pleistocene Glaciations in Estonia, in: Quaternary Glaciations – Extent and Chronology, eds. J. Ehlers, P. L. Gibbard, and P.D. Hughes, Developments in Quaternary Sciences ser. 15, 95–104 (2011),
https://doi.org/10.1016/B978-0-444-53447-7.00008-8
[81] R. Mokrik, V. Samalavičius, M. Bujanauskas, and M. Gregorauskas, Environmental isotopes and noble gas ages of the deep groundwater with coupled flow modelling in the Baltic artesian basin, Lith. J. Phys. 61(1), 53–65 (2021),
https://doi.org/10.3952/physics.v61i1.4407
[82] R. Mokrik, L. Savitskaja, and L. Savitski, Aqueous geochemistry of the Cambrian–Vendian aquifer system in the Tallinn intake, northern Estonia, Geologija 51(3), 50–56 (2005),
https://mokslozurnalai.lmaleidykla.lt/geologija/2005/3/2867
[83] M. Zhang and S.K. Frape, Permafrost: Evolution of Shield Groundwater Compositions During Freezing, Ontario Power Generation Report 06819-REP-01200-10098-R00 (Toronto, 2003)
[84] B. Herut, A. Starinsky, A. Katz, and A. Bein, The role of seawater freezing in the formation of subsurface brines, Geochim. Cosmochim. Acta 54(1), 13–21 (1990),
https://doi.org/10.1016/0016-7037(90)90190-V
[85] M.A. McCaffrey, B. Lazar, and H.D. Holland, The evaporation path of seawater and the coprecipitation of Br– and K+ with halite, J. Sediment. Res. 57(5), 928–937 (1987),
https://doi.org/10.1306/212f8cab-2b24-11d7-8648000102c1865d