Received 24 January 2021; revised 1 June 2021; accepted 21
September 2021
[1] M. Lehmann and U. Siegenthaler, Equilibrium oxygen-and
hydrogen-isotope fractionation between ice and water, J.
Glaciol.
37(125), 23–26 (1991),
https://doi.org/10.3189/S0022143000042751
[2] I. Clark and P. Fritz,
Environmental Isotopes in
Hydrogeology (Lewis Publishers, Boca Raton, 1997) p. 28,
https://doi.org/10.1201/9781482242911
[3] J.R. O’Neil, Hydrogen and oxygen isotope fractionation
between ice and water, J. Phys. Chem.
72(10), 3683–3684
(1968),
https://doi.org/10.1021/j100856a060
[4] T. Suzuoki and T. Kimura, D/H and
18O/
16O
fractionation in ice-water system, J. Mass Spectrom. Soc. Jpn.
21,
229–233 (1973),
https://doi.org/10.5702/massspec1953.21.229
[5] R. Gragnani, M. Guglielmin, A. Longinelli, B. Stenni, C.
Smiraglia, and L. Cimino, in:
Proceedings of the Seventh
International Conference on Permafrost, Collection
Nordiana No 55 (Yellowknife, Canada, 1998) pp. 335–340,
[PDF]
[6] R. Souchez, J.‐L. Tison, and J. Jouzel, Freezing rate
determination by the isotopic composition of the ice, Geophys.
Res. Lett.
14(6), 599–602 (1987),
https://doi.org/10.1029/GL014i006p00599
[7] L.S. Brosius, K.M. Walter Anthony, G. Grosse, J.P. Chanton,
L.M. Farquharson, P.P. Overduin, and H. Meyer, Using the
deuterium isotope composition of permafrost meltwater to
constrain thermokarst lake contributions to atmospheric CH
4
during the last deglaciation, J. Geophys. Res. Biogeosci.
117,
G01002 (2012),
https://doi.org/10.1029/2011JG001810
[8] R.L. Stotler, S.K. Frape, T. Ruskeeniemi, P. Pitkänen, and
D.W. Blowes, The interglacial-glacial cycle and geochemical
evolution of Canadian and Fennoscandian Shield groundwaters,
Geochim. Cosmochim. Acta
76, 45–67 (2012),
https://doi.org/10.1016/j.gca.2011.10.006
[9] S.V. Alexeev and L.P. Alexeeva, Ground ice in the
sedimentary rocks and kimberlites of Yakutia, Russia, Permafr.
Periglac. Processes
13(1), 53–59 (2002),
https://doi.org/10.1002/ppp.408
[10] S.V. Alexeev and L.P. Alexeeva, Hydrogeochemistry of the
permafrost zone in the central part of the Yakutian
diamond-bearing province, Russia, Hydrogeol. J. (2003),
https://doi.org/10.1007/s10040-003-0270-8
[11] S. Jessen, H.D. Holmslykke, K. Rasmussen, N. Richardt, and
P.E. Holm, Hydrology and pore water chemistry in a permafrost
wetland, Ilulissat, Greenland, Water Resourc. Res.
50(6),
4760–4774 (2014),
https://doi.org/10.1002/2013WR014376
[12] R. Kononova, in:
Problems of Theoretical and Regional
Hydrogeochemistry (1979) pp. 119–123 [in Russian]
[13] D. Lacelle, B. Lauriol, and I.D. Clark, Effect of chemical
composition of water on the oxygen-18 and carbon-13 signature
preserved in cryogenic carbonates, Arctic Canada: Implications
in paleoclimatic studies, Chem. Geol.
234(1–2), 1–16
(2006),
https://doi.org/10.1016/j.chemgeo.2006.04.001
[14] T. McEwen and G. Marsily,
The Potential Significance of
Permafrost to the Behaviour of a Deep Radioactive Waste
Repository, SKI Technical Report 91: 8 (Swedish Nuclear
Power Inspectorate SKI, 1991),
[PDF]
[15] A. Starinsky and A. Katz, The formation of natural
cryogenic brines, Geochim. Cosmochim. Acta
67(8),
1475–1484 (2003),
https://doi.org/10.1016/S0016-7037(02)01295-4
[16] R. Mokrik and R. Vaikmäe, in:
Isotope Geochemistry
Research in Baltic and Belarus (1988) pp.133–143 [in
Russian]
[17] R. Mokrik, Peculiarities of the formation of the isotopic
composition of underground waters on the southern slope of the
Baltic shield, Geologija
19, 16–25 (1996)
[18] R. Mokrik,
The Palaeohydrogeology of the Baltic Basin.
Vendian and Cambrian (Tartu University Press, 1997)
[19] M. Yezhova, V. Polyakov, A. Tkachenko, L. Savitski, and V.
Belkina, Paleowaters of North Estonia and their influence on
changes of resources and quality of fresh groundwaters of large
coastal water supplies, Geologija
19, 37–40 (1996)
[20] J. Banys, V. Juodkazis, and R. Mokrik, Regional
regularities of radiocarbon distribution in groundwaters of the
Baltic artesian basin, Water Res.
6(2), 243–248 (1979)
[in Russian],
[PDF]
[21] J. Pärn, S. Affolter, J. Ivask, et al., Redox zonation and
organic matter oxidation in palaeogroundwater of glacial origin
from the Baltic Artesian Basin, Chem. Geol.
488, 149–161
(2018),
https://doi.org/10.1016/j.chemgeo.2018.04.027
[22] J.Pärna, K. Walraevens, M. van Camp, V. Raidla, W.
Aeschbach, R. Friedrich, J. Ivask, E. Kaup, T. Martma, J.
Mažeika, R. Mokrik, T. Weissbach, and R. Vaikmäe, Dating of
glacial palaeogroundwater in the Ordovician-Cambrian aquifer
system, northern Baltic Artesian Basin, Appl. Geochem.
102,
64–76 (2019),
https://doi.org/10.1016/j.apgeochem.2019.01.004
[23] V. Raidla, K. Kirsimäe, R. Vaikmäe, E. Kaup, and T. Martma,
Carbon isotope systematics of the Cambrian-Vendian aquifer
system in the northern Baltic Basin: Implications to the age and
evolution of groundwater, Appl. Geochem.
27(10),
2042–2052 (2012),
https://doi.org/10.1016/j.apgeochem.2012.06.005
[24] A. Babre, A. Kalvāns, K. Popovs, I. Retiķe, A. Dēliņa, R.
Vaikmäe, and T. Martma, Pleistocene age paleo-groundwater
inferred from water-stable isotope values in the central part of
the Baltic Artesian Basin, Isotopes Environ. Health Studies
52(6),
706–725 (2016),
https://doi.org/10.1080/10256016.2016.1168411
[25]
Highlights of Groundwater Research in the Baltic
Artesian Basin, eds. A. Dēliņa, A. Kalvāns, T. Saks, U.
Bethers, and V. Vircavs (University of Latvia, Riga, 2012),
[PDF]
[26] V. Raidla, J. Pärn, W. Aeschbach, G. Czuppon, J. Ivask, M.
Kiisk, R. Mokrik, V. Samalavičius, S. Suursoo, S. Tarros, and T.
Weissbach, Intrusion of saline water into a coastal aquifer
containing palaeogroundwater in the Viimsi Peninsula in Estonia,
Geosciences
9(1), 47 (2019),
https://doi.org/10.3390/geosciences9010047
[27] A. Sterckx, J.M. Lemieux, and R. Vaikmäe, Representing
glaciations and subglacial processes in hydrogeological models:
A numerical investigation, Geofluids
2017, 4598902
(2017),
https://doi.org/10.1155/2017/4598902
[28] A. Sterckx, J.-M. Lemieux, and R. Vaikmäe, Assessment of
paleo-recharge under the Fennoscandian Ice Sheet and its impact
on regional groundwater flow in the northern Baltic Artesian
Basin using a numerical model, Hydrogeol. J.
26(8),
2793–2810 (2018),
https://doi.org/10.1007/s10040-018-1838-7
[29] R. Vaikmäe, L. Vallner, H.H. Loosli, P.C. Blaser, and M.
Juillard-Tardent, Palaeogroundwater of glacial origin in the
Cambrian-Vendian aquifer of northern Estonia, Geol. Soc. London,
Special Publications
189, 17–27 (2001),
https://doi.org/10.1144/GSL.SP.2001.189.01.03
[30] M. Gregorauskas, R. Mokrik, and L. Savitski, Formation of
available groundwater resources on the northern Baltic coast,
Sov. Geol.
11, 80–88 (1988) [in Russian]
[31] V .Raidla, J. Pärn, S. Schloemer, W. Aeschbach, G. Czuppon,
J. Ivask, A. Marandi, H. Sepp, R. Vaikmäe, and K. Kirsimäe,
Origin and formation of methane in groundwater of glacial origin
from the Cambrian-Vendian aquifer system in Estonia, Geochim.
Cosmochim. Acta
251, 247–264 (2019),
https://doi.org/10.1016/j.gca.2019.02.029
[32] V. Raidla, K. Kirsimäe, R. Vaikmäe, A. Jõeleht, E.Karro,
A.Marandi, and L. Savitskaja, Geochemical evolution of
groundwater in the Cambrian-Vendian aquifer system of the Baltic
Basin, Chem. Geol.
258(3–4), 219–231 (2009),
https://doi.org/10.1016/j.chemgeo.2008.10.007
[33] V. Raidla,
Chemical and Isotope Evolution of
Groundwater in the Cambrian-Vendian Aquifer System in Estonia,
Doctoral Thesis (Tartu University Press, 2010),
[PDF]
[34] V. Petersell, G. Åkerblom, B.-M. Ek, M. Enel, V. Mõttus,
and K. Täht,
Radon Risk Map of Estonia: Explanatory Text to
the Radon Risk Map Set of Estonia at Scale of 1:500 000,
SSI Report 2005: 16 – SGU Dnr. 08-466/2002 (Geological Survey of
Estonia, 2005),
http://www.digar.ee/id/nlib-digar:15627
[35] R. Raudsep, in:
Geology and Mineral Resources of
Estonia, eds. A. Raukas and A. Teedumäe (Estonian Academy
Publishers, Tallinn, 1997) p. 436,
https://geoloogia.info/geology/start.html
[36] A. Soesoo, J. Vind, and S. Hade, Uranium and thorium
resources of Estonia, Minerals
10(9), 798 (2020),
https://doi.org/10.3390/min10090798
[37] R. Mokrik,
The Paleohydrogeology of the Baltic Basin
(Vilnius University Publishing House, Vilnius, 2003)
[38] J. Pärn, V. Raidla, R. Vaikmäe, T. Martma, J. Ivask, R.
Mokrik, and K. Erg, The recharge of glacial meltwater and its
influence on the geochemical evolution of groundwater in the
Ordovician-Cambrian aquifer system, northern part of the Baltic
Artesian Basin, Appl. Geochem.
72, 125–135 (2016),
https://doi.org/10.1016/j.apgeochem.2016.07.007
[39] M. Forte, L. Bagnato, E. Caldognetto, S. Risica, F. Trotti,
and R. Rusconi, Radium isotopes in Estonian groundwater:
measurements, analytical correlations, population dose and a
proposal for a monitoring strategy, J Radiol. Prot.
30(4),
761–780 (2010),
https://doi.org/10.1088/0952-4746/30/4/009
[40] R. Mokrik, E. Karro, L. Savitskaja, and G. Drevaliene, The
origin of barium in the Cambrian-Vendian aquifer system, North
Estonia, Est. J. Earth Sci.
58(3), 193–208 (2009),
https://doi.org/10.3176/earth.2009.3.04
[41] J. Mažeika,
Regularities of Radionuclide Migration and
Transformation in Lithuanian Geological Environment,
Habilitation Thesis (1999)
[42] A. Zuzevicius, J. Mažeika, and V. Baltrunas, A model of
Brakish groundwater formation in the Nemunas River Valley,
Geologija
60, 63–75 (2007)
[43] J. Mažeika, T. Martma, R. Petrošius, V.
Jakimavičiūtė-Maselienė, and Z. Skuratovič, Radiocarbon and
other environmental isotopes in the groundwater of the sites for
a planned new nuclear power, Radiocarbon
55(3), 951–962
(2013),
https://doi.org/10.2458/azu_js_rc.55.16318
[44] C. Gerber, R. Vaikmäe, W. Aeschbach, A. Babre, Wei Jiang,
M. Leuenberger, Zheng-Tian Lue, R. Mokrik, P. Müller, V.
Raidla, et al., Using
81Kr and noble gases to
characterize and date groundwater and brines in the Baltic
Artesian Basin on the one-million-year timescale, Geochim.
Cosmochim. Acta
205, 187–210 (2017),
https://doi.org/10.1016/j.gca.2017.01.033
[45]
R. Vaikmäe, T. Martma, J. Ivask,
E. Kaup, V. Raidla, R. Rajamäe, L. Vallner, R. Mokrik, V.
Samalavičius, A. Kalvāns, et al.,
Baltic
Groundwater Isotope-Geochemistry Database (Department of
Geology, Tallinn University of Technology, Tallinn, 2020),
https://doi.org/10.15152/GEO.488
[46] J.-M. Punning, M. Toots, and R. Vaikmae, Oxygen-18 in
Estonian natural waters, Isot. Environ. Health Stud.
23,
232–234 (2008),
https://doi.org/10.1080/10256018708623797
[47] J.-M. Punning, M. Toots, and R. Vaikmäe, in:
Proceedings
of the Fourth Working Meeting, Isotopes in Nature, ed. G.
Strauch (Central Institute of Isotope and Radiation Research,
Leipzig, 1987) pp. 542–552
[48] T. Weißbach,
Noble Gases in Palaeogroundwater of
Glacial Origin in the Cambrian-Vendian Aquifer System, Estonia,
Master’s Thesis, University of Heidelberg (Heidelberg, 2014),
116 pp.
[49] A.I. Malov, Evolution of uranium isotopic compositions of
the groundwater and rock in a sandy clayey aquifer, Water
9(12),
910 (2017),
https://doi.org/10.3390/w9120910
[50] A.I. Malov and I.V. Tokarev, Using stable isotopes to
characterize the conditions of groundwater formation on the
eastern slope of the Baltic Shield (NW Russia), J. Hydrol.
578,
124130 (2019),
https://doi.org/10.1016/j.jhydrol.2019.124130
[51] A.I. Malov, I.N. Bolotov, O.S. Pokrovsky, S.B. Zykov, I.V.
Tokarev, Kh.A. Arslanov, S.V. Druzhinin, A.A. Lyubas, M.Y.
Gofarov, I.A. Kostikova, et al., Modeling past and present
activity of a subarctic hydrothermal system using O, H, C, U and
Th isotopes, Appl. Geochem.
63, 93–104 (2015),
https://doi.org/10.1016/j.apgeochem.2015.07.003
[52] IAEA,
Isotope Methods for Dating Old Groundwater
(IAEA, Vienna, 2013),
[PDF]
[53] S.J. Goldstein and C.H. Stirling, Techniques for measuring
uranium-series nuclides 1992–2002, Rev. Miner. Geochem.
52,
23–57 (2003)
[54] G. Bondarenko, I. Gudzenko, and N. Kovalyukh,
Formation
of Radioactive and Stable Isotope Front in Disharge Area of
Artesian Basin (Nauka, 1981) pp. 157–164 [in Russian]
[55] V. Juodkazis and K. Tibar, Helium in groundwater on the
northern flank of the Baltic Artesian Basin, Int. Geol. Rev.
31(7),
736–743 (1989)
[56] R. Mokrik, V. Puura, T. Floden, and R. Petkevičius,
Peculiarities of helium distribution in the Baltic Basin,
Litosfera
6, 121–123 (2002)
[57] J.L. Druhan, S.T. Brown, and C. Huber, Isotopic gradients
across fluid-mineral boundaries, Rev. Mineral. Geochem.
80(1),
355–391 (2015),
https://doi.org/10.2138/rmg.2015.80.11
[58] K. Kigoshi, Alpha-recoil thorium-234: Dissolution into
water and the uranium-234/uranium-238 disequilibrium in nature,
Science
173(3991), 47–48 (1971),
https://doi.org/10.1126/science.173.3991.47
[59] P.I. Chalov,
Isotopic Fractionation of Natural Uranium
(Frunze, Ilim, 1975) [in Russian]
[60] V.V. Cherdyncev and P.I. Chalov, in:
Discoveries in
USSR (Moscow, 1977) pp. 28–31 [in Russian]
[61] J.K. Osmond and J.B. Cowart, The theory and uses of natural
uranium isotopic variations in hydrology, Atom. Energy Rev.
14(4),
621–679 (1976),
https://inis.iaea.org/search/search.aspx?orig_q=RN:8327949
[62] M.B. Andersen, C.H. Stirling, D. Porcelli, A.N. Halliday,
P.S. Andersson, and M. Baskaran, The tracing of riverine U in
Arctic seawater with very precise 234U/238U measurements, Earth
Planet. Sci. Lett.
259(1–2), 171–185 (2007),
https://doi.org/10.1016/j.epsl.2007.04.051
[63] L.F. Robinson, N.S. Belshaw, and G.M. Henderson, U and Th
concentrations and isotope ratios in modern carbonates and
waters from the Bahamas, Geochim. Cosmochim. Acta
68(8),
1777–1789 (2004),
https://doi.org/10.1016/j.gca.2003.10.005
[64] R.L. Fleischer and O.G. Raabe, Recoiling alpha-emitting
nuclei. Mechanisms for uranium-series disequilibrium, Geochim.
Cosmochim. Acta
42(7), 973–978 (1978),
https://doi.org/10.1016/0016-7037(78)90286-7
[65] V.E. Lee, D.J. DePaolo, and J.N. Christensen,
Uranium-series comminution ages of continental sediments: Case
study of a Pleistocene alluvial fan, Earth Planet. Sci. Lett.
296(3–4),
244–254 (2010),
https://doi.org/10.1016/j.epsl.2010.05.005
[66] M.B. Andersen, Y. Erel, and B. Bourdon, Experimental
evidence for 234U-238U fractionation during granite weathering
with implications for 234U/238U in natural waters, Geochim.
Cosmochim. Acta
73(14), 4124–4141 (2009),
https://doi.org/10.1016/j.gca.2009.04.020
[67] E. Yakovlev, G. Kiselev, S. Druzhinin, and S. Zykov,
Uranium isotopic fractionation (234U, 238U) in the formation of
ice crystals, Vestnik of Northern (Arctic) Federal University.
Series Natural Sciences 3, 15–23 (2016) [in Russian],
https://doi.org/10.17238/issn2227-6572.2016.3.15
[68] S.T. Brown, A. Basu, J.N. Christensen, P. Reimus, J.
Heikoop, A. Simmons, G. Woldegabriel, K. Maher, K. Weaver, J.T.
Clay, and D. LePaolo, Isotopic evidence for reductive
immobilization of uranium across a roll-front mineral deposit,
Environ. Sci. Technol.
50(12), 6189–6198 (2016),
https://doi.org/10.1021/acs.est.6b00626
[69] J.K. Osmond and J.B. Cowart, in:
Uranium-series
Disequilibrium: Applications to Earth, Marine, and
Environmental Sciences, 2nd ed., eds. M. Ivanovic and R.S.
Harmon (Clarendon Press, Oxford, 1992),
http://inis.iaea.org/search/search.aspx?orig_q=RN:25065862
[70] M. Gascoyne, in:
Uranium-series Disequilibrium:
Applications to Earth, Marine, and Environmental Sciences,
2nd ed., eds. M. Ivanovic and R.S. Harmon (Clarendon Press,
Oxford, 1992),
http://inis.iaea.org/search/search.aspx?orig_q=RN:25065862
[71] J.N. Andrews, I.S. Giles, R.L.F. Kay, D.J. Lee, J.K.
Osmond, J.B. Cowart, P. Fritz, J.F. Barker, and J. Gale,
Radioelements, radiogenic helium and age relationships for
groundwaters from the granites at Stripa, Sweden, Geochim.
Cosmochim. Acta
46(9), 1533–1543 (1982),
https://doi.org/10.1016/0016-7037(82)90312-X
[72] M.A. Walvoord and B.L. Kurylyk, Hydrologic impacts of
thawing permafrost – A review, Vadose Zone J.
15(6),
1–20 (2016),
https://doi.org/10.2136/vzj2016.01.0010
[73] B.L. Kurylyk, K.T.B. MacQuarrie, and J.M. McKenzie, Climate
change impacts on groundwater and soil temperatures in cold and
temperate regions: Implications, mathematical theory, and
emerging simulation tools, Earth Sci. Rev.
138, 313–334
(2014),
https://doi.org/10.1016/j.earscirev.2014.06.006
[74] P. Glynn, C. Voss, and A. Provost, in:
Use of
Hydrogeochemical Information in Testing Groundwater Flow
Models: Workshop Proceedings, Borgholm, Sweden,
1–3 September, 1997 (Nuclear Energy Agency,
Issy-les-Moulineaux, 1999) pp. 201–241,
https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=30023489
[75] O. Landström, E.-L. Tullborg, G. Eriksson, and Y. Sandell,
Effects of Glacial/Post-glacial Weathering Compared with
Hydrothermal Alteration – Implications for Matrix diffusion.
Results from Drillcore Studies in Porphyritic Quartz
Monzodiorite from Äspöe SE Sweden, SKB Rapport R-01-37
(SKB, Stockholm, 2001),
[PDF]
[76] P. Mejean, D.L. Pinti, B. Ghaleb, and M. Larocque,
Fracturing-induced release of radiogenic
4He and
234U
into groundwater during the last deglaciation: An alternative
source to crustal helium fluxes in periglacial aquifers, J. Am.
Water Resourc. Assoc.
53(7), 5677–5689 (2017),
https://doi.org/10.1002/2016WR020014
[77] G.P. Kiselev, E.Y. Yakovlev, S.V. Druzhinin, and A.S.
Galkin, Distribution of radioactive isotopes in rock and ore of
Arkhangelskaya pipe from the Arkhangelsk diamond province, Geol.
Ore Dep.
59(5), 391–406 (2017),
https://doi.org/10.1134/S1075701517050014
[78] V.I. Ferronsky and V.A. Polyakov,
The Hydrosphere
Isotopes (Nauka Publishing House, Moscow, 1983) [in
Russian]
[79] M.E. Räsänen, J.V. Huitti, S. Bhattarai, J. Harvey, and S.
Huttunen, The SE sector of the MiddleWeichselian Eurasian Ice
Sheet was much smaller than assumed, Quat. Sci. Rev.
122,
131–141 (2015),
https://doi.org/10.1016/j.quascirev.2015.05.019
[80] V. Kalm, A. Raukas, M. Rattas, and K. Lasberg, Chapter 8 -
Pleistocene Glaciations in Estonia, in:
Quaternary
Glaciations – Extent and Chronology, eds. J. Ehlers, P. L.
Gibbard, and P.D. Hughes, Developments in Quaternary Sciences
ser.
15, 95–104 (2011),
https://doi.org/10.1016/B978-0-444-53447-7.00008-8
[81] R. Mokrik, V. Samalavičius, M. Bujanauskas, and M.
Gregorauskas, Environmental isotopes and noble gas ages of the
deep groundwater with coupled flow modelling in the Baltic
artesian basin, Lith. J. Phys.
61(1), 53–65 (2021),
https://doi.org/10.3952/physics.v61i1.4407
[82] R. Mokrik, L. Savitskaja, and L. Savitski, Aqueous
geochemistry of the Cambrian–Vendian aquifer system in the
Tallinn intake, northern Estonia, Geologija
51(3), 50–56
(2005),
https://mokslozurnalai.lmaleidykla.lt/geologija/2005/3/2867
[83] M. Zhang and S.K. Frape,
Permafrost: Evolution of
Shield Groundwater Compositions During Freezing, Ontario
Power Generation Report 06819-REP-01200-10098-R00 (Toronto,
2003)
[84] B. Herut, A. Starinsky, A. Katz, and A. Bein, The role of
seawater freezing in the formation of subsurface brines,
Geochim. Cosmochim. Acta
54(1), 13–21 (1990),
https://doi.org/10.1016/0016-7037(90)90190-V
[85] M.A. McCaffrey, B. Lazar, and H.D. Holland, The evaporation
path of seawater and the coprecipitation of Br– and K+ with
halite, J. Sediment. Res. 57(5), 928–937 (1987),
https://doi.org/10.1306/212f8cab-2b24-11d7-8648000102c1865d