[PDF]  https://doi.org/10.3952/physics.v62i1.4697

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 44–57 (2022)
 

137Cs AND 239,240Pu ACTIVITY CONCENTRATIONS DISTRIBUTION IN WATERLOGGED AND NON-BOGGY SOILS OF LITHUANIA
Laima Kazakevičiūtė-Jakučiūnienė, Nikolaj Tarasiuk, Evaldas Maceika, Rūta Druteikienė, Marina Konstantinova, Zita Žukauskaitė, Rasa Gvozdaitė, and Šarūnas Buivydas
  State Research Institute Center for Physical and Technological Sciences, Savanorių 231, 02300 Vilnius, Lithuania
Email: laima.kazakeviciute@ftmc.lt

Received 1 July 2021; revised 14 October 2021; accepted 16 October 2021

Vertical distributions of 239,240Pu and 137Cs activity concentrations in the waterlogged and non-boggy soil cores sampled in the vicinity of Vilnius City and in the Varėna District were analyzed. The radionuclides appeared in the soils mainly as a result of the fallout after the nuclear weapon testing in atmosphere in 1960s and due to the Chernobyl NPP accident in 1986. The deposited radionuclides on the surface of waterlogged soils on the shores of lakes experienced processes of translocation and accumulation, therefore their total activity in the column differs from the activity in non-boggy soils. The mobility of plutonium is the highest in waterlogged organic-rich soils. Clay in the waterlogged soil significantly limits the migration of radiocesium and does not affect noticeably the mobility of plutonium. Compared with radiocesium, the mobility of plutonium in non-boggy soils is somewhat limited. So, in waterlogged and non-boggy soils, the radionuclide mobilizing factors act in the opposite directions for radiocesium and plutonium. A clear correlation between the radionuclide activity and soil organic matter content was not observed. The investigation showed that radionuclide mobility can be determined by studying radionuclide physicochemical forms in the soil, vertical profiles of radiocesium to plutonium ratios, soil composition as well as its oxidation regime.
Keywords: plutonium, radiocesium, soil organic matter, waterlogged soil, non-boggy soil
PACS: 89.60.-k, 91.62.Rt, 92.40.qc

137Cs ir 239,240Pu AKTYVUMO KONCENTRACIJŲ PASISKIRSTYMAS SAUSAME IR UŽLIEJAMAME LIETUVOS DIRVOŽEMYJE
Laima Kazakevičiūtė-Jakučiūnienė, Nikolaj Tarasiuk, Evaldas Maceika, Rūta Druteikienė, Marina Konstantinova, Zita Žukauskaitė, Rasa Gvozdaitė, Šarūnas Buivydas

Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Ištirtas vertikalusis 239,240Pu ir 137Cs aktyvumo koncentracijų pasiskirstymas sauso ir užliejamo dirvožemio kolonėlėse, paimtose netoli Vilniaus miesto ir Varėnos rajone. Tiriamieji radionuklidai yra technogeninės kilmės ir dirvožemyje atsirado dėl radioaktyviųjų iškritų po branduolinio ginklo bandymų atmosferoje šeštajame dešimtmetyje ir po Černobylio atominės elektrinės avarijos 1986 metais. Iškritę radionuklidai dalyvavo įvairiuose persiskirstymo ir kaupimosi procesuose, todėl erdvinis jų pradinio aktyvumo tankio (radioaktyviosios apkrovos) pasiskirstymas yra netolygus. Vadinasi, užliejamo dirvožemio radioaktyvioji apkrova gali būti tiek didesnė, tiek ir mažesnė nei sauso dirvožemio.
Didžiausias plutonio mobilumas nustatytas užliejamose, daug organinių medžiagų turinčiuose dirvožemiuose. Molio priemaišos užliejamame dirvožemyje stipriai apriboja radiocezio migraciją ir neturi pastebimos įtakos plutonio judrumui. Lyginant su radioceziu, plutonio mobilumas sausame dirvožemyje yra šiek tiek mažesnis. Taigi, sausame ir užliejamame dirvožemiuose radionuklidus mobilizuojantys veiksniai priešingai veikia radiocezį ir plutonį.
Mūsų atveju koreliacinė analizė nerodo vienareikšmės tiesinės priklausomybės tarp radionuklidų aktyvumo koncentracijos ir dirvožemio organinių medžiagų kiekio. Tačiau tyrimas demonstruoja, kad radionuklidų judrumą galima įvertinti tiriant radionuklidų fizines ir chemines formas dirvožemyje, vertikaliuosius radiocezio ir plutonio aktyvumo santykių profilius, dirvožemio sudėtį ir oksidacijos režimą.


References / Nuorodos

[1] S. Virtanen, K. Vaaramaa, and J. Lechto, Fractionation of U, Th, Ra and Pb from boreal forest soil by sequential extractions, Appl. Geochem. 38, 1–9 (2013),
https://doi.org/10.1016/j.apgeochem.2013.08.004
[2] J.N. Smith, K.M. Ellis, L. Polyak, G. Ivanov, S.L. Forman, and S.B Moran, 239,240Pu transport into the Arctic Ocean from underwater nuclear tests in Chernaya Bay, Novaya Zemlya. Cont. Shelf. Res. 20(3), 255–279 (2000),
https://doi.org/10.1016/S0278-4343(99)00066-7
[3] M.E. Ketterer, H.M. Hafer, and J.W. Mietelski, Resolving Chernobyl vs. global fallout contributions in soils from Poland using plutonium atom ratios measured by inductively coupled plasma mass spectrometry, J. Environ. Radioact. 73(2), 183–201 (2004),
https://doi.org/10.1016/j.jenvrad.2003.09.001
[4] B. Lukšienė, E. Maceika, N. Tarasiuk, E. Koviazina, V. Filistovič, Š. Buivydas, and A. Puzas, On peculiarities of vertical distribution of 239,240Pu, 238Pu and 137Cs activity concentrations and their ratios in lake sediments and soils, J. Radioanal. Nucl. Chem. 300, 277–286 (2014),
https://doi.org/10.1007/s10967-014-3026-0
[5] K. Bunzl and W. Kracke, Cumulative deposition of 137Cs, 238Pu, 239+240Pu and 241Am from global fallout in soils from forest, grassland and arable land in Bavaria (FRG), J. Environ. Radioact. 8(1), 1–14 (1988),
https://doi.org/10.1016/0265-931X(88)90010-0
[6] G. Lujanienė, D. Valiulis, S. Byčenkienė, J. Šakalys, and P.P. Povinec, Plutonium isotopes and 241Am in the atmosphere of Lithuania: A comparison of different source terms, Atmos. Environ. 61, 419–427 (2012),
https://doi.org/10.1016/j.atmosenv.2012.07.046
[7] D.L. Rowell, Soil Science: Methods and Applications (Longman, Essex, Harlow, 1994),
https://doi.org/10.4324/9781315844855
[8] E.K. Legin, Y.I. Trifonov, M.L. Khokhlov, and D.N. Suglobov, Study of formation mechanisms of mobile forms of macrocomponents and radionuclides (152Eu, 241Am) in model systems based on aluminum fulvate, Radiochemistry 42, 279 (2000)
[9] M. Mukwaturi and Ch. Lin, Mobilization of heavy metals from urban contaminated soils under water inundation conditions, J. Hazard. Mater. 285, 445–452 (2015),
https://doi.org/10.1016/j.jhazmat.2014.10.020
[10] J.A. Luceya, A. Gouzy, D. Boust, L.L. Vintro, L. Bowden, P.P. Finegan, P.J. Kershaw, and P.I. Mitchell, Geochemical fractionation of plutonium in anoxic Irish Sea sediments using an optimised sequential extraction protocol, Appl. Radiat. Isot. 60, 379–385 (2004),
https://doi.org/10.1016/j.apradiso.2003.11.045
[11] A.E. Hixon and B.A. Powell, Plutonium environmental chemistry: mechanisms for the surface-mediated reduction of Pu (v/vi), Environ. Sci. Process. Impacts 20(10), 1306–1322 (2018),
https://doi.org/10.1039/C7EM00369B
[12] G.R. Choppin, Actinide speciation in the environment, J. Radioanal. Nucl. Chem. 273(3), 695–703 (2007),
https://doi.org/10.1007/s10967-007-0933-3
[13] NEA Group of Experts, The Environmental and Biological Behaviour of Plutonium and Some Other Transuranium Elements (OECD Nuclear Energy Agency, Paris, 1981) p. 38.
[14] G.R. Choppin, Actinide speciation in the environment, Radiochim. Acta 91, 645–649 (2003),
https://doi.org/10.1524/ract.91.11.645.23469
[15] R.P. Deo, B.E. Rittmann, and D.T. Reed, Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach, Biodegradation 22, 921–929 (2011),
https://doi.org/10.1007/s10532-010-9451-z
[16] M.A. Shenber and A. Eriksson, Sorption behaviour of caesium in various soils, J. Environ. Radioact. 19, 41–51 (1993),
https://doi.org/10.1016/0265-931X(93)90057-E
[17] R.M. Cornell, Adsorption of cesium on minerals: A review, J. Radioanal. Nucl. Chem. 171(2), 483–500 (1993),
https://doi.org/10.1007/BF02219872
[18] A.V. de Koning, R.N. Konoplev, and J. Comans, Measuring the specific caesium sorption capacity of soils, sediments and clay minerals, Appl. Geochem. 22, 219–229 (2007),
https://doi.org/10.1016/j.apgeochem.2006.07.013
[19] E. Korobova, V. Linnik, and N. Chizhikova, The history of the Chernobyl 137Cs contamination of the flood plain soils and its relation to physical and chemical properties of the soil horizons (a case study), J. Geochem. Explor. 96, 236–255 (2008),
https://doi.org/10.1016/j.gexplo.2007.04.014
[20] J. Mihalik, M.J. Madruga, M.H. Casimiro, L.M. Ferreira, and M.I. Prudencio, Redistribution of Cs 137 introduced into montmorillonite in association with organic matter coming from biomass composting, Chemosphere 207, 147–153 (2018),
https://doi.org/10.1016/j.chemosphere.2018.05.078
[21] B.L. Sawhney, Selective sorption and fixation of cations by clay minerals: a review, Clays Clay Miner. 20, 93–100 (1972),
https://doi.org/10.1346/CCMN.1972.0200208
[22] S. Staunton, C. Dumat, and A. Zsolnay, Possible role of organic matter in radiocaesium adsorption in soils, J. Environ. Radioact. 58, 163–173 (2002),
https://doi.org/10.1016/S0265-931X(01)00064-9
[23] F. Giannakopoulou, C. Haidouti, A. Chronopoulou, and D. Gasparatos, Sorption behaviour of cesium on various soils under different pH levels, J. Hazard. Mater. 149, 553–556 (2007),
https://doi.org/10.1016/j.jhazmat.2007.06.109
[24] S. Mishra, S.K. Sahoo, P. Bossew, A. Sorimachi, and S. Tokonami, Vertical migration of radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in undisturbed soils of grassland and forest, J. Geochem. Explor. 169, 163–186 (2016),
https://doi.org/10.1016/j.gexplo.2016.07.023
[25] G.A. Sokolik, T.G. Ivanova, S.L. Leinova, S.V. Ovsiannikova, and I.M. Kimlenko, Migration ability of radionuclides in soil-vegetation cover of Belarus after Chernobyl accident, Environ. Int. 26, 183–187 (2001),
https://doi.org/10.1016/S0160-4120(00)00104-5
[26] A.J. Fuller, S. Shaw, C.L. Peacock, D. Trivedi, J.S. Small, L.G. Abrahamsen, and I.T. Burke, Ionic strength and pH dependent multi-site sorption of Cs onto a micaceous aquifer sediment, J. Appl. Geochem. 40, 32–42 (2014),
https://doi.org/10.1016/j.apgeochem.2013.10.017
[27] C.A. Shand, K. Rosén, K. Thored, R. Wendler, and S. Hillier, Downward migration of radiocaesium in organic soils across a transect in Scotland, J. Environ. Radioact. 115, 124–133 (2013),
https://doi.org/10.1016/j.jenvrad.2012.08.003
[28] N. Yamaguchi, Y. Takata, K. Hayashi, et al., Behaviour of radiocaesium in soil-plant systems and its controlling factor, Bull. Natl. Inst. Agro-Environ. 31, 75–129 (2012) [in Japanese]
[PDF]
[29] X. Wang, T. Rabung, and H. Geckeis, Effect of pH and humic acid on the adsorption of cesium onto g-Al2O3, J. Radioanal. Nucl. Chem. 258, 83–87 (2003),
https://doi.org/10.1023/A:1026206108828
[30] X. Lhoua, C.L. Fogh, J. Kucera, K.G. Andersson, H. Dahlgaard, and S.P. Nielsen, Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation, Sci. Total. Environ. 308(1–3), 97–109 (2003),
https://doi.org/10.1016/S0048-9697(02)00546-6
[31] J.E. Brown, P.A. McDonald, and J.E. Parker Rae, The vertical distribution of radionuclides in a Ribble Estuary saltmarsh: transport and deposition of radionuclides, J. Environ. Radioact. 43, 259–275 (1999),
https://doi.org/10.1016/S0265-931X(98)00041-1
[32] P. Carbol, D. Solatie, N. Erdmann, T. Nylén, and M. Betti, Deposition and distribution of Chernobyl fallout fission products and actinides in a Russian soil profile, J. Environ. Radioact. 68, 27–46 (2003),
https://doi.org/10.1016/S0265-931X(03)00027-4
[33] G. Jia, C. Testa, D. Desideri, F. Guerra, M.A. Meli, C. Roselli, and M.E. Belli, Soil concentration, vertical distribution and inventory of plutonium, 241Am 90Sr and 137Cs in the Marche regione of Central Italy, Health. Phys. 77(1), 52–61 (1999),
https://doi.org/10.1097/00004032-199907000-00010
[34] E. Łokas, J.W. Mietelski, M.E. Ketterer, K. Kleszcz, P. Wachniew, S. Michalska, and M. Miecznik, Sources and vertical distribution of 137Cs, 238Pu, 239+240Pu and 241Am in peat profiles from southwest Spitsbergen, Appl. Geochem. 28, 100–108 (2013),
https://doi.org/10.1016/j.apgeochem.2012.10.027
[35] T. Matsunaga and S. Nagao, Environmental behaviour of plutonium isotopes studied in the area affected by the Chernobyl accident, Humic Subst. Res. 5(6), 19–33 (2009),
[PDF]
[36] J. Orzeł and A. Komosa, Study on the rate of plutonium vertical migration in various soil types of Lublin region (Eastern Poland), J. Radioanal. Nucl. Chem. 299, 643–649 (2014),
https://doi.org/10.1007/s10967-013-2774-6
[37] M.H. Lee and C.W. Lee, Association of fallout-derived 137Cs, 90Sr and 239,240Pu with natural organic substances in soils, J. Environ. Radioact. 47, 253–262 (2000),
https://doi.org/10.1016/S0265-931X(99)00033-8
[38] M. Puhakainen, T. Heikkinen, E. Steinnes, H. Thørring, and I. Outolaand, Distribution of 90Sr and 137Cs in Arctic soil profiles polluted by heavy metals, J. Environ. Radioact. 81, 295–306 (2005),
https://doi.org/10.1016/j.jenvrad.2005.01.006
[39] D. Butkus, B. Lukšienė, and M. Konstantinova, Evaluation of 137Cs soil-to-plant transfer: Natural and model experiments, J. Radioanal. Nucl. Chem. 279, 411–416 (2009),
https://doi.org/10.1007/s10967-007-7218-8
[40] New Clasification of Soils of Lithuania (LTDK-99) (1999)
[41] F.R. Livens and D.L. Singleton, Plutonium and americium in soil organic matter, J. Environ. Radioact. 13, 323–339 (1991),
https://doi.org/10.1016/0265-931X(91)90005-Z
[42] B. Lukšienė, A. Puzas, V. Remeikis, R. Druteikienė, A. Gudelis, R. Gvozdaitė, Š. Buivydas, R. Davidonis, and G. Kandrotas, Spatial patterns and ratios of 137Cs, 90Sr, and Pu isotopes in the top layer of undisturbed meadow soils as indicators for contamination origin, Environ. Monit. Assess. 187, 268–284 (2015),
https://doi.org/10.1007/s10661-015-4491-9
[43] J. Koarashi, M. Atarashi-Andoh, and H. Amano, Vertical distributions of global fallout 137Cs and 14C in a Japanese forest soil profile and their implications for the fate and migration processes of Fukushima-derived 137Cs, J. Radioanal. Nucl. Chem. 311, 473–481 (2017),
https://doi.org/10.1007/s10967-016-4938-7
[44] N. Tarasiuk, K. Stelingis, and A. Gudelis, The water bodies surface self-cleaning mechanisms after the Chernobyl accident, Atmos. Phys. 14, 67–79 (1989) [in Russian]
[45] P.A. Cawse, S.J. Baker, and D. Jenkins, A Post-Chernobyl Survey of Radionuclides in Wales, August–October 1986, Report AERE R-12828 (Harwell Laboratory, Oxfordshire, 1988) p. 28
[46] Y. Nakamaru, N. Ishikawa, K. Tagami, and S. Uchida, Role of soil organic matter in the mobility of radiocesium in agricultural soils common in Japan, Colloids Surf. A Physicochem. Eng. Asp. 306, 111–117 (2007),
https://doi.org/10.1016/j.colsurfa.2007.01.014
[47] K. Bunzl, W. Kracke, P.I. Agapkina, A. Tikhomirov, and A.I. Shcheglov, Association of Chernobyl-derived 239+240Pu, 241Am, 90Sr and 137Cs with different molecular size fractions of organic matter in the soil solution of two grassland soils, Radiat. Environ. Biophys. 37, 195–200 (1998),
https://doi.org/10.1007/s004110050117
[48] A.A. Cigana, L.C. Rossi, S. Sgorgini, and G. Zurlini, Environmental study of fallout plutonium in soils from the Piemonte region (north-west Italy), J. Environ. Radioact. 5, 71–81 (1987),
https://doi.org/10.1016/0265-931X(87)90045-2
[49] M. Nakano and R.N. Yong, Overview of rehabilitation schemes for farmlands contaminated with radioactive cesium released from Fukushima Power Plant, Eng. Geol. 155, 87–93 (2013),
https://doi.org/10.1016/j.enggeo.2012.12.010
[50] Y.-J. Choi, F.A. Tomás-Barberán, and M.E. Saltveit, Wound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols, Postharvest Biol. Technol. 37, 47–55 (2005),
https://doi.org/10.1016/j.postharvbio.2005.03.002