Laima Kazakevičiūtė-Jakučiūnienė, Nikolaj Tarasiuk, Evaldas
Maceika, Rūta Druteikienė, Marina Konstantinova, Zita Žukauskaitė,
Rasa Gvozdaitė, and Šarūnas Buivydas
Received 1 July 2021; revised 14 October 2021; accepted 16 October
2021
[1] S. Virtanen, K. Vaaramaa, and J. Lechto, Fractionation of U,
Th, Ra and Pb from boreal forest soil by sequential extractions,
Appl. Geochem.
38, 1–9 (2013),
https://doi.org/10.1016/j.apgeochem.2013.08.004
[2] J.N. Smith, K.M. Ellis, L. Polyak, G. Ivanov, S.L. Forman,
and S.B Moran,
239,240Pu transport into the Arctic
Ocean from underwater nuclear tests in Chernaya Bay, Novaya
Zemlya. Cont. Shelf. Res.
20(3), 255–279 (2000),
https://doi.org/10.1016/S0278-4343(99)00066-7
[3] M.E. Ketterer, H.M. Hafer, and J.W. Mietelski, Resolving
Chernobyl vs. global fallout contributions in soils from Poland
using plutonium atom ratios measured by inductively coupled
plasma mass spectrometry, J. Environ. Radioact.
73(2),
183–201 (2004),
https://doi.org/10.1016/j.jenvrad.2003.09.001
[4] B. Lukšienė, E. Maceika, N. Tarasiuk, E. Koviazina, V.
Filistovič, Š. Buivydas, and A. Puzas, On peculiarities of
vertical distribution of
239,240Pu,
238Pu
and
137Cs activity concentrations and their ratios
in lake sediments and soils, J. Radioanal. Nucl. Chem.
300,
277–286 (2014),
https://doi.org/10.1007/s10967-014-3026-0
[5] K. Bunzl and W. Kracke, Cumulative deposition of
137Cs,
238Pu,
239+240Pu and
241Am
from global fallout in soils from forest, grassland and arable
land in Bavaria (FRG), J. Environ. Radioact.
8(1), 1–14
(1988),
https://doi.org/10.1016/0265-931X(88)90010-0
[6] G. Lujanienė, D. Valiulis, S. Byčenkienė, J. Šakalys, and
P.P. Povinec, Plutonium isotopes and
241Am in the
atmosphere of Lithuania: A comparison of different source terms,
Atmos. Environ.
61, 419–427 (2012),
https://doi.org/10.1016/j.atmosenv.2012.07.046
[7] D.L. Rowell,
Soil Science: Methods and Applications
(Longman, Essex, Harlow, 1994),
https://doi.org/10.4324/9781315844855
[8] E.K. Legin, Y.I. Trifonov, M.L. Khokhlov, and D.N. Suglobov,
Study of formation mechanisms of mobile forms of macrocomponents
and radionuclides (
152Eu,
241Am) in model
systems based on aluminum fulvate, Radiochemistry
42,
279 (2000)
[9] M. Mukwaturi and Ch. Lin, Mobilization of heavy metals from
urban contaminated soils under water inundation conditions, J.
Hazard. Mater.
285, 445–452 (2015),
https://doi.org/10.1016/j.jhazmat.2014.10.020
[10] J.A. Luceya, A. Gouzy, D. Boust, L.L. Vintro, L. Bowden,
P.P. Finegan, P.J. Kershaw, and P.I. Mitchell, Geochemical
fractionation of plutonium in anoxic Irish Sea sediments using
an optimised sequential extraction protocol, Appl. Radiat. Isot.
60, 379–385 (2004),
https://doi.org/10.1016/j.apradiso.2003.11.045
[11] A.E. Hixon and B.A. Powell, Plutonium environmental
chemistry: mechanisms for the surface-mediated reduction of Pu
(v/vi), Environ. Sci. Process. Impacts
20(10), 1306–1322
(2018),
https://doi.org/10.1039/C7EM00369B
[12] G.R. Choppin, Actinide speciation in the environment, J.
Radioanal. Nucl. Chem.
273(3), 695–703 (2007),
https://doi.org/10.1007/s10967-007-0933-3
[13] NEA Group of Experts,
The Environmental and Biological
Behaviour of Plutonium and Some Other Transuranium Elements
(OECD Nuclear Energy Agency, Paris, 1981) p. 38.
[14] G.R. Choppin, Actinide speciation in the environment,
Radiochim. Acta
91, 645–649 (2003),
https://doi.org/10.1524/ract.91.11.645.23469
[15] R.P. Deo, B.E. Rittmann, and D.T. Reed, Bacterial Pu(V)
reduction in the absence and presence of Fe(III)-NTA: modeling
and experimental approach, Biodegradation
22, 921–929
(2011),
https://doi.org/10.1007/s10532-010-9451-z
[16] M.A. Shenber and A. Eriksson, Sorption behaviour of caesium
in various soils, J. Environ. Radioact.
19, 41–51
(1993),
https://doi.org/10.1016/0265-931X(93)90057-E
[17] R.M. Cornell, Adsorption of cesium on minerals: A review,
J. Radioanal. Nucl. Chem.
171(2), 483–500 (1993),
https://doi.org/10.1007/BF02219872
[18] A.V. de Koning, R.N. Konoplev, and J. Comans, Measuring the
specific caesium sorption capacity of soils, sediments and clay
minerals, Appl. Geochem.
22, 219–229 (2007),
https://doi.org/10.1016/j.apgeochem.2006.07.013
[19] E. Korobova, V. Linnik, and N. Chizhikova, The history of
the Chernobyl
137Cs contamination of the flood plain
soils and its relation to physical and chemical properties of
the soil horizons (a case study), J. Geochem. Explor.
96,
236–255 (2008),
https://doi.org/10.1016/j.gexplo.2007.04.014
[20] J. Mihalik, M.J. Madruga, M.H. Casimiro, L.M. Ferreira, and
M.I. Prudencio, Redistribution of Cs 137 introduced into
montmorillonite in association with organic matter coming from
biomass composting, Chemosphere
207, 147–153 (2018),
https://doi.org/10.1016/j.chemosphere.2018.05.078
[21] B.L. Sawhney, Selective sorption and fixation of cations by
clay minerals: a review, Clays Clay Miner.
20, 93–100
(1972),
https://doi.org/10.1346/CCMN.1972.0200208
[22] S. Staunton, C. Dumat, and A. Zsolnay, Possible role of
organic matter in radiocaesium adsorption in soils, J. Environ.
Radioact.
58, 163–173 (2002),
https://doi.org/10.1016/S0265-931X(01)00064-9
[23] F. Giannakopoulou, C. Haidouti, A. Chronopoulou, and D.
Gasparatos, Sorption behaviour of cesium on various soils under
different pH levels, J. Hazard. Mater.
149, 553–556
(2007),
https://doi.org/10.1016/j.jhazmat.2007.06.109
[24] S. Mishra, S.K. Sahoo, P. Bossew, A. Sorimachi, and S.
Tokonami, Vertical migration of radiocaesium derived from the
Fukushima Dai-ichi Nuclear Power Plant accident in undisturbed
soils of grassland and forest, J. Geochem. Explor.
169,
163–186 (2016),
https://doi.org/10.1016/j.gexplo.2016.07.023
[25] G.A. Sokolik, T.G. Ivanova, S.L. Leinova, S.V.
Ovsiannikova, and I.M. Kimlenko, Migration ability of
radionuclides in soil-vegetation cover of Belarus after
Chernobyl accident, Environ. Int.
26, 183–187 (2001),
https://doi.org/10.1016/S0160-4120(00)00104-5
[26] A.J. Fuller, S. Shaw, C.L. Peacock, D. Trivedi, J.S. Small,
L.G. Abrahamsen, and I.T. Burke, Ionic strength and pH dependent
multi-site sorption of Cs onto a micaceous aquifer sediment, J.
Appl. Geochem.
40, 32–42 (2014),
https://doi.org/10.1016/j.apgeochem.2013.10.017
[27] C.A. Shand, K. Rosén, K. Thored, R. Wendler, and S.
Hillier, Downward migration of radiocaesium in organic soils
across a transect in Scotland, J. Environ. Radioact.
115,
124–133 (2013),
https://doi.org/10.1016/j.jenvrad.2012.08.003
[28] N. Yamaguchi, Y. Takata, K. Hayashi, et al., Behaviour of
radiocaesium in soil-plant systems and its controlling factor,
Bull. Natl. Inst. Agro-Environ.
31, 75–129 (2012) [in
Japanese]
[PDF]
[29] X. Wang, T. Rabung, and H. Geckeis, Effect of pH and humic
acid on the adsorption of cesium onto g-Al
2O
3,
J. Radioanal. Nucl. Chem.
258, 83–87 (2003),
https://doi.org/10.1023/A:1026206108828
[30] X. Lhoua, C.L. Fogh, J. Kucera, K.G. Andersson, H.
Dahlgaard, and S.P. Nielsen, Iodine-129 and Caesium-137 in
Chernobyl contaminated soil and their chemical fractionation,
Sci. Total. Environ.
308(1–3), 97–109 (2003),
https://doi.org/10.1016/S0048-9697(02)00546-6
[31] J.E. Brown, P.A. McDonald, and J.E. Parker Rae, The
vertical distribution of radionuclides in a Ribble Estuary
saltmarsh: transport and deposition of radionuclides, J.
Environ. Radioact.
43, 259–275 (1999),
https://doi.org/10.1016/S0265-931X(98)00041-1
[32] P. Carbol, D. Solatie, N. Erdmann, T. Nylén, and M. Betti,
Deposition and distribution of Chernobyl fallout fission
products and actinides in a Russian soil profile, J. Environ.
Radioact.
68, 27–46 (2003),
https://doi.org/10.1016/S0265-931X(03)00027-4
[33] G. Jia, C. Testa, D. Desideri, F. Guerra, M.A. Meli, C.
Roselli, and M.E. Belli, Soil concentration, vertical
distribution and inventory of plutonium,
241Am
90Sr
and
137Cs in the Marche regione of Central Italy,
Health. Phys.
77(1), 52–61 (1999),
https://doi.org/10.1097/00004032-199907000-00010
[34] E. Łokas, J.W. Mietelski, M.E. Ketterer, K. Kleszcz, P.
Wachniew, S. Michalska, and M. Miecznik, Sources and vertical
distribution of
137Cs,
238Pu,
239+240Pu
and
241Am in peat profiles from southwest
Spitsbergen, Appl. Geochem.
28, 100–108 (2013),
https://doi.org/10.1016/j.apgeochem.2012.10.027
[35] T. Matsunaga and S. Nagao, Environmental behaviour of
plutonium isotopes studied in the area affected by the Chernobyl
accident, Humic Subst. Res.
5(6), 19–33 (2009),
[PDF]
[36] J. Orzeł and A. Komosa, Study on the rate of plutonium
vertical migration in various soil types of Lublin region
(Eastern Poland), J. Radioanal. Nucl. Chem.
299, 643–649
(2014),
https://doi.org/10.1007/s10967-013-2774-6
[37] M.H. Lee and C.W. Lee, Association of fallout-derived
137Cs,
90Sr and
239,240Pu with natural organic
substances in soils, J. Environ. Radioact.
47, 253–262
(2000),
https://doi.org/10.1016/S0265-931X(99)00033-8
[38] M. Puhakainen, T. Heikkinen, E. Steinnes, H. Thørring, and
I. Outolaand, Distribution of
90Sr and
137Cs
in Arctic soil profiles polluted by heavy metals, J. Environ.
Radioact.
81, 295–306 (2005),
https://doi.org/10.1016/j.jenvrad.2005.01.006
[39] D. Butkus, B. Lukšienė, and M. Konstantinova, Evaluation of
137Cs soil-to-plant transfer: Natural and model
experiments, J. Radioanal. Nucl. Chem.
279, 411–416
(2009),
https://doi.org/10.1007/s10967-007-7218-8
[40]
New Clasification of Soils of Lithuania (LTDK-99)
(1999)
[41] F.R. Livens and D.L. Singleton, Plutonium and americium in
soil organic matter, J. Environ. Radioact.
13, 323–339
(1991),
https://doi.org/10.1016/0265-931X(91)90005-Z
[42] B. Lukšienė, A. Puzas, V. Remeikis, R. Druteikienė, A.
Gudelis, R. Gvozdaitė, Š. Buivydas, R. Davidonis, and G.
Kandrotas, Spatial patterns and ratios of
137Cs,
90Sr,
and Pu isotopes in the top layer of undisturbed meadow soils as
indicators for contamination origin, Environ. Monit. Assess.
187,
268–284 (2015),
https://doi.org/10.1007/s10661-015-4491-9
[43] J. Koarashi, M. Atarashi-Andoh, and H. Amano, Vertical
distributions of global fallout
137Cs and
14C
in a Japanese forest soil profile and their implications for the
fate and migration processes of Fukushima-derived
137Cs,
J. Radioanal. Nucl. Chem.
311, 473–481 (2017),
https://doi.org/10.1007/s10967-016-4938-7
[44] N. Tarasiuk, K. Stelingis, and A. Gudelis, The water bodies
surface self-cleaning mechanisms after the Chernobyl accident,
Atmos. Phys.
14, 67–79 (1989) [in Russian]
[45] P.A. Cawse, S.J. Baker, and D. Jenkins,
A
Post-Chernobyl Survey of Radionuclides in Wales,
August–October 1986, Report AERE R-12828 (Harwell
Laboratory, Oxfordshire, 1988) p. 28
[46] Y. Nakamaru, N. Ishikawa, K. Tagami, and S. Uchida, Role of
soil organic matter in the mobility of radiocesium in
agricultural soils common in Japan, Colloids Surf. A
Physicochem. Eng. Asp.
306, 111–117 (2007),
https://doi.org/10.1016/j.colsurfa.2007.01.014
[47] K. Bunzl, W. Kracke, P.I. Agapkina, A. Tikhomirov, and A.I.
Shcheglov, Association of Chernobyl-derived
239+240Pu,
241Am,
90Sr and
137Cs with
different molecular size fractions of organic matter in the soil
solution of two grassland soils, Radiat. Environ. Biophys.
37,
195–200 (1998),
https://doi.org/10.1007/s004110050117
[48] A.A. Cigana, L.C. Rossi, S. Sgorgini, and G. Zurlini,
Environmental study of fallout plutonium in soils from the
Piemonte region (north-west Italy), J. Environ. Radioact.
5,
71–81 (1987),
https://doi.org/10.1016/0265-931X(87)90045-2
[49] M. Nakano and R.N. Yong, Overview of rehabilitation schemes
for farmlands contaminated with radioactive cesium released from
Fukushima Power Plant, Eng. Geol.
155, 87–93 (2013),
https://doi.org/10.1016/j.enggeo.2012.12.010
[50] Y.-J. Choi, F.A. Tomás-Barberán, and M.E. Saltveit,
Wound-induced phenolic accumulation and browning in lettuce (
Lactuca
sativa L.) leaf tissue is reduced by exposure to
n-alcohols,
Postharvest Biol. Technol.
37, 47–55 (2005),
https://doi.org/10.1016/j.postharvbio.2005.03.002