[PDF]  https://doi.org/10.3952/physics.v62i1.4698

Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 62, 58–71 (2022)
 

THE COMBINED EFFECTS OF ASCORBIC ACID AND BOVINE SERUM ALBUMIN ON PHOTOTRANSFORMATIONS OF HEMATOPORPHYRIN DERIVATIVE IN AQUEOUS MEDIUM: ABSORPTION AND EPR SPECTROSCOPY STUDY
Arūnas Maršalkaa, Agnė Kalnaitytėb, Tomas Biekšab, and Saulius Bagdonasb
  a Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
b Laser Research Centre, Faculty of Physics, Vilnius University, Saulėtekio 9, 10222 Vilnius, Lithuania
Email: saulius.bagdonas@ff.vu.lt

Received 6 December 2021; revised 24 January 2022; accepted 22 February 2022

There is a constant interest to increase the efficacy of photosensitized therapy by combining it with other modalities in order to boost the oxidative stress in tumour tissues, and L-ascorbic acid (AscA) could serve as a potential candidate. The photoinduced transformations of a hematoporphyrin-type photosensitizer (HpDiA) were chosen as a model system to monitor the effects of AscA on oxygen-dependent photoreactions in aqueous model solutions of different pH. Additional data on the role of the ascorbate radical in photoreactions initiated by HpDiA, as well as on the mutual activity in samples containing bovine serum albumin (BSA), including participation in Type I reactions, were obtained performing electron paramagnetic resonance (EPR) spectroscopy measurements, done on the mixed aqueous solutions poured into capillary tubes of a carefully selected diameter, both in the dark and under illumination with a laser beam in the absence of additional trapping molecules. A strong interaction between BSA and porphyrins was determined as a main factor in the observed photoreactions, not only boosting the photooxidation and photoreduction pathways, but also leading to the enhanced photoactivity in combination with AscA, especially, in the acidic medium.
Keywords: hematoporphyrin derivative, L-ascorbic acid, bovine serum albumin, EPR and absorption spectroscopies, photoproducts

BENDRAS ASKORBO RŪGŠTIES IR JAUČIO SERUMO ALBUMINO POVEIKIS HEMATOPORFIRINO DARINIO FOTOTRANSFORMACIJAI VANDENINĖJE TERPĖJE: SUGERTIES IR EPR SPEKTROSKOPIJOS TYRIMAS
Arūnas Maršalkaa, Agnė Kalnaitytėb, Tomas Biekšab, Saulius Bagdonasb

a Vilniaus universiteto Fizikos fakulteto Cheminės fizikos institutas, Vilnius, Lietuva
b Vilniaus universiteto Fizikos fakulteto Lazerinių tyrimų centras, Vilnius, Lietuva



References / Nuorodos

[1] D. van Straten, V. Mashayekhi, H.S. de Bruijn, S. Oliveira, and D.J. Robinson, Oncologic photodynamic therapy: basic principles, current clinical status and future directions, Cancers 9(19), 1–54 (2017),
https://doi.org/10.3390/cancers9020019
[2] O. Augusto and S. Muntz Vaz, EPR spin-trapping of protein radicals to investigate biological oxidative mechanisms, Amino Acids 32, 535–542 (2007),
https://doi.org/10.1007/s00726-006-0429-4
[3] P. Vaupel and A. Mayer, Hypoxia in cancer: significance and impact on clinical outcome, Cancer Metastasis Rev. 26, 225–239 (2007),
https://doi.org/10.1007/s10555-007-9055-1
[4] I. Freitas and G.F. Baronzio, New trends in photobiology: Tumor hypoxia, reoxygenation and oxygenation strategies: possible role in photodynamic therapy, J. Photochem. Photobiol. B 11(1), 3–30 (1991),
https://doi.org/10.1016/1011-1344(91)80264-I
[5] A. Juzeniene, Oxygen effects in photodynamic therapy, in: Handbook of Biophotonics. Vol. 2: Photonics for Health Care, 1st ed., eds. J. Popp, V.V. Tuchin, A. Chiou, and S. Heinemann (Wiley-VCH Verlag GmbH & Co. KGaA, 2013) pp. 305–313,
https://www.wiley.com/en-us/Handbook+of+Biophotonics%2C+3+Volume+Set-p-9783527407286
[6] L.I. Grossweinaer, S. Patealn, and D.J.B. Grossweinaer, Type I and Type II mechanisms in the photosensitized lysis of phosphatidylcholine liposomes by hematoporphyrin, Photochem. Photobiol. 36(2), 159–167 (1982),
https://doi.org/10.1111/j.1751-1097.1982.tb04358.x
[7] G.R. Buettner and L.W. Oberlby, The apparent production of superoxide and hydroxyl radicals by hematoporphyrin and light as seen by spintrapping, FEBS Lett. 121(1), 161–164 (1980),
https://doi.org/10.1016/0014-5793(80)81288-9
[8] S. Cannistraro and A. Van de Worst, Photosensitization by hematoporphyrin: ESR evidence for free radical induction in unsaturated fatty acids and for singlet oxygen production, Biochem. Biophys. Res. Comm. 74(3), 1177–1185 (1977),
https://doi.org/10.1016/0006-291X(77)91642-4
[9] A.W. Giroti, Mechanisms of photosensitization, Photochem. Photobiol. 38(6), 145–151 (1983),
https://doi.org/10.1111/j.1751-1097.1983.tb03610.x
[10] B.W. McIlroy, A. Curnow, G. Buonaccorsi, M.A. Scott, S.G. Bown, and A.J. MacRobert, Spatial measurement of oxygen levels during photodynamic therapy using time-resolved optical spectroscopy, J. Photochem. Photobiol. B 43(1), 47–55 (1998),
https://doi.org/10.1016/S1011-1344(98)00081-5
[11] G.J. Bachowski, K.M. Morehouse, and A.W. Girotti, Porphyrin-sensitized photoreactions in the presence of ascorbate: oxidation of cell membrane lipids and hydroxyl radical traps, Photochem. Photobiol. 47(5), 635–645 (1988),
https://doi.org/10.1111/j.1751-1097.1988.tb02759.x
[12] D. Mauzerall and G. Feher, A study of the photoinduced porphyrin free radical by electron spin resonance, Biochim. Biophys. Acta 79(2), 430–432 (1964),
https://doi.org/10.1016/0926-6577(64)90030-0
[13] H. Qi, Q. Wu, N. Abe, Sh. Saiki, B. Zhu, Y. Murata, and Y. Nakamura, Ascorbic acid synergistically potentiates phloxine B-induced photocytotoxicity in human acute promyelocytic leukemia cells, J. Biochem. Mol. Toxicol. 28(4), 167–173 (2014),
https://doi.org/10.1002/jbt.21549
[14] M. Price, L. Heilbrun, and D. Kessel, Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy, Photochem. Photobiol. 89(3), 683–686 (2013),
https://doi.org/10.1111/php.12027
[15] H. Ding, H. Yu, Y. Dong, R. Tian, G. Huang, D.A. Boothman, B.D. Sumer, and J. Gao, Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia, J. Control. Release 156(3), 276–280 (2011),
https://doi.org/10.1016/j.jconrel.2011.08.019
[16] J. Du, J.J. Cullen, and G.R. Buettner, Ascorbic acid: Chemistry, biology and the treatment of cancer, Biochim. Biophys. Acta 1826(2), 443–457 (2012),
https://doi.org/10.1016/j.bbcan.2012.06.003
[17] Q. Chen, M.G. Espey, A.Y. Sun, J.-H. Lee, M.C. Krishna, E. Shacter, P.L. Choyke, C. Pooput, K.L. Kirk, G.R. Buettner, and M. Levine, Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo, PNAS 104(21), 8749–8754 (2007),
https://doi.org/10.1073/pnas.0702854104
[18] J.R. Witmer, B.J. Wetherell, B.A. Wagner, J. Du, J.J. Cullen, and G.R. Buettner, Direct spectrophotometric measurement of supra-physiological levels of ascorbate in plasma, Redox Biol. 8, 298–304 (2016),
https://doi.org/10.1016/j.redox.2016.02.004
[19] N. Lu, Y. Ding, R. Tian, Z. Yang, J. Chen, and Y.-Y. Peng, Effects of pharmacological ascorbate on hemoglobin-induced cancer cell proliferation, Int. J. Biol. Macromol. 92, 1215–1219 (2016),
https://doi.org/10.1016/j.ijbiomac.2016.08.036
[20] A. Corti, A.F. Casini, and A. Pompella, Cellular pathways for transport and efflux of ascorbate and dehydroascorbate, Arch. Biochem. Biophys. 500(2), 107–115 (2010),
https://doi.org/10.1016/j.abb.2010.05.014
[21] D. Njus and P.M. Kelley, Vitamins C and E donate single hydrogen atoms in vivo, FEBS Lett. 284(2), 147–151 (1991),
https://doi.org/10.1016/0014-5793(91)80672-P
[22] T.L. Duarte and J. Lunec, Review: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C, Free Radic. Res. 39(7), 671–686 (2005),
https://doi.org/10.1080/10715760500104025
[23] B.S. Winkler, S.M. Orselli, and T.S. Rex, The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective, Free Radic. Biol. Med. 17(4), 333–349 (1994),
https://doi.org/10.1016/0891-5849(94)90019-1
[24] C.M. Doskey, V. Buranasudja, B.A. Wagner, J.G. Wilkes, J. Du, J.J. Cullen, and G.R. Buettner, Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy, Redox Biol. 10, 274–284 (2016),
https://doi.org/10.1016/j.redox.2016.10.010
[25] B. Frei and S. Lawson, Vitamin C and cancer revisited, PNAS 105(32), 11037–11038 (2008),
https://doi.org/10.1073/pnas.0806433105
[26] G.G. Kramarenko, S.G. Hummel, S.M. Martin, and G.R. Buettner, Ascorbate reacts with singlet oxygen to produce hydrogen peroxide, Photochem. Photobiol. 82(6), 1634–1637 (2006),
https://doi.org/10.1111/j.1751-1097.2006.tb09823.x
[27] G.R. Buettner and M.J. Need, Hydrogen peroxide and hydroxyl free radical production by hematoporphyrin derivative, ascorbate and light, Cancer Lett. 25(3), 297–304 (1985),
https://doi.org/10.1016/S0304-3835(15)30009-4
[28] H. Kim, L.J. Kirschenbaum, I. Rosenthal, and P. Riesz, Photosensitized formation of ascorbate radicals by riboflavin: an ESR study, Photochem. Photobiol. 57(5), 177–184 (1993),
https://doi.org/10.1111/j.1751-1097.1993.tb09210.x
[29] H. Kim, I. Rosenthal, L.J. Kirschenbaum, and P. Riesz, Photosensitized formation of ascorbate radicals by chloroaluminum phthalocyanine tetrasulfonate: an electron spin resonance study, Free Radic. Biol. Med. 13(3), 231–238 (1992),
https://doi.org/10.1016/0891-5849(92)90019-D
[30] G.G. Kramarenko, W.W. Wilke, D. Dayal, G.R. Buettner, and F.Q. Schafer, Ascorbate enhances the toxicity of the photodynamic action of Verteporfin in HL-60 cells, Free Radic. Biol. Med. 40(9), 1615–1627 (2006),
https://doi.org/10.1016/j.freeradbiomed.2005.12.027
[31] C.D. Heer, A.B. Davis, D.B. Riffe, B.A. Wagner, K.C. Falls, B.G. Allen, G.R. Buettner, R.A. Beardsley, D.P. Riley, and D.R. Spitz, Superoxide dismutase mimetic GC4419 enhances the oxidation of pharmacological ascorbate and its anticancer effects in an H2O2-dependent manner, Antioxidants 7(18), 1–13 (2018),
https://doi.org/10.3390/antiox7010018
[32] A.F. Mironov, A.N. Nizhnik, and A. Yu. Nockel, Hematoporphyrin derivatives: an oligomeric composition study, J. Photochem. Photobiol. B 4(3), 291–306 (1990),
https://doi.org/10.1016/1011-1344(90)85035-U
[33] T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst. 90(12), 889–905 (1998),
https://doi.org/10.1093/jnci/90.12.889
[34] R. Rotomskis, S. Bagdonas, and G. Streckyte, Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumour therapy, J. Photochem. Photobiol. B 33(1), 61–67 (1996),
https://doi.org/10.1016/1011-1344(95)07228-4
[35] A.F. McDonagh, The biliverdin-bilirubin antioxidant cycle of cellular protection: Missing a wheel?, Free Radic. Biol. Med. 49(5), 814–820 (2010),
https://doi.org/10.1016/j.freeradbiomed.2010.06.001
[36] G.P. Gurinovich, A.I. Patsko, A.M. Shul'ga, and A.N. Sevchenko, On the mechanism of conversion of porphyrins after photoreduction reaction, Doklady Akademii Nauk SSSR 156(1), 125–127 (1964) [in Russian],
http://mi.mathnet.ru/eng/dan/v156/i1/p125
[37] D. Mauzerall and G. Feher, Optical absorption of the porphyrin free radical formed in a reversible photochemical reaction, Biochim. Biophys. Acta 88(3), 658–660 (1964),
https://doi.org/10.1016/0926-6577(64)90112-3
[38] I. Saha, J. Yoo, J.H. Lee, H. Hwang, and Ch.-H. Lee, Unique prototropy of meso-alkylidenyl carbaporphyrinoid possessing one meso-exocyclic double bond, Chem. Commun. 51(92), 16506–16509 (2015),
https://doi.org/10.1039/C5CC06871A
[39] A.A. Krasnovski, Reversible photochemical reduction of chlorophyll and its analogues and derivatives, Russian Chem. Rev. 29(6), 344–357 (1960),
https://doi.org/10.1070/RC1960v029n06ABEH001236
[40] G.R. Buettner and B.A. Jurkiewicz, Ascorbate free radical as a marker of oxidative stress: an EPR study, Free Radic. Biol. Med. 14(1), 49–55(1993),
https://doi.org/10.1016/0891-5849(93)90508-R
[41] G.R. Buettner, Thiyl free radical production with hematoporphyrin derivative, cysteine and light: a spin-trapping study, FEBS Lett. 177(2), 295–299 (1985),
https://doi.org/10.1016/0014-5793(84)81303-4
[42] G.R. Buettner, In the absence of catalytic metals ascorbate does not autoxidize at pH 7 ascorbate as a test for catalytic metals, J. Biochem. Biophys. Methods 16, 27–40 (1988),
https://doi.org/10.1016/0165-022X(88)90100-5
[43] R. Dittmeyer, J.D. Grunwaldt, and A. Pashkova, A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide, Catal. Today 248, 149–159 (2015),
https://doi.org/10.1016/j.cattod.2014.03.055
[44] W.L. Boatright, Oxygen dependency of one-electron reactions generating ascorbate radicals and hydrogen peroxide from ascorbic acid, Food Chem. 196, 1361–1367 (2016),
https://doi.org/10.1016/j.foodchem.2015.07.141
[45] Y. Fang, Y.G. Gorbunova, P. Chen, X. Jiang, M. Manowong, A.A. Sinelshchikova, Y.Y. Enakieva, A.G. Martynov, A.Y. Tsivadze, A. Bessmertnykh- Lemeune, C. Stern, R. Guilard, and K.M. Kadish, Electrochemical and spectroelectrochemical studies of diphosphorylated metalloporphyrins. Generation of a phlorin anion product, Inorg. Chem. 54(7), 3501–3512 (2015),
https://doi.org/10.1021/acs.inorgchem.5b00067
[46] K. Reszka and R.C. Sealy, Photooxidation of 3,4-dihydroxyphenylalanine by hematoporphyrin in aqueous solutions: an electron spin resonance study using 2,2,6,6-tetramethyl-4-piperidone-1-oxyl (Tempone), Photochem. Photobiol. 39(3), 293–299 (1984),
https://doi.org/10.1111/j.1751-1097.1984.tb08180.x
[47] C.C. Felix, K. Reszka, and R.C. Sealy, Free radicals from photoreduction of hematoporphyrin in aqueous solution, Photochem. Photobiol. 37(2), 131–137 (1983),
https://doi.org/10.1111/j.1751-1097.1983.tb04449.x
[48] J. Dunne, A. Caron, P. Menu, A. Alayash, P.W. Buehler, M.T. Wilson, R. Silaghi-Dumitrescu, B. Faivre, and Ch.E. Cooper, Ascorbate removes key precursors to oxidative damage by cell-free haemoglobin in vitro and in vivo, Biochem. J. 399(3), 513–524 (2006),
https://doi.org/10.1042/BJ20060341
[49] G.R. Buettner and B.A. Jurkiewicz, Catalytic metals, ascorbate and free radicals: combinations to avoid, Radiat. Res. 145(5), 532–541 (1996),
https://doi.org/10.2307/3579271
[50] G.R. Buettner, Ascorbate oxidation: UV absorbance of ascorbate and ESR spectroscopy of the ascorbyl radical as assays for iron, Free Radic. Res. Commun. 10(1–2), 5–9 (1990),
https://doi.org/10.3109/10715769009145927
[51] M. Roche, Ph. Rondeau, N.R. Singh, E. Tarnus, and E. Bourdon, The antioxidant properties of serum albumin, FEBS Lett. 582(13), 1783–1787 (2008),
https://doi.org/10.1016/j.febslet.2008.04.057
[52] J.-L. Plantier, V. Duretz, V. Devos, R. Urbain, and S. Jorieux, Comparison of antioxidant properties of different therapeutic albumin preparations, Biologicals 44(4), 226–233 (2016),
https://doi.org/10.1016/j.biologicals.2016.04.002