Received 6 December 2021; revised 24 January 2022; accepted 22
February 2022
[1] D. van Straten, V. Mashayekhi, H.S. de Bruijn, S. Oliveira,
and D.J. Robinson, Oncologic photodynamic therapy: basic
principles, current clinical status and future directions,
Cancers
9(19), 1–54 (2017),
https://doi.org/10.3390/cancers9020019
[2] O. Augusto and S. Muntz Vaz, EPR spin-trapping of protein
radicals to investigate biological oxidative mechanisms, Amino
Acids
32, 535–542 (2007),
https://doi.org/10.1007/s00726-006-0429-4
[3] P. Vaupel and A. Mayer, Hypoxia in cancer: significance and
impact on clinical outcome, Cancer Metastasis Rev.
26,
225–239 (2007),
https://doi.org/10.1007/s10555-007-9055-1
[4] I. Freitas and G.F. Baronzio, New trends in photobiology:
Tumor hypoxia, reoxygenation and oxygenation strategies:
possible role in photodynamic therapy, J. Photochem. Photobiol.
B
11(1), 3–30 (1991),
https://doi.org/10.1016/1011-1344(91)80264-I
[5] A. Juzeniene, Oxygen effects in photodynamic therapy, in:
Handbook
of Biophotonics. Vol. 2: Photonics for Health Care, 1st
ed., eds. J. Popp, V.V. Tuchin, A. Chiou, and S. Heinemann
(Wiley-VCH Verlag GmbH & Co. KGaA, 2013) pp. 305–313,
https://www.wiley.com/en-us/Handbook+of+Biophotonics%2C+3+Volume+Set-p-9783527407286
[6] L.I. Grossweinaer, S. Patealn, and D.J.B. Grossweinaer, Type
I and Type II mechanisms in the photosensitized lysis of
phosphatidylcholine liposomes by hematoporphyrin, Photochem.
Photobiol.
36(2), 159–167 (1982),
https://doi.org/10.1111/j.1751-1097.1982.tb04358.x
[7] G.R. Buettner and L.W. Oberlby, The apparent production of
superoxide and hydroxyl radicals by hematoporphyrin and light as
seen by spintrapping, FEBS Lett.
121(1), 161–164 (1980),
https://doi.org/10.1016/0014-5793(80)81288-9
[8] S. Cannistraro and A. Van de Worst, Photosensitization by
hematoporphyrin: ESR evidence for free radical induction in
unsaturated fatty acids and for singlet oxygen production,
Biochem. Biophys. Res. Comm.
74(3), 1177–1185 (1977),
https://doi.org/10.1016/0006-291X(77)91642-4
[9] A.W. Giroti, Mechanisms of photosensitization, Photochem.
Photobiol.
38(6), 145–151 (1983),
https://doi.org/10.1111/j.1751-1097.1983.tb03610.x
[10] B.W. McIlroy, A. Curnow, G. Buonaccorsi, M.A. Scott, S.G.
Bown, and A.J. MacRobert, Spatial measurement of oxygen levels
during photodynamic therapy using time-resolved optical
spectroscopy, J. Photochem. Photobiol. B
43(1), 47–55
(1998),
https://doi.org/10.1016/S1011-1344(98)00081-5
[11] G.J. Bachowski, K.M. Morehouse, and A.W. Girotti,
Porphyrin-sensitized photoreactions in the presence of
ascorbate: oxidation of cell membrane lipids and hydroxyl
radical traps, Photochem. Photobiol.
47(5), 635–645
(1988),
https://doi.org/10.1111/j.1751-1097.1988.tb02759.x
[12] D. Mauzerall and G. Feher, A study of the photoinduced
porphyrin free radical by electron spin resonance, Biochim.
Biophys. Acta
79(2), 430–432 (1964),
https://doi.org/10.1016/0926-6577(64)90030-0
[13] H. Qi, Q. Wu, N. Abe, Sh. Saiki, B. Zhu, Y. Murata, and Y.
Nakamura, Ascorbic acid synergistically potentiates phloxine
B-induced photocytotoxicity in human acute promyelocytic
leukemia cells, J. Biochem. Mol. Toxicol.
28(4), 167–173
(2014),
https://doi.org/10.1002/jbt.21549
[14] M. Price, L. Heilbrun, and D. Kessel, Effects of the
oxygenation level on formation of different reactive oxygen
species during photodynamic therapy, Photochem. Photobiol.
89(3),
683–686 (2013),
https://doi.org/10.1111/php.12027
[15] H. Ding, H. Yu, Y. Dong, R. Tian, G. Huang, D.A. Boothman,
B.D. Sumer, and J. Gao, Photoactivation switch from type II to
type I reactions by electron-rich micelles for improved
photodynamic therapy of cancer cells under hypoxia, J. Control.
Release
156(3), 276–280 (2011),
https://doi.org/10.1016/j.jconrel.2011.08.019
[16] J. Du, J.J. Cullen, and G.R. Buettner, Ascorbic acid:
Chemistry, biology and the treatment of cancer, Biochim.
Biophys. Acta
1826(2), 443–457 (2012),
https://doi.org/10.1016/j.bbcan.2012.06.003
[17] Q. Chen, M.G. Espey, A.Y. Sun, J.-H. Lee, M.C. Krishna, E.
Shacter, P.L. Choyke, C. Pooput, K.L. Kirk, G.R. Buettner, and
M. Levine, Ascorbate in pharmacologic concentrations selectively
generates ascorbate radical and hydrogen peroxide in
extracellular fluid in vivo, PNAS
104(21), 8749–8754
(2007),
https://doi.org/10.1073/pnas.0702854104
[18] J.R. Witmer, B.J. Wetherell, B.A. Wagner, J. Du, J.J.
Cullen, and G.R. Buettner, Direct spectrophotometric measurement
of supra-physiological levels of ascorbate in plasma, Redox
Biol.
8, 298–304 (2016),
https://doi.org/10.1016/j.redox.2016.02.004
[19] N. Lu, Y. Ding, R. Tian, Z. Yang, J. Chen, and Y.-Y. Peng,
Effects of pharmacological ascorbate on hemoglobin-induced
cancer cell proliferation, Int. J. Biol. Macromol.
92,
1215–1219 (2016),
https://doi.org/10.1016/j.ijbiomac.2016.08.036
[20] A. Corti, A.F. Casini, and A. Pompella, Cellular pathways
for transport and efflux of ascorbate and dehydroascorbate,
Arch. Biochem. Biophys.
500(2), 107–115 (2010),
https://doi.org/10.1016/j.abb.2010.05.014
[21] D. Njus and P.M. Kelley, Vitamins C and E donate single
hydrogen atoms in vivo, FEBS Lett.
284(2), 147–151
(1991),
https://doi.org/10.1016/0014-5793(91)80672-P
[22] T.L. Duarte and J. Lunec, Review: When is an antioxidant
not an antioxidant? A review of novel actions and reactions of
vitamin C, Free Radic. Res.
39(7), 671–686 (2005),
https://doi.org/10.1080/10715760500104025
[23] B.S. Winkler, S.M. Orselli, and T.S. Rex, The redox couple
between glutathione and ascorbic acid: a chemical and
physiological perspective, Free Radic. Biol. Med.
17(4),
333–349 (1994),
https://doi.org/10.1016/0891-5849(94)90019-1
[24] C.M. Doskey, V. Buranasudja, B.A. Wagner, J.G. Wilkes, J.
Du, J.J. Cullen, and G.R. Buettner, Tumor cells have decreased
ability to metabolize H
2O
2: Implications
for pharmacological ascorbate in cancer therapy, Redox Biol.
10,
274–284 (2016),
https://doi.org/10.1016/j.redox.2016.10.010
[25] B. Frei and S. Lawson, Vitamin C and cancer revisited, PNAS
105(32), 11037–11038 (2008),
https://doi.org/10.1073/pnas.0806433105
[26] G.G. Kramarenko, S.G. Hummel, S.M. Martin, and G.R.
Buettner, Ascorbate reacts with singlet oxygen to produce
hydrogen peroxide, Photochem. Photobiol.
82(6),
1634–1637 (2006),
https://doi.org/10.1111/j.1751-1097.2006.tb09823.x
[27] G.R. Buettner and M.J. Need, Hydrogen peroxide and hydroxyl
free radical production by hematoporphyrin derivative, ascorbate
and light, Cancer Lett.
25(3), 297–304 (1985),
https://doi.org/10.1016/S0304-3835(15)30009-4
[28] H. Kim, L.J. Kirschenbaum, I. Rosenthal, and P. Riesz,
Photosensitized formation of ascorbate radicals by riboflavin:
an ESR study, Photochem. Photobiol.
57(5), 177–184
(1993),
https://doi.org/10.1111/j.1751-1097.1993.tb09210.x
[29] H. Kim, I. Rosenthal, L.J. Kirschenbaum, and P. Riesz,
Photosensitized formation of ascorbate radicals by
chloroaluminum phthalocyanine tetrasulfonate: an electron spin
resonance study, Free Radic. Biol. Med.
13(3), 231–238
(1992),
https://doi.org/10.1016/0891-5849(92)90019-D
[30] G.G. Kramarenko, W.W. Wilke, D. Dayal, G.R. Buettner, and
F.Q. Schafer, Ascorbate enhances the toxicity of the
photodynamic action of Verteporfin in HL-60 cells, Free Radic.
Biol. Med.
40(9), 1615–1627 (2006),
https://doi.org/10.1016/j.freeradbiomed.2005.12.027
[31] C.D. Heer, A.B. Davis, D.B. Riffe, B.A. Wagner, K.C. Falls,
B.G. Allen, G.R. Buettner, R.A. Beardsley, D.P. Riley, and D.R.
Spitz, Superoxide dismutase mimetic GC4419 enhances the
oxidation of pharmacological ascorbate and its anticancer
effects in an H
2O
2-dependent manner,
Antioxidants
7(18), 1–13 (2018),
https://doi.org/10.3390/antiox7010018
[32] A.F. Mironov, A.N. Nizhnik, and A. Yu. Nockel,
Hematoporphyrin derivatives: an oligomeric composition study, J.
Photochem. Photobiol. B
4(3), 291–306 (1990),
https://doi.org/10.1016/1011-1344(90)85035-U
[33] T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D.
Kessel, M. Korbelik, J. Moan, and Q. Peng, Photodynamic therapy,
J. Natl. Cancer Inst.
90(12), 889–905 (1998),
https://doi.org/10.1093/jnci/90.12.889
[34] R. Rotomskis, S. Bagdonas, and G. Streckyte, Spectroscopic
studies of photobleaching and photoproduct formation of
porphyrins used in tumour therapy, J. Photochem. Photobiol. B
33(1),
61–67 (1996),
https://doi.org/10.1016/1011-1344(95)07228-4
[35] A.F. McDonagh, The biliverdin-bilirubin antioxidant cycle
of cellular protection: Missing a wheel?, Free Radic. Biol. Med.
49(5), 814–820 (2010),
https://doi.org/10.1016/j.freeradbiomed.2010.06.001
[36] G.P. Gurinovich, A.I. Patsko, A.M. Shul'ga, and A.N.
Sevchenko, On the mechanism of conversion of porphyrins after
photoreduction reaction, Doklady Akademii Nauk SSSR
156(1),
125–127 (1964) [in Russian],
http://mi.mathnet.ru/eng/dan/v156/i1/p125
[37] D. Mauzerall and G. Feher, Optical absorption of the
porphyrin free radical formed in a reversible photochemical
reaction, Biochim. Biophys. Acta
88(3), 658–660 (1964),
https://doi.org/10.1016/0926-6577(64)90112-3
[38] I. Saha, J. Yoo, J.H. Lee, H. Hwang, and Ch.-H. Lee, Unique
prototropy of meso-alkylidenyl carbaporphyrinoid possessing one
meso-exocyclic double bond, Chem. Commun.
51(92),
16506–16509 (2015),
https://doi.org/10.1039/C5CC06871A
[39] A.A. Krasnovski, Reversible photochemical reduction of
chlorophyll and its analogues and derivatives, Russian Chem.
Rev.
29(6), 344–357 (1960),
https://doi.org/10.1070/RC1960v029n06ABEH001236
[40] G.R. Buettner and B.A. Jurkiewicz, Ascorbate free radical
as a marker of oxidative stress: an EPR study, Free Radic. Biol.
Med.
14(1), 49–55(1993),
https://doi.org/10.1016/0891-5849(93)90508-R
[41] G.R. Buettner, Thiyl free radical production with
hematoporphyrin derivative, cysteine and light: a spin-trapping
study, FEBS Lett.
177(2), 295–299 (1985),
https://doi.org/10.1016/0014-5793(84)81303-4
[42] G.R. Buettner, In the absence of catalytic metals ascorbate
does not autoxidize at pH 7 ascorbate as a test for catalytic
metals, J. Biochem. Biophys. Methods
16, 27–40 (1988),
https://doi.org/10.1016/0165-022X(88)90100-5
[43] R. Dittmeyer, J.D. Grunwaldt, and A. Pashkova, A review of
catalyst performance and novel reaction engineering concepts in
direct synthesis of hydrogen peroxide, Catal. Today
248,
149–159 (2015),
https://doi.org/10.1016/j.cattod.2014.03.055
[44] W.L. Boatright, Oxygen dependency of one-electron reactions
generating ascorbate radicals and hydrogen peroxide from
ascorbic acid, Food Chem.
196, 1361–1367 (2016),
https://doi.org/10.1016/j.foodchem.2015.07.141
[45] Y. Fang, Y.G. Gorbunova, P. Chen, X. Jiang, M. Manowong,
A.A. Sinelshchikova, Y.Y. Enakieva, A.G. Martynov, A.Y.
Tsivadze, A. Bessmertnykh- Lemeune, C. Stern, R. Guilard, and
K.M. Kadish, Electrochemical and spectroelectrochemical studies
of diphosphorylated metalloporphyrins. Generation of a phlorin
anion product, Inorg. Chem.
54(7), 3501–3512 (2015),
https://doi.org/10.1021/acs.inorgchem.5b00067
[46] K. Reszka and R.C. Sealy, Photooxidation of
3,4-dihydroxyphenylalanine by hematoporphyrin in aqueous
solutions: an electron spin resonance study using
2,2,6,6-tetramethyl-4-piperidone-1-oxyl (Tempone), Photochem.
Photobiol.
39(3), 293–299 (1984),
https://doi.org/10.1111/j.1751-1097.1984.tb08180.x
[47] C.C. Felix, K. Reszka, and R.C. Sealy, Free radicals from
photoreduction of hematoporphyrin in aqueous solution,
Photochem. Photobiol.
37(2), 131–137 (1983),
https://doi.org/10.1111/j.1751-1097.1983.tb04449.x
[48] J. Dunne, A. Caron, P. Menu, A. Alayash, P.W. Buehler, M.T.
Wilson, R. Silaghi-Dumitrescu, B. Faivre, and Ch.E. Cooper,
Ascorbate removes key precursors to oxidative damage by
cell-free haemoglobin in vitro and in vivo, Biochem. J.
399(3),
513–524 (2006),
https://doi.org/10.1042/BJ20060341
[49] G.R. Buettner and B.A. Jurkiewicz, Catalytic metals,
ascorbate and free radicals: combinations to avoid, Radiat. Res.
145(5), 532–541 (1996),
https://doi.org/10.2307/3579271
[50] G.R. Buettner, Ascorbate oxidation: UV absorbance of
ascorbate and ESR spectroscopy of the ascorbyl radical as assays
for iron, Free Radic. Res. Commun.
10(1–2), 5–9 (1990),
https://doi.org/10.3109/10715769009145927
[51] M. Roche, Ph. Rondeau, N.R. Singh, E. Tarnus, and E.
Bourdon, The antioxidant properties of serum albumin, FEBS Lett.
582(13), 1783–1787 (2008),
https://doi.org/10.1016/j.febslet.2008.04.057
[52] J.-L. Plantier, V. Duretz, V. Devos, R. Urbain, and S.
Jorieux, Comparison of antioxidant properties of different
therapeutic albumin preparations, Biologicals
44(4),
226–233 (2016),
https://doi.org/10.1016/j.biologicals.2016.04.002